
DaMarcus Patterson, Dr. Julie Chalfant, Dr. Michael Triantafyllou

Sea Grant Design Laboratory, Massachusetts Institute of Technology

Automation of Component Placement in Early-Stage Ship Design

ABSTRACT

Modern ships, and naval ships in particular, feature a
wide range of components. Devices for power generation,
navigation, and defense are all interconnected in a
complex, integrated system. Software is heavily used in
the design phase when placing internal components;
however, manually placing components can be time
consuming, especially when designers are considering
things like weight distribution and accessibility to
components for maintenance. In this paper we present a
methodology for automatically arranging components in
a ship design in a manner that eliminates overlaps,
provides spacing between components, and minimizes
connection length. The algorithm is described, and several
examples of varying complexity are presented.

INTRODUCTION

Modern weapon and sensor systems are increasingly
power-intensive, placing great demands on a ship’s
electrical power generation and distribution systems;
further, the losses incurred place great demands on a
ship’s thermal management systems. In addition, the
increasingly integrated nature of a ship’s control structure
in which the systems traditionally known as support
systems are now an integral part of the fighting success of
a ship place even greater importance on the role of these
systems. The increased importance and increased size of
the support systems make it imperative that the systems
be modeled earlier in the ship design process than was
previously accomplished, that the models throughout the
design cycle are more detailed, and that the models are
able to simulate the performance of systems at a level of
detail appropriate to the stage of design. These demands
are precipitating a change in the design tools used.

In recent years, the increased capacity and capability
of computational resources has fundamentally changed

the ship design process from a spiral iteration of a few
point designs to the automated exploration of a very broad
design space reaching thousands or even hundreds of
thousands of designs. Methodologies such as set-based
design [1], technology identification, evaluation, and
selection [2], and surrogate modeling [3] are becoming the
new face of ship design. New design tools must function
in such an environment.

In response to these needs, the Electric Ship Research
and Development Consortium (ESRDC) under a grant
from the Office of Naval Research and in consultation
with the Naval Surface Warfare Center Carderock
Division has created a software environment called S3D
(Smart Ship Systems Design) [4]–[6]. S3D enables the
creation, simulation and analysis of shipboard distribution
systems in the electrical, thermal and mechanical energy
domains. It is a component-centric, object-oriented
software in which each component has a mathematical
representation in each applicable domain. Further
description of S3D is provided in the background section.

The initial effort in creating S3D concentrated on the
ability to reliably construct and analyze a multi-
disciplinary set of systems for an individual ship design,
with the user fully integrated into each step of the process.
The vision for S3D has always contained the concept of
expanding the capability to include an automated, user-
directed process in which multiple systems can be created,
adapted to different hullforms, simulated, and analyzed.
The approach to this concept has come to be known as
Templating. In short, Templating involves combining pre-
designed sections of systems into a full ship system
architecture, tracing the resulting system to determine
required capacity and thus dimensions of each
component, then arranging the components in three-
dimensional space. An overview of the Templating
process is presented in the background section.

The final step in the Templating process is the physical
arrangement of components in three-dimensional space.
This paper addresses a methodology of arranging
components using force-directed graph drawing, which is
a method for achieving visually pleasing arrangements of
graphs in two or three dimensions. By applying repulsive
forces between all vertices of a graph and attractive forces
between vertices connected by edges, then moving the
vertices to minimize energy, the graphs tend to resolve
themselves such that edges are of fairly equal length and
edge crossings are minimized. Numerous algorithms
exist; a survey is presented in [7]. We apply this concept

This material is based upon research supported by, or in part
by, the U.S. Office of Naval Research (ONR) under award
number ONR N00014-16-1-2945 Incorporating Distributed
Systems in Early-Stage Set-Based Design of Navy Ships;
ONR N00014-16-1-2956 Electric Ship Research and
Development Consortium; and by the National Oceanic and
Atmospheric Administration (NOAA) under Grant Number
NA14OAR4170077 - MIT Sea Grant College Program.

Distribution A. Approved for public release,
distribution is unlimited. DCN # 43-6492-20.

to the placement of components in a compartment to
achieve an arrangement in which components
(represented as graph vertices) are spaced apart while the
length of connections such as cables or pipes (represented
as graph edges) are minimized.

BACKGROUND

Smart Ship System Design (S3D)

S3D is a software tool used to design and analyze ship
systems. It contains a rich equipment library of typical
shipboard components that can be selected,
parameterized, placed in a ship design, and connected to
one another to form systems. Each component has a
mathematical and visual representation in multiple
domains including electrical, piping and mechanical.

A system design in S3D consists of components
arranged and connected in a one-line diagram for a
specific discipline. If a component acts in multiple
domains, the same component will appear in each relevant
domain, with the associated mathematical model and
properties for that domain. For example, a generator will
have a model in the electrical domain to represent the
electrical power generated including properties such as
voltage and frequency. The same component will have a

representation in the mechanical domain to model the
input mechanical power required from an engine,
including such properties as rotational speed and torque.
If it is a water-cooled generator, it will also have a
representation in the piping domain, specifying properties
such as cooling water temperature and specific heat.
Physical properties such as dimensions and weight are
also tabulated. A CAD representation is available for
three-dimensional placement within a ship hull; the
locations of equipment can then be used to determine the
length of distribution components such as cabling, piping
or shafts. Views of a generator in the electrical,
mechanical and thermal disciplines of S3D can be seen in
Figure 1.

The S3D software co-simulates the design in all
disciplines to capture the effects of one domain on
another, using a power-flow-level simulation. Results
include such data as voltages, currents, flow rates and
temperatures throughout. Operational parameters such as
valve position, power settings or breaker position can be
varied to test the design against different operational
missions. Metrics such as power required, fuel usage,
losses, weight and volume can be parsed to compare and
evaluate designs against one another.

Figure 1: Views of a generator in four different disciplines: electrical (top left), mechanical (top right), thermal
(bottom left) and CAD (bottom right) [8].

Templating

The MIT Sea Grant Design Laboratory is conducting a
body of work with the goal of achieving semi-automated
design of ship systems, in which the systems are
assembled automatically under the guidance of the
engineer or designer, using a Templating process.
Templates are pre-designed systems or sections of
systems, and can be created using the S3D software. At
the end of the Templating process, the templates have
been assembled into fully connected, fully functioning
ship systems with components properly parameterized,
properly dimensioned, and placed in three-dimensional
space in a ship hullform ready for system simulation and
analysis.

The process for creating a fully functional ship system
from templates requires several steps, described below.

The first step is to assemble the templates into a
logically connected system by copying relevant templates
into the ship design and connecting them appropriately to
one another. This places the proper components in the
proper configuration, yielding a logically appropriate one-
line diagram with components placed in an approximate
geographic position within the ship. At first blush this
seems quite simple, but the complexity comes in the
details of such things as deep copy of the templates and
all subordinate components, connections, properties,
views, and tools; connection of templates in the proper
logical order without cross-connections or loose ends; and
association of each item with the appropriate, non-
duplicated systems and common groupings.

The second step is to determine the capacity required
of each component. Since the Templating capability
facilitates the creation of ship systems from an assembly
of parts or system sub-sections, it is not possible to
determine the required capacity of each element of a
system until the system is fully assembled and placed in
three-dimensional space. Variations in the sources and
loads that make up the system and variations in the
topology into which they are assembled will affect the
capacity required of each component. Further, the location
of components will affect the length of distribution
components such as cables, pipes or shafts, which will
extend or contract in length as components are placed
farther apart or closer together. This in turn will affect the
losses in the distribution components, as they are
generally calculated on a per-unit-length basis.

To determine the capacity of each component, it is
necessary to determine the maximum amount of power
that can flow through each component given any possible
alignment of the system. An algorithm to determine this
power requirement using graph theory is described in [8].
This algorithm is applied to a fully connected system, and
the rated power of each component is set to the value
determined by the algorithm.

Once the capacity of each component is determined,
the component is dimensioned appropriately for the
capacity required. Some components in S3D contain
automated sizing algorithms; the long-term goal is for all
component types to provide this functionality.

The third step is to make final placement of the
components in three-dimensional space, which is the topic
of the remainder of this paper.

 PROBLEM DESCRIPTION

Herein, a component is a piece of equipment such as a
diesel engine, a pump, an electrical converter, or a valve.

A zone is a defined region of a ship. While we use the
term zone in this paper, this functionality represents any
region of a ship such as a compartment, a zone or an entire
hull.

At the start of the component arrangement process,
components have been logically connected into systems,
but have not been precisely positioned in three-
dimensional space. They may have no positioning
information, they may all be lumped at the origin of the
ship or at the centroid of the zone, or they may be roughly
located close to their final position; however, components
may overlap one another or intersect with the ship
structure. Components may be assigned to zones,
although they may or may not be positioned within the
zone at the beginning of the arrangement process. Some
components may be fixed in place.

The goal of this algorithm is to arrange all components
within the designated zone. The components must be
spread throughout the zone, separated so they do not
overlap, and placed in a manner that considers
dimensions, interactions and connections with other
components. A few use cases of this functionality include:

1) Taking many components that were placed at the
centroid of a zone and arranging them throughout the
zone.

2) Arranging several components around other
components with fixed locations. For example,
arranging the tees, valves and piping of a cooling
system around a few large fixed components that
require cooling.

3) Resolving minor overlaps among components
that have been placed in approximately the proper
location, through small movements of the components.

The problem statement is summarized as follows.

Given a set of components including their dimensions,
positions, and zone assignment; a list of connections
between components; and indication of which, if any,
components are fixed in three-dimensional space; arrange
the components within the indicated zone and provide as
an output the refined locations of the components.

Components must be placed such that the following
constraints are met:

First, components that are connected to each other are
placed close together. This reduces complexity of
connections as well as the amount of material used for
distribution components such as cabling and piping,
consequently reducing the ship’s weight.

Second, components are placed such that no
component overlaps another component and there is as
much space as possible between components. Space
between components allows access for operation,
maintenance and repair.

Third, components remain within the assigned zone
and do not intersect the boundaries of that zone, such as
the ship hull or the bulkheads or decks.

APPROACH

We implement force-directed graph-drawing theory
and gradient descent methodologies for component
placement. The resulting arrangements are conflict-free
while respecting connections and interactions of
components and the boundaries of the zone.

In simple terms, the force-directed graph-drawing
algorithm assigns repelling forces to all components and
attracting forces just to connected components, with a
goal of equal separation between components.

The system of components is depicted using an
undirected graph in which the vertices represent
components and the edges represent physical connections
between components such as cables, piping or shafts. It is
possible that some components may be connected to no
other components, or that there may be islanded sections
of the system in which a few components are connected
to one another but not to other portions of the set of
components.

A. Equations

The attractive and repulsive forces are functions of the
distance between components, rij, which we define as the
distance between the edges of the bounding boxes of
components i and j as shown in Figure 2. Note that the
distance between intersecting components is defined to be
zero; thus, rij is never less than zero.

1) Forces: The repulsive force, FR, is modeled after
electrostatic forces using Coulomb’s law, and is thus
inversely proportional to the square of the distance
between components such that

 (1)

where kR is the weighting of the repulsive force. For our
application, we assume the point charges of all
components are equal.

The attractive force, FA, is modeled on the force of a
spring as described by Hooke’s law, and is thus
proportional to rij such that

 FA(i,j) = −kArij (2)

where kA is the weighting of the attractive force.

At each iteration, computing the pairwise forces on
each vertex allows the 3D locations of the vertices to be
adjusted according to the sum of the forces.

To improve speed, we converted the iterative pairwise
comparison to a gradient descent formulation. We
compute an overall loss function for the entire system of
equations and minimize that loss function with respect to
the vertex positions for every vertex. This representation
requires the anti-derivative of each force equation. Thus,
repulsive force in (1) is replaced with repulsive energy

,

and the attractive force in (2) is replaced with attractive
energy

.

So that larger components are placed lower, we added
a gravitational energy to each component, UG, such that

UG(i) = zivi (3)

where zi is the vertical component of the distance of the
ith component’s centroid from the center of the zone as
shown in Figure 2, and vi is the volume of the ith
component’s bounding box minus the mean of all
components’ bounding boxes.

The k-factors kR and kA are constant and the same for
each component; adjusting these k-factors changes the
relative strength of the repulsive and attractive forces.

2) Bounds: When placing the components in the
ship, one goal is that the components do not intersect the
sides of the zones; we do not want intersections between
equipment and the bulkheads, decks or hullform. We also

Figure 2: Various distance measurements

want components to be spread out within the zone. This is
accomplished by placing attractive and repulsive forces
on the boundaries of the zone,

,

where bik is the distance from bounding box of component
i to boundary k as shown in Figure 2, kBR is the weighting
of the repulsive component of the boundary force, and kBA

is the weighting of the attractive component of the
boundary force. The bounds are planar and are currently
axis-aligned.

If this constraint is strictly applied during the early
time steps, the problem can become too constrained and
the components will not have space to reposition
themselves. Therefore, we apply the zone constraints in a
gradual manner. At first, no boundary constraints are
applied and components are allowed to reposition freely.
After this initial phase, boundaries are imposed at a large
distance and gradually brought into position. The initial
(large) distance is twice the greater of the distance from
the centroid of the zone to the boundary or to the farthest
component in each of six directions (±x, ±y, ±z). The
boundaries are then moved linearly into their final
position over all remaining iterations. If at any time step a
component is located outside the boundary, its position is
forced to fall within the boundary.

3) Loss Function: The loss function includes the sum
of the attractive and repulsive energy for every pair of
vertices, plus the gravity and bound energy for each
vertex. In total, the loss function is

 (4)

where n is the number of vertices in the graph, m is the
number of boundaries, and i 6= j.

Input Data

When loading the components, we store a 3× n
position matrix V with each component’s position, a
matrix F where the entry Fii is 0 if the component is fixed
and otherwise 1, and a symmetric adjacency matrix A
indicating whether components are connected or not.

Code Outline

At each of T iterations:

• An n × n distance matrix R is calculated with entry rij

being the closest distance between component i and
component j’s bounding boxes. If the components
intersect, the distance is 0.

• The loss function shown in (4) is calculated. The
repulsive term involves every component and can be
computed as half the sum of the elements of 1/R.
Attractive energy only exists between connected
components, so the attractive term is half the sum of
the elements of the element-wise multiplication of
1

2
𝑅2 with the adjacency matrix A. If the current

iteration is in the initial unbounded phase, bound
energy UB is not included.

• The norm of the matrix of gradients is limited so that
it does not exceed a constant value, Clim. This restricts
the movement of components at each step and
prevents wild oscillating swings of component
position in the early steps of the algorithm. For our
application, we use Clim = 1.

• The gradients are multiplied by a matrix Fij that equals
0 in the diagonal position ii if the ith component is
fixed. This eliminates any movement of fixed
components.

G = GF

• The gradients are added to the position matrix and the
bounds contract. If the bounds are already in their
final position, they do not change.

Local Minima

One of the recognized problems with a force-directed
graph algorithm is that local minima may cause an
undesirable solution. For example, several components in
a perfect line may have repelling and attracting forces that
are exactly balanced, so there is no force in a direction that
causes the components to move to a more desirable
arrangement. A small perturbation of the position will
change the direction of the forces sufficiently to escape
the local minimum and arrive at a potentially better
overall solution. For this purpose, we interject a small
random perturbation in the position of all components
once every 5 iterations up to iteration 50, then once every
10 iterations through iteration 100.

Metrics

When investigating the examples, we present several
metrics for review. The sum of the distances between
components provides an indication of total length of
connecting materials such as cabling or piping. The sum
of the repulsive energy, the sum of the attractive energy
and the value of the loss function are indicators of the
balance of forces on components and the spacing of the
components. The number of collisions at the end of the
process provides a check that the problem is resolved. We
also present the number of components, number of
iterations, and run time.

EXAMPLES

We begin with some simple examples to demonstrate
specific functionality of the code, then present a medium-
sized example with multiple components and systems,
and finish with a large example representative of a more
complex ship system design.

Simple Examples

For each simple example, 150 iterations of gradient
descent were run with occasional random perturbations of
the components’ positions. Allowing additional iterations
would result in further movement of components. All of
these examples consist only of components and
connections; no zonal boundaries are invoked.

The first example is composed of two unconnected
components as shown in Figure 3. The two components
rearrange around the origin. They are spaced apart due to
the repelling force, but the gravity force keeps them from
being expelled from the zone.

Figure 3: Simple example: two unconnected components

The second example consists of four components
placed in a line as shown in Figure 4. Each component is
connected to every other component. The components
rearrange themselves in a tetrahedral shape centered on
the origin. Note that in the starting position, the forces are
perfectly aligned so no movement will occur until the
random perturbation pushes the components slightly out
of alignment. Once out of alignment, the applied forces
move the components into position.

Figure 4: Simple example: connected components in a
line

Next, we investigate four components placed in a line
as shown in Figure 5. The two blue components are fixed.
The left-hand blue component is connected to the unfixed
white component on the far left, which is connected to the
unfixed white component on the far right, which is
connected to the fixed component on the right. In the final
image on the right-hand side of Figure 5, the two fixed
components remain fixed and the white components
rearrange around them.

Figure 5: Simple example: connected components in a
line with two fixed components

The final simple example consists of two pairs of
connected components, with all components co-located at
the origin as shown in Figure 6. The two pairs rearrange
such that each pair is centered on the origin, but separated
from the other pair.

Figure 6: Simple example: co-located, connected
components

Medium-Sized Example

Our next example is a set of sixteen components placed
in a single compartment. The electrical and piping one-
line diagrams showing connections between components
appear in Figure 7, screenshot from the S3D software.
This example was generated purely for testing the
component location algorithm and is not intended to
represent an actual ship system.

Note that this example consists of two separate sets of
components with no connections between the sets. The
generator, chiller and load in the top electrical one-line
diagram in Figure 7 all have both electrical and piping
representations, so they also appear in the piping diagram.
The switchboard from the top electrical diagram and the
generator, rectifier and dc load in the bottom diagram of
Figure 7 are all air-cooled, so they do not appear in the
piping diagram. Therefore, the three components in the
lower portion of the electrical one-line diagram are
islanded and do not have any physical connection to the
other components in the system.

Prior to running this algorithm, the components had
been logically connected in the one-line diagrams, but
they had not been given a physical location in three-
dimensional space; therefore, at the beginning of the
application of the algorithm, all components were co-
located with their centroids placed at the center of the
zone. One of the components was designated as fixed, and
all components were assigned to the same zone.

The algorithm was run on this system for 1000
iterations. For a system of this size, total run time was 72.3

seconds on a Surface Pro 4 with 8GB RAM, Intel Core i7-
6650 CPU (2 cores, 2.2 GHz base frequency).

Metrics are provided in Table I for the system in its
original position and after running the algorithm. Note
that all components were centered in the zone at the start
of the algorithm, so the sum of the distance between
components and the sum of the attractive energies are
essentially zero. The repulsive energy, on the other hand,
is quite large. At the end of the run, the energies are fairly
well balanced and the loss function value is significantly
smaller than at the start. All collisions were resolved.
Screen shots of the start and end positions are shown in
Figure 8.

TABLE I: Medium-sized example: metrics before and after
running code

 Before After

Sum distance 2e-15 50

Repulsive energy ×103 18,973,670 0.166

Attractive energy ×103 4e-18 0.139

Loss function 158,113,940 16.7

Number of Collisions 225 0

Number of Components 16

Number of Iterations 1000

Run Time (seconds) 72.3

Figure 7: Medium example: electrical one-line diagram (left) and piping one-line diagram (right)

Figure 8: Medium example: starting position (left) and final position (right). Blue components are fixed, red
components overlap, and white components are neither fixed nor overlapping.

Large Example

Our final example represents the complexity of a full
ship system in the early stages of design. The one-line
diagram of the electrical system, containing 282
components, is shown in Figure 9.

In this application of the algorithm, components were
placed in approximate positions at the beginning, but
numerous overlaps existed. Some components were not
placed and thus had a location of (0,0,0). Eight of the
larger components, e.g. the generators, were fixed in
position. Each component was assigned to one of four
zones; these zones are distributed along the longitudinal
axis of the ship.

Time to run this example was 207.9 seconds for 1000
iterations. As an indication of the improved speed of the
tensor-formulated gradient-descent algorithm, running
this example using pairwise comparison instead of
gradient descent took 3694 seconds.

Metrics are provided in Table II for the system in its
original position and after running the algorithm. Note
that components had been placed in approximately correct
positions prior to running the algorithm, so there is not a
large change in the sum of distances. All overlaps were,
however, resolved. There is an imbalance in the final
energies, and the loss function, although greatly reduced,
is much higher than the loss function value in the medium
example. This is mainly due to the fixed components
which, since they do not move, do not change the forces
between them. Figure 10 shows the full set of components
in their final position.

TABLE II: Large example: metrics before and after
running code

 Before After

Sum distance 809.7 876.4

Repulsive energy ×103 236,854,640 1,106,805

Attractive energy ×103 6.13 5.63

Loss function infinity 49,027

Number of Collisions 1,133 0

Number of Components 248

Number of Iterations 1000

Run Time (seconds) 207.9

CONCLUSIONS AND FUTURE WORK

We have developed and demonstrated an algorithm for
the placement of components in a shipboard environment
with the ability to detect and resolve overlaps, contain
components within a specified region, and consider the
interactions between components. The algorithm and
several examples have been presented within this paper.

There are a number of areas for further exploration and
future work, some of which are described below.

Nuances to the placement of components are not yet
considered. For example, components should be placed
with enough space to be accessed for maintenance, while
allowing maintenance space to be shared between
components to make designs that are more compact.
Similarly, piping and liquid-bearing components tend to
be low in a space, and electrical components tend to be
higher. For survivability purposes, components with
similar functions are separated. Components linked by a
rotating shaft must be axially aligned. Components linked
by cables must allow space for bending radius
considerations. None of these factors are currently
addressed, and all of them would improve the placement
algorithm.

Very large sets of components, especially those with
numerous zonal assignments, are somewhat slow in
execution: on the order of a few minutes. When creating
many thousands of ship designs, even using high-
performance computers, a faster algorithm would be
better. Methods for speeding up the calculations should be
investigated. For example, it may be possible to place
subsets of the component list, then combine results.

Further investigation into various weightings of the
different forces would yield a recommended set of
weightings, possibly tailored to the project in hand. In a
related manner, the component locations could be
normalized by the size of the compartment in order to
spread items through the compartment more evenly. This
investigation should also include consideration of
situations in which the components cannot fit into the
space available.

This paper describes a robust first step in the
arrangement of components for the automation of early-
stage design of ship systems. We look forward to
continued work to further improve the algorithm.

REFERENCES

[1] D. J. Singer, N. Doerry, and M. E. Buckley, “What is
set-based design?” Naval Engineers Journal, vol. 121, no. 4, pp.

31–43, 2009.
[2] D. N. Mavris and M. R. Kirby, “Technology

identification, evaluation, and selection for commercial
transport aircraft,” in Annual Conference of the Society of Allied
Weight Engineers, Inc. (SAWE). SAWE, May 24-26, 1999.

[3] L. Bonfiglio, P. Perdikaris, J. del Aguila, and G. E.
Karniadakis, “A´ probabilistic framework for multidisciplinary
design: Application to the hydrostructural optimization of
supercavitating hydrofoils,” International Journal for
Numerical Methods in Engineering, vol. 116, no. 4, pp. 246–

269, 2018.
[4] E. Broughton, R. Smart, R. Leonard, R. Dougal, J.

Chalfant, I. Leonard, and N. A. Robertson, “High temperature
superconducting cable study driving M&S tool development,”
in 2019 IEEE Electric Ship Technologies Symposium (ESTS),
August 2019.

Figure 9: Large example: electrical one-line diagram

Figure 10: Large example: beginning position (top) and final position (bottom). Blue components are fixed, red
components overlap, and white components are neither fixed nor overlapping.

[5] B. Langland, R. Leonard, R. Smart, and R. A. Dougal,

“Modeling and data exchange in a concurrent and collaborative
design environment for electric ships,” in 2015 IEEE Electric
Ship Technologies Symposium (ESTS), June 2015, pp. 388–394.

[6] M. Ferrante, J. Chalfant, C. Chryssostomidis, B.
Langland, and R. A. Dougal, “Adding simulation capability to
early-stage ship design,” in 2015 IEEE Electric Ship
Technologies Symposium (ESTS), June 2015, pp. 207–212.

[7] S. G. Kobourov, “Force-directed drawing algorithms,”
in Handbook of graph drawing and visualization, R. Tamassia,

Ed. Chapman and Hall/CRC, 2013, pp. 383–408.
[8] J. Chalfant, Z. Wang, and M. Triantafyllou,

“Expanding the design space explored by S3D,” in 2019 IEEE
Electric Ship Technologies Symposium (ESTS), August 2019.

DaMarcus Patterson is a recent graduate of the
Massachusetts Institute of Technology, with a bachelor’s

degree in Electrical Engineering and Computer Science.
He will be joining MasterCard as an associate analyst.

Dr. Julie Chalfant, PhD, is a research scientist in the
Design Laboratory of the MIT Sea Grant College
Program and a retired officer of the U.S. Navy. Her
current areas of research include ship design and
integration, including early-stage ship design tools. She
received her PhD from MIT.

Dr. Michael Triantafyllou, PhD, is the Henry L. and
Grace Doherty Professor in Ocean Science and
Engineering; a Professor of Mechanical and Ocean
Engineering; and the Director of MIT Sea Grant. His
research interests include biomimetic ocean robots and
sensors, flow-structure interaction, and dynamics and
control of ocean vehicles.

