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Abstract—Following the development of modeling of
heat transfer in two-phase flows [1], we have developed
a new high-fidelity conjugate heat transfer capability
that enables the design of effective cooling techniques
in multi-solid/multi-fluid systems. We first verified and
validated our model with analytical and experimental
results. Subsequently, we used the new methodology
to study heat transfer around power cables carrying
high currents. We first considered an array of cables
with staggered arrangement. Our direct numerical sim-
ulation (DNS) results demonstrated that the naturally
convected flow leads to a strong horizontal traveling
wave in between the cable rows. The strength of the
traveling wave, however, is strongly non-uniform in
different cable rows, resulting in a significant temper-
ature difference of cables at different rows with the
temperature of the cable carrying current of I = 1000
Amp above 90◦C. We then considered a configuration
with many more cables (120) but carrying lower current
of I = 80 Amp. Using different cooling conditions
around the box of cables, we found that the maximum
temperature never exceeds 50◦C. These two different
configurations provide possible effective solutions for
the design and optimization of the thermal cooling of
cables in the 95MW All-Electric-Ship.

I. Introduction

The thermal design in the All-Electric-Ship (AES) is
a major task as thermal loads are tens of MWs and heat
fluxes often exceed 100 W/cm2. The objective of this work
is to quantify the temperature field in a two-dimensional
array of cylindrical cables carrying very high current
densities (12KV and 500 Amps) as well as low current
densities subject to both forced and natural convection.
Specifically, we aim to optimize the array configuration so
that the maximum temperature in the cables is minimized.
We are concerned here with conjugate heat transfer as
shown in Figure 1, for a two-dimensional array of high-
power electric cables. Both natural and forced convection
are simultaneously considered as we assume that there
is an active forced cooling method in place. For high-
power cables, the surface temperature of the cable can
potentially exceed the maximum allowable temperature
beyond which damage to the insulation layer might occur.
For this study, the primary quantity of interest (QoI) is
the surface temperature of the cable.

To solve the conjugate heat transfer problem we employ
the Smooth Profile Method (SPM) [2], which can be used
effectively in complex-geometry flow and heat transfer

simulations. In preliminary work in [3] we have extended
this method to also deal with conjugate heat transfer and
validated it against experimental results. We use a spectral
element discretization [4], which allows great flexibility in
changing adaptively the resolution as needed. In addition,
we can verify the accuracy of the simulation without
changing the mesh but by simply increasing the spectral
polynomial order per spectral element (p-refinement).

II. Mathematical formulation of conjugate
heat transfer

Exact formulation of many convective heat transfer
problems requires boundary conditions that consist of
conjugation of the solid and fluid temperature fields at
their interface. The conjugation condition enforces the
balance of energy at the interface:

−kf
∂Tf
∂n

= −ks
∂Ts
∂n

,

where the subscript s and f denote solid and fluid, and
k and T are the conductivity and temperature of their
respective medium. The vector n is the unit vector normal
to the interface. Enforcing the above condition, inherently,
requires solving for the temperature field both in the
solid and fluid simultaneously, where in the solid medium
the thermal field is governed by conduction, and in the
fluid medium it is governed by advection-diffusion process.
Absent of enforcing the above condition, one has to resort
to assumptions such as isothermal, adiabatic or generally
constant-heat-flux walls, if the fluid temperature is the
primary Quantity of Interest (QoI). On the other hand, in
applications where the solid temperature is the QoI, one
has to rely on experimental data or existing correlations to
obtain convective the heat transfer coefficient at the wall.
Either of these assumptions/limitations could significantly
hamper the predictive capability of the models, particu-
larly in cases where strong temperature variation in solid
and fluid regions exist. The brute force approach to satisfy
the balance of energy in both media is to iterate back and
forth between the fluid and solid solvers until temperatures
in both media converge. However, the computational cost
of the iterations in most three-dimensional applications is
significant. Here we present a physics-based model along
with a numerical algorithm that: (1) avoids iteration be-
tween solid and fluid solvers, and (2) satisfies the balance
of energy at the fluid/solid interface and thus does not
require ad-hoc assumptions at the interface.



Figure 1 shows a schematic of a power cable whose
current generates heat inside the cable. For high-current
power cables, the surface temperature of the cable can
potentially exceed the maximum allowable temperature
beyond which melting of the insulation layer might occur.
Therefore the primary QoI is the surface temperature of
the cable. To find the surface temperature, one has to solve
the conduction problem for the cable

ρscs
∂T

∂t
= ∇ · (ks∇T ) + qs(x, t) (1)

−ks∇T.n = q′′w

at the cable/fluid boundary, where ρ is the density, c is
the specific heat capacity, and q′′w := q′′w(x, t) is the local
heat flux defined on the surface of the cable, where the
subscript w indicates the value at the wall. The heat flux
q′′w extracts heat from the cable and is calculated by:

q′′w = h(T − T∞) (2)

where h := h(x, t) is the appropriate convective heat
transfer coefficient. Due to the complexity of the naturally
convected flow around the cable, simple assumptions about
the value of h can lead to gross errors in estimating
the surface temperature of the cable. To compute h, the
convection-driven flow around the cable must be resolved
in conjunction with the conduction equation (1).

A. Physics-based modeling

From the physics point of view, for low-power currents,
the air surrounding the cable remains stagnant. As a result,
the heat extraction from the cable is by pure conduction
through the air. For high enough currents, however, the
hotter and lighter air surrounding the cable becomes un-
stable; as the destabilizing buoyancy force overcomes the
stabilizing viscous force, naturally convected flow around
the cable is initiated. We use the Boussinesq approximation
to relate the fluid density to temperature:

ρ∞ − ρ ' ρβ(T − T∞),

where the subscript ∞ shows the reference state, and β
(1/K) volumetric thermal expansion coefficient. Substi-
tuting the Boussinesq approximation in the momentum
equation results in:

∂u

∂t
+ (u · ∇)u = −∇p+ νf∇2u + β(T − T∞)g

The temperature in the fluid region is computed by solving
the energy equation:

ρfcf
(∂T
∂t

+ (u · ∇)T
)

= ∇ · (kf∇T ) + qs(x, t), (3)

−kf∇T.n = q′′w.

Coupling heat transport equations models within the solid
and fluid regions expressed by equations (1) and (3),
along with conservation of mass and momentum in the
fluid region results in the following set of coupled partial

Fig. 1: High-fidelity modeling of conjugate heat
transfer around a cable (up) and corresponding
spectral element mesh (bottom).



differential equations:

∂u

∂t
+ (u · ∇)u = −∇p+ νf∇2u + β(T − T∞)g

(4)

∇ · u = 0 (5)

ρfcf
(∂T
∂t

+ (u · ∇)T
)

= ∇ · (kf∇T ) + qs(x, t) (6)

ρscs
∂T

∂t
= ∇ · (ks∇T ) + qs(x, t) (7)

−kf∇T.n = −ks∇T.n (8)

where the last equation is valid at the fluid/solid interface.
The above equations represent the physics-based model
for conjugate heat transfer applications. The presented
model could also be utilized in dimension-reduction tech-
niques to create low-dimensional model of the above partial
differential equations. The reduced models can then be
used in system-level simulation tools and more systematic
optimization studies [5], [6].

B. Numerical method

Our discretization is based on Spectral/hp element
method implemented in Nektar, in which we use spectral
polynomials in each element, and time-splitting method to
advance the equations in time. The spectral/hp element
method has been used in a wide range of applications
and more relevantly in highly turbulent forced convection
film cooling problems [7], [8]. It is straightforward to
show that the fluid/heat transport equations reduce to the
conduction equation by setting:

u→ 0 in solid

cf → cs in solid

ρf → ρs in solid

kf → ks in solid

This embedding of the solid heat transport model in the
fluid convection/diffusion equation is exploited in our nu-
merical algorithm by solving the fluid equation everywhere,
i.e. both in solid and fluid, while using the above conditions
in the solid region.

1) Enforcing zero velocity in the solid region: To enforce
velocity to zero in the solid region, we employ the Smooth
Profile Method [2], in which each solid region is represented
by a smooth profile, which equals unity in the solid domain,
and zero in the fluid domain, and varies smoothly across
the solid/fluid interface. The most commonly used profile
is:

φi(x, t) =
1

2

[
tanh

(−di(x, t)
ξi

)
+ 1

]
, i = 1, 2, . . . , N.

(9)
where the index i refers to the ith solid region and di(x, t)
is the signed distance to the ith solid region with positive
value outside the solid region, i.e. the fluid region, and
negative value inside the solid region. The value ξi is the
thickness of the interface; a small number compared to the
size of the solid region.

A smoothly spreading concentration field is obtained

by adding up φi(x, t) of all solid regions:

φ(x, t) =
N∑
i=1

φi(x, t). (10)

For stationary solid regions, it is easy to show that the
total velocity field is obtained by:

u(x, t) = (1− φ(x, t))uf (x, t). (11)

It is clear that inside the solid (φ = 1), u(x, t) → 0, and
outside the solid (φ = 0), u(x, t) → uf . Once the above
expression for the total velocity is used for the fluid/heat
transport equations, a penalty force term fs is added to
momentum equation as in the following:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ β(T − T∞)g + fs (12)

in both fluid and solid. where fs ' − 1
∆tφu. The penalty

term goes to zero in the fluid region where φ = 0, and thus
the original momentum equation is retrieved, while within
the solid region the penalty term enforces u→ 0. For more
details of the implementation of this approach into time-
splitting spectral/hp element method see references [2], [9].

2) Balance of energy at the fluid/solid interface: To
solve equations (4-8), we use the spectral/hp element
method in which we seek the solution in the weak form.
Therefore the balance of energy at the solid/fluid interface,
i.e. −kf ∂Tf

∂n = −ks ∂Ts

∂n is naturally enforced. For more
details see reference [4].

III. Temperature field around power cables

A. Experimental validation

To validate the computational model for a single-fluid
application, we considered free (natural) convection flow
from a heated horizontal cylinder beneath an adiabatic
ceiling. This problem was investigated in an experimental
study [10]. In this study a cylinder with diameter D is
placed below an adiabatic wall with L = 2D vertical
distance from the ceiling to the center of the cylinder. The

Rayleigh number Ra = gβ(Ts−T∞D3)
να = 15000, where g is

the acceleration due to gravity, Ts temperature at the sur-
face of the cylinder, ν, α and β are the kinematic viscosity,
thermal diffusivity and thermal expansion coefficient of the
fluid respectively.

Figure 2 shows the comparison of temperature contours
with the interferograms obtained from the experiment.
A close qualitative agreement is observed between the
computation and the experiment. The largest deviation
is observed near the ceiling, which is due to inexact
enforcement of the experiment of the adiabatic boundary
condition at the ceiling. In our numerical study ∂T

∂n = 0 is
enforced at the ceiling wall.

B. Temperature prediction around a staggered array of
cables

The schematic of the heat transfer model of power cable
is shown in Figure 1 and the staggered configuration is
shown in Figure 3. The driver of the flow is the heat
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In Eq. (6), standard uncertainties in the gas constant, the
Gladstone–Dale constant, the fringe shift and the laser
wave length have been neglected. Table 1 lists the experi-
mental values of the parameters in Eq. (3) and the associ-
ated uncertainties for L/D = 1, Ra = 1000 and 40,000
and D = 10, 22 mm.

Uncertainties of the parameters T1, Tw and P1 can be
estimated from the measurement devices precision and
uncertainties of the parameters l and D from the measure-
ment process. The uncertainty of the parameter Dr, the
increment in radial distance from the cylinder surface, is
related to the precision of reading the digitized interfero-
grams. From Table 1, it can be seen that the latter is the
dominant source of error. The uncertainties in the average
Nusselt numbers for specified Rayleigh numbers and geo-
metrical parameters are 3.64% and 4.75%, respectively.
Using this analysis, uncertainties in the measured local
Nusselt numbers have been estimated to be 3.6 ± 1.5%
for Ra = 1000 and 4.95 ± 2.6% for Ra = 40,000.

3. Results and discussion

Effects of horizontal heated cylinder spacing from an
adiabatic ceiling and the Rayleigh number on free convec-
tion heat transfer have been investigated experimentally.
The experiments are carried out for the spacing to cylinder
diameter ratios of L/D = 0, 0.1, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0
and 2.4 for the Rayleigh number range of 1000 6 Ra 6
40,000.

Fig. 6 indicates the infinite fringe interferograms for the
Rayleigh numbers of 15,000, 25,000 and 40,000 with L/D
ratios of 0.0, 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5, respectively.
All the interferograms for the range of 0.5 6 L/D 6 2.4
indicate that air plume from the heated cylinder will rise

Table 1
Values for the parameters of Eq. (6)

Parameter xi dxi
oNuh
oxi

dxi
Nuh

(%)

Tw 309.65–388.55* K 0.1 K 0.8–0.66
T1 297.75–297.75 K 0.1 K 0.8–0.66
P1 87,000–87,100 Pa 100 Pa 0.12–0.09
l 16–360 mm 0.025 mm 0.008–0.006
D 10–22 mm 0.025 mm 0.12–0.1
Dr 0.63–1.5** mm 0.027 mm 4.42–1.35

0.35–1.9 mm 5.9–1.1
* Values of parameters for Ra = 40,000.

** 0.63 and 1.5 are radial distance differences for h = 0!, 180!,
respectively.

Fig. 6. Interferograms of (a) Ra = 15,000, (b) Ra = 25,000 and (c)
Ra = 40,000.
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(a) Experiment(taken from [10]) (b) Computation

Fig. 2: Comparison of the computational results
with experimental measurements [10] at Ra =
15000: (a) interferograms [10], (b) High-fidelity
simulations.

generated inside the cable Q̇ (W) where Q̇ = ρl/AI2, where
ρr (Ωm) is the electrical resistivity, l (m) is the length of
the cable, A (m2) is the cross-sectional area of the cable, I
(Amp) is the current in the cable. For the case considered
here the diameter of the cable is D = 1 inch, and therefore
A = πD2/4 = 5.07 × 10−4 m2, the current is I = 1000
A, and the electrical resistivity of the copper at 20◦ C is
ρr = 1.68× 10−8 Ωm. Therefore, the heat source per unit
volume is:

q̇s =
Q̇

Al
= 65.43KW/m3.

We use the following non-dimensionalization:

t→ D2

α
, x→ D, u→ α

D
, T − T∞ →

D2q̇s
αρc

Therefore, the non-dimensional parameters are:

Ra =
βD5q̇g

ρcνα2
, P r =

ν

α
, kr =

ks
kf
,

where Ra is the Rayleigh number, Pr is the Prandtl
number, and kr is the ratio of the solid conductivity to
fluid conductivity. The required air properties at 40◦C are:

β = 3.20× 10−3(1/K), ν = 1.70× 10−5(m2/s),

α = 2.39× 10−5(m2/s), c = 1.00× 103(J/KgK).

Plugging all of the above properties, the actual Rayleigh
number is Ra = 1.97 × 106, and Prandtl number is Pr =
0.71. At this Ra number the flow is certainly turbulent,
and requires high-fidelity DNS to properly resolve the flow
and the corresponding thermal boundary layers.

C. Physical insight

In this section, we will report high-fidelity SPM sim-
ulations of arrays of cables in staggered arrangement. In

(a)

(b)

(c)

Fig. 3: Snapshots of temperature around heated
cylindrical cables. The side boundary conditions
are periodic and the bottom and top are isother-
mal walls. The flow is driven by the heat generated
inside the cables. (a): early time; (b): intermediate
time; (c): final time.

Figure 3, the evolution of temperature distribution at Ra
= 60,000 around the cables is shown. The parameters setup
corresponds to a realistic cable setup in the AES. The
snapshots show the upward movement of the air. Distinct
symmetric vortical structures appear in the beginning
of the simulation, however at later times the symmetric
pattern breaks down and a traveling wave emerges. These
results show that the emerging flow and heat transfer fields
are very complex and hence high-fidelity simulations are
required to be fused with many lower fidelity simulations
to construct a complete stochastic temperature response



surface as a function of the geometry of the array, the
Peclet number of the forced convection and the thermal
load. This will be done in future work in the context of
multi-fidelity simulations as it was demonstrated for a sin-
gle cylinder subject to mixed (forced/natural) convection
in [11]

D. Temperature field around an in-line array of cables

Figure 4 shows the three types of arrangement of
cooling devices for 120 electrical cables at Ra = 16, 000.
In Case 1, cooling is applied at the bottom wall; In Case
2, it is applied on the top wall; In Case 3, it is placed
on the side walls. Therefore, the corresponding surfaces
are treated as isothermal surfaces. The diameter of cables
is 1 inch. As shown in Figure 3, the smaller gap spacing
among cables is 1 inch, while the larger gap spacing is 2
inch. The current in these cables is 80 Amp. Initially, the
temperature is set to be 45oC. Figure 5 plots the mean
and maximum temperature of the three cases. It can be
observed that after 15 seconds, the mean temperatures
begin to diverge: Case 1 has the highest mean temperature
and it keeps growing linearly; Case 2 has the lowest mean
value with its growth rate decreasing in time; Case 3 is
in between Case 1 and Case 2. On the other hand, the
maximum temperatures begin to diverge after 25 seconds
and the decay of growth rate of Case 2 is most notable.
Figure 6 shows the instantaneous temperature field at
20 seconds of the three cases, where again we observe a
very complex temperature filed caused synergistically by
natural convection and the complexity in the geometric
arrangements.

IV. Conclusion

We have presented a new method for high-fidelity
physics-based modeling and a corresponding high-order
numerical discretization to study conjugate heat transfer in
multi-fluid/multi-solid systems for applications of cooling
system design in the All-Electric-Ship (AES). The robust-
ness of the proposed methodology stems from solving a
single set of partial differential equations everywhere with
varying medium properties in both fluid and solid regions.
Its flexibility in treating geometric complex boundaries
allowed us for first time to simulate accurately via direct
numerical simulation (DNS) an array with 120 cables and
assess the effectiveness of various cooling strategies. In
particular, we consider two extreme cases, one with a
staggered array of a few cables carrying current of 1000
Amp and another one with 120 cables packed in a box in
an in-line configuration with each cable carrying current
of only 80 Amp. Our simulation results show that in the
former case the surface temperature of the cable exceeds
90◦C while in the latter case the maximum temperature in
the system is less than 50◦C. The reason we selected these
two extreme cases to study for the thermal performance of
the AES is to evaluate the recently proposed designs for
different power corridor configurations. In the first design
reported in [12] the current was very high, whereas in the
most recent design there was a serious effort to lower the
value of the bus current. The box with the 120 cables that
we considered in our study represents a configuration with

Fig. 4: In-line array of cables: Simulation cases
for three different boundary conditions.



(a)

(b)

Fig. 5: Comparison of maximum (a) and mean
temperature (b).

more than 17% margin in power carrying capability while
the suggested value for the margin is 20%. This means that
a new power cable arrangement will require boxes with
more than 130 cables to meet that requirement. Clearly,
the method we presented here could easily be applied to
this new configuration as well.
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