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ABSTRACT 

Modern ships, and naval ships in particular, feature a 
wide range of components. Devices for power generation, 
navigation, and defense are all interconnected in a 
complex, integrated system. Software is heavily used in 
the design phase when placing internal components; 
however, manually placing components can be time 
consuming, especially when designers are considering 
things like weight distribution and accessibility to 
components for maintenance. In this paper we present a 
methodology for automatically arranging components in 
a ship design in a manner that eliminates overlaps, 
provides spacing between components, and minimizes 
connection length. The algorithm is described, and several 
examples of varying complexity are presented. 

INTRODUCTION 

Modern weapon and sensor systems are increasingly 
power-intensive, placing great demands on a ship’s 
electrical power generation and distribution systems; 
further, the losses incurred place great demands on a 
ship’s thermal management systems. In addition, the 
increasingly integrated nature of a ship’s control structure 
in which the systems traditionally known as support 
systems are now an integral part of the fighting success of 
a ship place even greater importance on the role of these 
systems. The increased importance and increased size of 
the support systems make it imperative that the systems 
be modeled earlier in the ship design process than was 
previously accomplished, that the models throughout the 
design cycle are more detailed, and that the models are 
able to simulate the performance of systems at a level of 
detail appropriate to the stage of design. These demands 
are precipitating a change in the design tools used. 

In recent years, the increased capacity and capability 
of computational resources has fundamentally changed 

the ship design process from a spiral iteration of a few 
point designs to the automated exploration of a very broad 
design space reaching thousands or even hundreds of 
thousands of designs. Methodologies such as set-based 
design [1], technology identification, evaluation, and 
selection [2], and surrogate modeling [3] are becoming the 
new face of ship design. New design tools must function 
in such an environment. 

In response to these needs, the Electric Ship Research 
and Development Consortium (ESRDC) under a grant 
from the Office of Naval Research and in consultation 
with the Naval Surface Warfare Center Carderock 
Division has created a software environment called S3D 
(Smart Ship Systems Design) [4]–[6]. S3D enables the 
creation, simulation and analysis of shipboard distribution 
systems in the electrical, thermal and mechanical energy 
domains. It is a component-centric, object-oriented 
software in which each component has a mathematical 
representation in each applicable domain. Further 
description of S3D is provided in the background section. 

The initial effort in creating S3D concentrated on the 
ability to reliably construct and analyze a multi-
disciplinary set of systems for an individual ship design, 
with the user fully integrated into each step of the process. 
The vision for S3D has always contained the concept of 
expanding the capability to include an automated, user-
directed process in which multiple systems can be created, 
adapted to different hullforms, simulated, and analyzed. 
The approach to this concept has come to be known as 
Templating. In short, Templating involves combining pre-
designed sections of systems into a full ship system 
architecture, tracing the resulting system to determine 
required capacity and thus dimensions of each 
component, then arranging the components in three-
dimensional space. An overview of the Templating 
process is presented in the background section. 

The final step in the Templating process is the physical 
arrangement of components in three-dimensional space. 
This paper addresses a methodology of arranging 
components using force-directed graph drawing, which is 
a method for achieving visually pleasing arrangements of 
graphs in two or three dimensions. By applying repulsive 
forces between all vertices of a graph and attractive forces 
between vertices connected by edges, then moving the 
vertices to minimize energy, the graphs tend to resolve 
themselves such that edges are of fairly equal length and 
edge crossings are minimized. Numerous algorithms 
exist; a survey is presented in [7]. We apply this concept 
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to the placement of components in a compartment to 
achieve an arrangement in which components 
(represented as graph vertices) are spaced apart while the 
length of connections such as cables or pipes (represented 
as graph edges) are minimized. 

BACKGROUND 

Smart Ship System Design (S3D) 

S3D is a software tool used to design and analyze ship 
systems. It contains a rich equipment library of typical 
shipboard components that can be selected, 
parameterized, placed in a ship design, and connected to 
one another to form systems. Each component has a 
mathematical and visual representation in multiple 
domains including electrical, piping and mechanical. 

A system design in S3D consists of components 
arranged and connected in a one-line diagram for a 
specific discipline. If a component acts in multiple 
domains, the same component will appear in each relevant 
domain, with the associated mathematical model and 
properties for that domain. For example, a generator will 
have a model in the electrical domain to represent the 
electrical power generated including properties such as 
voltage and frequency. The same component will have a 

representation in the mechanical domain to model the 
input mechanical power required from an engine, 
including such properties as rotational speed and torque. 
If it is a water-cooled generator, it will also have a 
representation in the piping domain, specifying properties 
such as cooling water temperature and specific heat. 
Physical properties such as dimensions and weight are 
also tabulated. A CAD representation is available for 
three-dimensional placement within a ship hull; the 
locations of equipment can then be used to determine the 
length of distribution components such as cabling, piping 
or shafts. Views of a generator in the electrical, 
mechanical and thermal disciplines of S3D can be seen in 
Figure 1. 

The S3D software co-simulates the design in all 
disciplines to capture the effects of one domain on 
another, using a power-flow-level simulation. Results 
include such data as voltages, currents, flow rates and 
temperatures throughout. Operational parameters such as 
valve position, power settings or breaker position can be 
varied to test the design against different operational 
missions. Metrics such as power required, fuel usage, 
losses, weight and volume can be parsed to compare and 
evaluate designs against one another. 

  

   

Figure 1: Views of a generator in four different disciplines: electrical (top left), mechanical (top right), thermal 
(bottom left) and CAD (bottom right) [8]. 



Templating 

The MIT Sea Grant Design Laboratory is conducting a 
body of work with the goal of achieving semi-automated 
design of ship systems, in which the systems are 
assembled automatically under the guidance of the 
engineer or designer, using a Templating process. 
Templates are pre-designed systems or sections of 
systems, and can be created using the S3D software. At 
the end of the Templating process, the templates have 
been assembled into fully connected, fully functioning 
ship systems with components properly parameterized, 
properly dimensioned, and placed in three-dimensional 
space in a ship hullform ready for system simulation and 
analysis. 

The process for creating a fully functional ship system 
from templates requires several steps, described below. 

The first step is to assemble the templates into a 
logically connected system by copying relevant templates 
into the ship design and connecting them appropriately to 
one another. This places the proper components in the 
proper configuration, yielding a logically appropriate one-
line diagram with components placed in an approximate 
geographic position within the ship. At first blush this 
seems quite simple, but the complexity comes in the 
details of such things as deep copy of the templates and 
all subordinate components, connections, properties, 
views, and tools; connection of templates in the proper 
logical order without cross-connections or loose ends; and 
association of each item with the appropriate, non-
duplicated systems and common groupings. 

The second step is to determine the capacity required 
of each component. Since the Templating capability 
facilitates the creation of ship systems from an assembly 
of parts or system sub-sections, it is not possible to 
determine the required capacity of each element of a 
system until the system is fully assembled and placed in 
three-dimensional space. Variations in the sources and 
loads that make up the system and variations in the 
topology into which they are assembled will affect the 
capacity required of each component. Further, the location 
of components will affect the length of distribution 
components such as cables, pipes or shafts, which will 
extend or contract in length as components are placed 
farther apart or closer together. This in turn will affect the 
losses in the distribution components, as they are 
generally calculated on a per-unit-length basis. 

To determine the capacity of each component, it is 
necessary to determine the maximum amount of power 
that can flow through each component given any possible 
alignment of the system. An algorithm to determine this 
power requirement using graph theory is described in [8]. 
This algorithm is applied to a fully connected system, and 
the rated power of each component is set to the value 
determined by the algorithm. 

Once the capacity of each component is determined, 
the component is dimensioned appropriately for the 
capacity required. Some components in S3D contain 
automated sizing algorithms; the long-term goal is for all 
component types to provide this functionality. 

The third step is to make final placement of the 
components in three-dimensional space, which is the topic 
of the remainder of this paper. 

 PROBLEM DESCRIPTION 

Herein, a component is a piece of equipment such as a 
diesel engine, a pump, an electrical converter, or a valve. 

A zone is a defined region of a ship. While we use the 
term zone in this paper, this functionality represents any 
region of a ship such as a compartment, a zone or an entire 
hull. 

At the start of the component arrangement process, 
components have been logically connected into systems, 
but have not been precisely positioned in three-
dimensional space. They may have no positioning 
information, they may all be lumped at the origin of the 
ship or at the centroid of the zone, or they may be roughly 
located close to their final position; however, components 
may overlap one another or intersect with the ship 
structure. Components may be assigned to zones, 
although they may or may not be positioned within the 
zone at the beginning of the arrangement process. Some 
components may be fixed in place. 

The goal of this algorithm is to arrange all components 
within the designated zone. The components must be 
spread throughout the zone, separated so they do not 
overlap, and placed in a manner that considers 
dimensions, interactions and connections with other 
components. A few use cases of this functionality include: 

1) Taking many components that were placed at the 
centroid of a zone and arranging them throughout the 
zone. 

2) Arranging several components around other 
components with fixed locations. For example, 
arranging the tees, valves and piping of a cooling 
system around a few large fixed components that 
require cooling. 

3) Resolving minor overlaps among components 
that have been placed in approximately the proper 
location, through small movements of the components. 

The problem statement is summarized as follows. 

Given a set of components including their dimensions, 
positions, and zone assignment; a list of connections 
between components; and indication of which, if any, 
components are fixed in three-dimensional space; arrange 
the components within the indicated zone and provide as 
an output the refined locations of the components. 



Components must be placed such that the following 
constraints are met: 

First, components that are connected to each other are 
placed close together. This reduces complexity of 
connections as well as the amount of material used for 
distribution components such as cabling and piping, 
consequently reducing the ship’s weight. 

Second, components are placed such that no 
component overlaps another component and there is as 
much space as possible between components. Space 
between components allows access for operation, 
maintenance and repair. 

Third, components remain within the assigned zone 
and do not intersect the boundaries of that zone, such as 
the ship hull or the bulkheads or decks. 

APPROACH 

We implement force-directed graph-drawing theory 
and gradient descent methodologies for component 
placement. The resulting arrangements are conflict-free 
while respecting connections and interactions of 
components and the boundaries of the zone. 

In simple terms, the force-directed graph-drawing 
algorithm assigns repelling forces to all components and 
attracting forces just to connected components, with a 
goal of equal separation between components. 

The system of components is depicted using an 
undirected graph in which the vertices represent 
components and the edges represent physical connections 
between components such as cables, piping or shafts. It is 
possible that some components may be connected to no 
other components, or that there may be islanded sections 
of the system in which a few components are connected 
to one another but not to other portions of the set of 
components. 

A. Equations 

The attractive and repulsive forces are functions of the 
distance between components, rij, which we define as the 
distance between the edges of the bounding boxes of 
components i and j as shown in Figure 2. Note that the 
distance between intersecting components is defined to be 
zero; thus, rij is never less than zero. 

1) Forces: The repulsive force, FR, is modeled after 
electrostatic forces using Coulomb’s law, and is thus 
inversely proportional to the square of the distance 
between components such that 

    (1) 

where kR is the weighting of the repulsive force. For our 
application, we assume the point charges of all 
components are equal. 

The attractive force, FA, is modeled on the force of a 
spring as described by Hooke’s law, and is thus 
proportional to rij such that 

 FA(i,j) = −kArij   (2) 

where kA is the weighting of the attractive force. 

At each iteration, computing the pairwise forces on 
each vertex allows the 3D locations of the vertices to be 
adjusted according to the sum of the forces. 

To improve speed, we converted the iterative pairwise 
comparison to a gradient descent formulation. We 
compute an overall loss function for the entire system of 
equations and minimize that loss function with respect to 
the vertex positions for every vertex. This representation 
requires the anti-derivative of each force equation. Thus, 
repulsive force in (1) is replaced with repulsive energy 

, 

and the attractive force in (2) is replaced with attractive 
energy 

. 

So that larger components are placed lower, we added 
a gravitational energy to each component, UG, such that 

UG(i) = zivi   (3) 

where zi is the vertical component of the distance of the 
ith component’s centroid from the center of the zone as 
shown in Figure 2, and vi is the volume of the ith 
component’s bounding box minus the mean of all 
components’ bounding boxes. 

The k-factors kR and kA are constant and the same for 
each component; adjusting these k-factors changes the 
relative strength of the repulsive and attractive forces. 

2) Bounds: When placing the components in the 
ship, one goal is that the components do not intersect the 
sides of the zones; we do not want intersections between 
equipment and the bulkheads, decks or hullform. We also 

 

Figure 2:  Various distance measurements 



want components to be spread out within the zone. This is 
accomplished by placing attractive and repulsive forces 
on the boundaries of the zone, 

, 

where bik is the distance from bounding box of component 
i to boundary k as shown in Figure 2, kBR is the weighting 
of the repulsive component of the boundary force, and kBA 

is the weighting of the attractive component of the 
boundary force. The bounds are planar and are currently 
axis-aligned. 

If this constraint is strictly applied during the early 
time steps, the problem can become too constrained and 
the components will not have space to reposition 
themselves. Therefore, we apply the zone constraints in a 
gradual manner. At first, no boundary constraints are 
applied and components are allowed to reposition freely. 
After this initial phase, boundaries are imposed at a large 
distance and gradually brought into position. The initial 
(large) distance is twice the greater of the distance from 
the centroid of the zone to the boundary or to the farthest 
component in each of six directions (±x, ±y, ±z). The 
boundaries are then moved linearly into their final 
position over all remaining iterations. If at any time step a 
component is located outside the boundary, its position is 
forced to fall within the boundary. 

3) Loss Function: The loss function includes the sum 
of the attractive and repulsive energy for every pair of 
vertices, plus the gravity and bound energy for each 
vertex. In total, the loss function is 

    (4)  

where n is the number of vertices in the graph, m is the 
number of boundaries, and i 6= j. 

Input Data 

When loading the components, we store a 3× n 
position matrix V with each component’s position, a 
matrix F where the entry Fii is 0 if the component is fixed 
and otherwise 1, and a symmetric adjacency matrix A 
indicating whether components are connected or not. 

Code Outline 

At each of T iterations: 

• An n × n distance matrix R is calculated with entry rij 

being the closest distance between component i and 
component j’s bounding boxes. If the components 
intersect, the distance is 0. 

• The loss function shown in (4) is calculated. The 
repulsive term involves every component and can be 
computed as half the sum of the elements of 1/R. 
Attractive energy only exists between connected 
components, so the attractive term is half the sum of 
the elements of the element-wise multiplication of 
1

2
𝑅2  with the adjacency matrix A. If the current 

iteration is in the initial unbounded phase, bound 
energy UB is not included. 

• The norm of the matrix of gradients is limited so that 
it does not exceed a constant value, Clim. This restricts 
the movement of components at each step and 
prevents wild oscillating swings of component 
position in the early steps of the algorithm. For our 
application, we use Clim = 1. 

• The gradients are multiplied by a matrix Fij that equals 
0 in the diagonal position ii if the ith component is 
fixed. This eliminates any movement of fixed 
components. 

G = GF 

• The gradients are added to the position matrix and the 
bounds contract. If the bounds are already in their 
final position, they do not change. 

Local Minima 

One of the recognized problems with a force-directed 
graph algorithm is that local minima may cause an 
undesirable solution. For example, several components in 
a perfect line may have repelling and attracting forces that 
are exactly balanced, so there is no force in a direction that 
causes the components to move to a more desirable 
arrangement. A small perturbation of the position will 
change the direction of the forces sufficiently to escape 
the local minimum and arrive at a potentially better 
overall solution. For this purpose, we interject a small 
random perturbation in the position of all components 
once every 5 iterations up to iteration 50, then once every 
10 iterations through iteration 100. 

Metrics 

When investigating the examples, we present several 
metrics for review. The sum of the distances between 
components provides an indication of total length of 
connecting materials such as cabling or piping. The sum 
of the repulsive energy, the sum of the attractive energy 
and the value of the loss function are indicators of the 
balance of forces on components and the spacing of the 
components. The number of collisions at the end of the 
process provides a check that the problem is resolved. We 
also present the number of components, number of 
iterations, and run time. 



EXAMPLES 

We begin with some simple examples to demonstrate 
specific functionality of the code, then present a medium-
sized example with multiple components and systems, 
and finish with a large example representative of a more 
complex ship system design. 

Simple Examples 

For each simple example, 150 iterations of gradient 
descent were run with occasional random perturbations of 
the components’ positions. Allowing additional iterations 
would result in further movement of components. All of 
these examples consist only of components and 
connections; no zonal boundaries are invoked. 

The first example is composed of two unconnected 
components as shown in Figure 3. The two components 
rearrange around the origin. They are spaced apart due to 
the repelling force, but the gravity force keeps them from 
being expelled from the zone. 

 

Figure 3: Simple example: two unconnected components 

The second example consists of four components 
placed in a line as shown in Figure 4. Each component is 
connected to every other component. The components 
rearrange themselves in a tetrahedral shape centered on 
the origin. Note that in the starting position, the forces are 
perfectly aligned so no movement will occur until the 
random perturbation pushes the components slightly out 
of alignment. Once out of alignment, the applied forces 
move the components into position. 

 

Figure 4: Simple example: connected components in a 
line 

Next, we investigate four components placed in a line 
as shown in Figure 5. The two blue components are fixed. 
The left-hand blue component is connected to the unfixed 
white component on the far left, which is connected to the 
unfixed white component on the far right, which is 
connected to the fixed component on the right. In the final 
image on the right-hand side of Figure 5, the two fixed 
components remain fixed and the white components 
rearrange around them. 

 

 

Figure 5: Simple example: connected components in a 
line with two fixed components 

The final simple example consists of two pairs of 
connected components, with all components co-located at 
the origin as shown in Figure 6. The two pairs rearrange 
such that each pair is centered on the origin, but separated 
from the other pair. 

 

Figure 6: Simple example: co-located, connected 
components 

Medium-Sized Example 

Our next example is a set of sixteen components placed 
in a single compartment. The electrical and piping one-
line diagrams showing connections between components 
appear in Figure 7, screenshot from the S3D software. 
This example was generated purely for testing the 
component location algorithm and is not intended to 
represent an actual ship system. 

Note that this example consists of two separate sets of 
components with no connections between the sets. The 
generator, chiller and load in the top electrical one-line 
diagram in Figure 7 all have both electrical and piping 
representations, so they also appear in the piping diagram. 
The switchboard from the top electrical diagram and the 
generator, rectifier and dc load in the bottom diagram of 
Figure 7 are all air-cooled, so they do not appear in the 
piping diagram. Therefore, the three components in the 
lower portion of the electrical one-line diagram are 
islanded and do not have any physical connection to the 
other components in the system. 

Prior to running this algorithm, the components had 
been logically connected in the one-line diagrams, but 
they had not been given a physical location in three-
dimensional space; therefore, at the beginning of the 
application of the algorithm, all components were co-
located with their centroids placed at the center of the 
zone. One of the components was designated as fixed, and 
all components were assigned to the same zone. 

The algorithm was run on this system for 1000 
iterations. For a system of this size, total run time was 72.3 



seconds on a Surface Pro 4 with 8GB RAM, Intel Core i7-
6650 CPU (2 cores, 2.2 GHz base frequency). 

Metrics are provided in Table I for the system in its 
original position and after running the algorithm. Note 
that all components were centered in the zone at the start 
of the algorithm, so the sum of the distance between 
components and the sum of the attractive energies are 
essentially zero. The repulsive energy, on the other hand, 
is quite large. At the end of the run, the energies are fairly 
well balanced and the loss function value is significantly 
smaller than at the start. All collisions were resolved. 
Screen shots of the start and end positions are shown in 
Figure 8. 

TABLE I: Medium-sized example: metrics before and after 
running code 

  Before After 

Sum distance  2e-15 50 

Repulsive energy ×103  18,973,670 0.166 

Attractive energy ×103  4e-18 0.139 

Loss function  158,113,940 16.7 

Number of Collisions  225 0 

Number of Components  16 

Number of Iterations  1000 

Run Time (seconds)  72.3 

   

Figure 7: Medium example: electrical one-line diagram (left) and piping one-line diagram (right) 

 

   

Figure 8: Medium example: starting position (left) and final position (right). Blue components are fixed, red 
components overlap, and white components are neither fixed nor overlapping. 

 



Large Example 

Our final example represents the complexity of a full 
ship system in the early stages of design. The one-line 
diagram of the electrical system, containing 282 
components, is shown in Figure 9. 

In this application of the algorithm, components were 
placed in approximate positions at the beginning, but 
numerous overlaps existed. Some components were not 
placed and thus had a location of (0,0,0). Eight of the 
larger components, e.g. the generators, were fixed in 
position. Each component was assigned to one of four 
zones; these zones are distributed along the longitudinal 
axis of the ship. 

Time to run this example was 207.9 seconds for 1000 
iterations. As an indication of the improved speed of the 
tensor-formulated gradient-descent algorithm, running 
this example using pairwise comparison instead of 
gradient descent took 3694 seconds. 

Metrics are provided in Table II for the system in its 
original position and after running the algorithm. Note 
that components had been placed in approximately correct 
positions prior to running the algorithm, so there is not a 
large change in the sum of distances. All overlaps were, 
however, resolved. There is an imbalance in the final 
energies, and the loss function, although greatly reduced, 
is much higher than the loss function value in the medium 
example. This is mainly due to the fixed components 
which, since they do not move, do not change the forces 
between them. Figure 10 shows the full set of components 
in their final position. 

TABLE II: Large example: metrics before and after 
running code 

 Before After 

Sum distance 809.7 876.4 

Repulsive energy ×103 236,854,640 1,106,805 

Attractive energy ×103 6.13 5.63 

Loss function infinity 49,027 

Number of Collisions 1,133 0 

Number of Components 248 

Number of Iterations 1000 

Run Time (seconds) 207.9 

CONCLUSIONS AND FUTURE WORK 

We have developed and demonstrated an algorithm for 
the placement of components in a shipboard environment 
with the ability to detect and resolve overlaps, contain 
components within a specified region, and consider the 
interactions between components. The algorithm and 
several examples have been presented within this paper. 

There are a number of areas for further exploration and 
future work, some of which are described below. 

Nuances to the placement of components are not yet 
considered. For example, components should be placed 
with enough space to be accessed for maintenance, while 
allowing maintenance space to be shared between 
components to make designs that are more compact. 
Similarly, piping and liquid-bearing components tend to 
be low in a space, and electrical components tend to be 
higher. For survivability purposes, components with 
similar functions are separated. Components linked by a 
rotating shaft must be axially aligned. Components linked 
by cables must allow space for bending radius 
considerations. None of these factors are currently 
addressed, and all of them would improve the placement 
algorithm. 

Very large sets of components, especially those with 
numerous zonal assignments, are somewhat slow in 
execution: on the order of a few minutes. When creating 
many thousands of ship designs, even using high-
performance computers, a faster algorithm would be 
better. Methods for speeding up the calculations should be 
investigated. For example, it may be possible to place 
subsets of the component list, then combine results. 

Further investigation into various weightings of the 
different forces would yield a recommended set of 
weightings, possibly tailored to the project in hand. In a 
related manner, the component locations could be 
normalized by the size of the compartment in order to 
spread items through the compartment more evenly. This 
investigation should also include consideration of 
situations in which the components cannot fit into the 
space available. 

This paper describes a robust first step in the 
arrangement of components for the automation of early-
stage design of ship systems. We look forward to 
continued work to further improve the algorithm. 
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