Development of a Polarized 3He Ion Source for RHIC

Charles S Epstein, Richard G Milner
Lab for Nuclear Science, Massachusetts Institute of Technology

Overview
- Provide $\sim 10^{12}$/sec 70% polarized 3He ions to RHIC
- Pulsed structure: ~ 1 second pulse, ~ 3 seconds off
- Effective polarized neutron beam
- Allows new, unique high-energy QCD studies
- Allows fundamental tests of the standard model in a future electron-ion collider eRHIC
- Source construction getting underway with goal to carry out test in mid-2012 on EBIS solenoid

Concept for Flow into EBIS
- $P_0 = \sim 1$ torr
- Precision capillary leak, 10^{-6} atm-cc/sec
- 10^6 wall bounces, negligible depolarization

Metastability Exchange Optical Pumping
- Invented in 1963 by Colgrove, Schearer, Walters
- Weak RF discharge excites 3He atoms to metastable state
- 10W 1083nm Keopsys fiber pump laser, circularly polarized
- Measure polarization in cell with pump-probe technique
- Output required only $\sim 10^{15}$/sec at 70% polarization

RHIC Electron Beam Ion Source (EBIS)
- 5 Tesla solenoidal field
- Length of ion trap = 1.5 m
- 10 A of 20 keV electrons
- 575 A/cm2 current density
- Output $\sim 10^{12}$ 3He$^+$/sec

Magnetic Field Gradients
- Strong gradients in ~ 0.1T field outside EBIS pose depolarization threat
- Correction coil: 6,000 A, 25 cm2 (air cooled)
- 45 cm x 50 cm, rectangular
- Relaxation times ~ 600 seconds (more than sufficient)

Atomic Processes in EBIS
Processes take place inside EBIS that can lead to depolarization

Charge exchange
3He$^-$ + 3He$^-$ + 3He + 3He$^-$
Only minute effects; $\sigma \sim 10^{-16}$ cm2, approximate rate 10^7 s$^{-1}$

Recombination
3He$^+$ + 3He$^+$ + 3He$^+$
which can depolarize. Radiative 3-body process: factor of α^2, $\sigma < 10^{-20}$ cm2; negligible

Spin-exchange collisions
$\sigma < 10^{-14}$ cm2: negligible

Acknowledgements
The idea originated at BNL along with: James Alexi, Edward Beabe, Alexander Pikh, Anatoli Zolenski (Collider- Accelerator Division, Brookhaven National Laboratory). We acknowledge discussions with Werner Heil, Sergei Karpu, Ernst Otten (Institut für Physik, Universität Mainz); Daniel Keppler (Massachusetts Institute of Technology); Pierre-Jean Nacher (Ecole Normale Supérieure, Paris); Guilhem Collier (University of Cracow, Poland)

This research is supported by the Program for R&D for Next Generation Nuclear Physics Accelerator Facilities of the DOE Office of Nuclear Physics.