Session 1: knowledge, skills, attributes, and examples
Tuesday afternoon, 2003 April 8

Workshop participants were divided into four working groups, each charged to explore the implications of a particular organizing principle. The groups were to specify the knowledge a B.S. graduate should have and the skills required to use this knowledge. Furthermore, the groups were to consider the attributes desired in a B.S. graduate, beyond ‘having the knowledge’ and ‘executing the skills’. Finally, groups were encouraged to think of examples that could be used to illustrate subject matter and cultivate attributes.

Group 1 (Molecular Transformations)
- Chemical Structure
- Phase (Transformation)
 - Intra
 - Inter
- Orientation/Conformational
- Bulk to Surface
- Reversible
- Dipole (Electronic)
- Polymer Extension
- Component Assembly
- Molecular Assembly
 - Atomic
 - Self
- Polymer Assembly
- Direct vs. Indirect Network & Complexity
- Inorganic/Organic/Bio

- Knowledge – Groups of Thoughts
 - Chemical Structure
 - Inter/Intra molecular forces
 - Short/long range
 - Driving forces
 - Entropy
 - Molecular description of reaction
 - Equilibrium concepts
 - Free energy
 - Water is special
 - Electronic structure
 - Analytical methods?
 - Scale up to continuum
 - Differentiation
 - Integration
 - Geometry
• Differential Equations
• Stochastic math
• Catalysis
• Mechanics/dynamics
• Waves/Particles
• Biological info flow
• Reaction network (interfaces with systems principle)

• Skills
 • Molecular info \(\rightarrow\) EOS
 • Macroscopic behavior
 • Transport properties
 • Calculate thermodynamic properties
 • Order of magnitude estimates for ranking importance
 • Spatial perception
 • Awareness of all time scales
 • Data/error analysis/interpretation
 • Reaction analysis
 • Reactor design
 • Process selection
 • Effective communication
 • Model building
 • Lab skills
 • Critical thinking
 • Knowledge of available information

• Attributes
 • Knows how to learn
 • Thinks critically
 • Desires life-long learning
 • Receptive to new ideas
 • Understands and works with uncertainty and sensitivity
 • Seeks appropriate connections with other fields
 • Thinks like a molecule

• Application Examples
 • Water Desalination
 • Design for Self Assembly
 • Polymer coating
 • Nanotechnology
 • Hybrid systems
 • Design of Membranes
 • Next generation beer bottles
 • Fuel cells
 • \(\text{CO}_2\) Emissions from vehicles
 • Stationary Source Emission Abatement
New Frontiers in Chemical Engineering Education
Austin Workshop Proceedings 2003 Apr 8-10

- Bioartificial Pancreas
- Protein Expression
- Make Polystyrene Peanuts from Raw Materials
- Drug Delivery

Session 1: content
Group 2 (Quantitative Analysis)

- Knowledge
 - Numerical Methods
 - Differential Equations
 - Calculus
 - Probability/Statistics
 - Conservation Laws
 - Population Distributions

- Skills
 - Translate Physical Descriptions into Math-based Equations
 - Applying conservation laws
 - Knowing when to use what model
 - Knowing when to neglect things
 - Model testing and validation
 - “What if” explorations
 - Sensitivity/uncertainty analysis
 - Scaling analysis
 - Order of magnitude analysis
 - Economic analysis
 - Computer-based skills
 - Use of analogies

- Attributes
 - Makes rational assumptions
 - Communicates qualitative concepts
 - Determines important parameters
 - Applies skill set to open-ended and novel problems
 - Determination of properties within equations using measured data
 - Computer implementation
 - Regression analysis

- Applications/Examples
 - Develop understanding of physical process
 - Blood flow in body
 - Formulating and solving balance equations
 - Mass
 - Energy
 - Momentum
 - Population
 - Using a model to:
 - Determine most important physics
 - Make a prediction
 - Scale-up
 - Analysis/compare experiment w/model predictions
 - Handling “messy” data
Teach quantitative skills through examples
- Product, process, and experimental design
- Mass and energy balance of CSTR
- Plot Arrhenius data from experimental data
- Trouble-shooting
- Quality control
- Economic & market analysis

- Miscellaneous
 - What constitutes a reasonable solution to a problem?
 - Is this really problem-solving?
 - Environmental impact
 - Governmental regulations
 - Extent of numerical vs. software skills
 - McMaster problem-solving skill set
Group 3 (Multiscale Analysis)

- Framework:
 - Different phenomenological scales: e.g.:
 - Length
 - Time
 - Environment
 - Economic
 - In problems from varying enabling sciences:
 - Physical
 - Chemical
 - Biological

- Goals:
 1. Define problem and work solution to appropriate scale(s).
 2. Develop an appropriate “model” to solve problem.

- Means:
 1. Knowledge of phenomena at different scales
 2. Recognition that multi-scales are ubiquitous
 3. Heuristics to choose scales at which to analyze – Occam’s razor
 4. Key assumptions
 5. Matching and integration of scales

- Knowledge (not yet in curriculum explicitly)
 1. Molecular dynamics
 2. Stochastic processes (random walks)
 3. Quantum mechanics
 4. Interactions and packings of atoms/molecules
 5. Biological sciences
 6. Geometrical similarities (scaling)

- Skills (not yet explicitly covered) (also in previous Means bullet)
 1. Simplification of mathematical models
 2. Probability and statistics

- Attributes
 1. Prudent risk-taking
 2. Keeping it simple
 3. Where does ChE fit in globally?

- Future applications
 1. Lab on a chip
 2. Miniaturization of ChE
 3. Nano drugs

- Examples
 1. Design of Distillation Column → Molecular modeling of Non-ideal phase equilibria
2. Chromatographic Separation of Proteins – all scales
3. Catalytic and/or multiphase reactor design
4. Drug Patch design
New Frontiers in Chemical Engineering Education
Austin Workshop Proceedings 2003 Apr 8-10

Group 4 (Systems Approach/Synthesis)

- **Applications Examples (Organizing Framework and Context)**
 - Hydrogen from biomass
 - Climate change
 - Viral infections
 - Atomic Layer Deposition
 - Controlled particle formation
 - +15 Others

- **Attributes of Example(s) (and Systems Viewpoint)**
 - Need to feel comfortable with
 - Incomplete information
 - Multiple (often conflicting objectives)
 - Multiple solutions (and multiple paths to solution)
 - Iterative problem solving
 - Incorporation of uncertainty
 - Managing complexity
 - Risk taking
 - Rapid generation and pruning of alternatives
 - Social Responsibility (Broadly)
 - Driven to add value

- **Skills Needed**
 - How to treat and analyze data
 - Multivariate analysis
 - What data to acquire?
 - Integrate Knowledge
 - From chemistry/biology/physics/mathematics
 - Other fields
 - Team work
 - Time (and resource) management
 - Active learning
 - Critical thinking

- **Knowledge**
 - Basic Systems Analysis Tools
 - Mathematical modeling and simulation
 - Feedback and recycle
 - Optimization
 - Control
 - Dynamic systems
 - Financial Analysis
 - Statistics and Experimental Design

- **Challenges and Discussion**
Lots of overlap with topics/examples from other groups; systems concepts are everywhere

- How to integrate?
- Where in the curriculum?

Need for broader faculty participation

- How?

Supplementary Application Examples (generate excitement for ChE as a profession - pick an area where ChEs work, and pick a major example)

- metabolic systems
- drug delivery
- artificial organs
- semiconductor unit processes
- aerosols, carbon nanotubes, etc.
- reaction /diffusion system
- heterogeneous system
- defense against chemical warfare
- protein and cell catalysts
- synthetic biology - biosensors, tissues
- substitute for MTBE
- buy a chemical company

Supplementary Notes

- all examples integrated into curriculum
- use shared instruction
- relate educational goals to students
- use systems approach to frame the ChE curriculum
- the students need to know they must add value!
- students must have the ability to relate to normal humans
- we must educate the faculty
New Frontiers in Chemical Engineering Education
Austin Workshop Proceedings 2003 Apr 8-10

Group reports – Audience Feedback

Group 1 (Molecular Transformations)
- Include some quantum mechanics

Group 2 (Quantitative Analysis)
- Add optimization w/r/t handling “messy data”
- Get students to recognize what’s being neglected for later evaluation

Group 4 (Systems Approach/Synthesis)
- Bioinformatics could contribute to systems teaching
 - Similarly, ChE systems could inform bio systems
- Need interesting applications to teach systems
- Want core tools to present systems, not dispersed to other areas

General Discussion
- Sum of this material greatly exceeds a B.S. degree
- We must make decisions and choices to form a curriculum
- How to make materials transferable so that multi-faculty can teach?
- This is a challenge, but worthwhile to pursue
- Great principles; mismatch with present curriculum → opportunity and lots of work
- Examples cut across organizing principles
- Examples can cut across – so there is lots of opportunity
- This material reminds of research; therefore more interesting to teach
- Remember that students must be interested, too
- Can’t control what other departments offer in service courses → a constraint
- Service departments may be able (and willing) to modularize
- The example of med school – teach in short, intense blocks
- How to come up with textbooks?
- Textbooks may become virtual – modifiable, adaptable – assembled from modules ad hoc
- Design/synthesis problem presented early, motivating subject matter study, before returning to design
- Will radical curriculum reorganization affect the hiring process?
- the curriculum should change, because industry has changed

Reflections on Session 1 Work - gathered Wednesday morning, 2003 April 9
- Outcome – how to implement?
- Flexible – according to department needs and mission
- This curriculum is not so radical, yet
- Plan to engender acceptance?
 - e.g. trial runs at particular schools?
- Describe at AIChE?
 - Discuss at Cape Cod Workshop
- There is indeed curriculum variability at present
- Need follow-on workshops to promote new curriculum, convert faculty to the new materials
 - 10 years required?
- Should we propose incremental or sweeping revision?
Industry stakeholders – should they review changes?
Discuss with lots of industry segments; each WS participant could do this now.
Early, frequent, diverse discussions will help
WS I too premature to communicate. WS II may be better
WS I key – bio, molecular design is new principle.
 - Some faculty ambivalent.
Striking result of WS I – consensus that all ChE students should study biology
 - Now convinced that bio IS important
 - Fidelity of message is IMPORTANT
SUGGEST POWERPOINT SLIDES for use in communicating
Satellite link in Cape Cod workshop?
 - As means to inspire others
AIChe forum – standalone, or keynote
 - In San Francisco meeting? (Nov)
 - Sunday afternoon time slot
 - Have large segment of WS participants at meeting with AIChe
Amundsen report said to have made a difference – can we do as well?
Tirrell report focuses on research – some connection with our work