Session 1: knowledge, skills, attributes, and examples Tuesday afternoon, 2003 April 8

Workshop participants were divided into four working groups, each charged to explore the implications of a particular organizing principle. The groups were to specify the knowledge a B.S. graduate should have and the skills required to use this knowledge. Furthermore, the groups were to consider the attributes desired in a B.S. graduate, beyond 'having the knowledge' and 'executing the skills'. Finally, groups were encouraged to think of examples that could be used to illustrate subject matter and cultivate attributes.

Group 1 (Molecular Transformations)

- Chemical Structure
- Phase (Transformation)
 - o Intra
 - o Inter
- Orientation/Conformational
- Bulk to Surface
- Reversible
- Dipole (Electronic)
- Polymer Extension
- Component Assembly
- Molecular Assembly
 - Atomic
 - o Self
- Polymer Assembly
- Direct vs. Indirect Network & Complexity
- Inorganic/Organic/Bio
- Knowledge Groups of Thoughts
 - Chemical Structure
 - Inter/Intra molecular forces
 - Short/long range
 - Driving forces
 - Entropy
 - Molecular description of reaction
 - Equilibrium concepts
 - Free energy
 - Water is special
 - Electronic structure
 - Analytical methods?
 - Scale up to continuum
 - Differentiation
 - Integration
 - o Geometry

- Austin Workshop
 - Differential Equations
 - Stochastic math
 - Catalysis
 - Mechanics/dynamics
 - Waves/Particles
 - o Biological info flow
 - Reaction network (interfaces with systems principle)
 - Skills
 - Molecular info \rightarrow EOS
 - Macroscopic behavior
 - Transport properties
 - Calculate thermodynamic properties
 - Order of magnitude estimates for ranking importance
 - Spatial perception
 - o Awareness of all time scales
 - o Data/error analysis/interpretation
 - Reaction analysis
 - Reactor design
 - Process selection
 - Effective communication
 - Model building
 - Lab skills
 - Critical thinking
 - Knowledge of available information
 - Attributes
 - Knows how to learn
 - Thinks critically
 - Desires life-long learning
 - Receptive to new ideas
 - o Understands and works with uncertainty and sensitivity
 - Seeks appropriate connections with other fields
 - Thinks like a molecule
 - Application Examples
 - Water Desalination
 - Design for Self Assembly
 - Polymer coating
 - Nanotechnology
 - Hybrid systems
 - Design of Membranes
 - Next generation beer bottles
 - Fuel cells
 - CO₂ Emissions from vehicles
 - o Stationary Source Emission Abatement

Austin Workshop

- o Bioartificial Pancreas
- Protein Expression
- Make Polystyrene Peanuts from Raw Materials
- Drug Delivery

Austin Workshop

Group 2 (Quantitative Analysis)

- Knowledge
 - Numerical Methods
 - Differential Equations
 - o Calculus
 - Probability/Statistics
 - Conservation Laws
 - Population Distributions
- Skills
 - Translate Physical Descriptions into Math-based Equations
 - Applying conservation laws
 - Knowing when to use what model
 - Knowing when to neglect things
 - $\circ \quad \text{Model testing and validation} \\$
 - "What if" explorations
 - o Sensitivity/uncertainty analysis
 - o Scaling analysis
 - Order of magnitude analysis
 - \circ Economic analysis
 - Computer-based skills
 - Use of analogies
- Attributes
 - Makes rational assumptions
 - Communicates qualitative concepts
 - o Determines important parameters
 - Applies skill set to open-ended and novel problems
 - o Determination of properties within equations using measured data
 - Computer implementation
 - Regression analysis
- Applications/Examples
 - Develop understanding of physical process
 - Blood flow in body
 - o Formulating and solving balance equations
 - Mass
 - Energy
 - Momentum
 - Population
 - Using a model to:
 - Determine most important physics
 - Make a prediction
 - Scale-up
 - Analysis/compare experiment w/model predictions
 - Handling "messy" data

New Frontiers in Chemical Engineering Education

Austin Workshop

Proceedings

- Teach quantitative skills through examples
- Product, process, and experimental design
- Mass and energy balance of CSTR
- Plot Arrhenius data from experimental data
- Trouble-shooting
- Quality control
- Economic & market analysis
- Miscellaneous
 - What constitutes a reasonable solution to a problem?
 - Is this really problem-solving?
 - Environmental impact
 - Governmental regulations
 - Extent of numerical vs. software skills
 - McMaster problem-solving skill set

Group 3 (Multiscale Analysis)

• Framework:

Austin Workshop

- Different phenomenological scales: e.g.:
 - Length
 - Time
 - Environment
 - Economic
- In problems from varying enabling sciences:
 - Physical
 - Chemical
 - Biological
- Goals:
 - 1. Define problem and work solution to appropriate scale(s).
 - 2. Develop an appropriate "model" to solve problem.
- Means:
 - 1. Knowledge of phenomena at different scales
 - 2. Recognition that multi-scales are ubiquitous
 - 3. Heuristics to choose scales at which to analyze Occam's razor
 - 4. Key assumptions
 - 5. Matching and integration of scales
- Knowledge (not yet in curriculum explicitly)
 - 1. Molecular dynamics
 - 2. Stochastic processes (random walks)
 - 3. Quantum mechanics
 - 4. Interactions and packings of atoms/molecules
 - 5. Biological sciences
 - 6. Geometrical similarities (scaling)
- Skills (not yet explicitly covered) (also in previous Means bullet)
 - 1. Simplification of mathematical models
 - 2. Probability and statistics
- Attributes
 - 1. Prudent risk-taking
 - 2. Keeping it simple
 - 3. Where does ChE fit in globally?
- Future applications
 - 1. Lab on a chip
 - 2. Miniaturization of ChE
 - 3. Nano drugs
- Examples
 - 1. Design of Distillation Column → Molecular modeling of Non-ideal phase equilibria

New Frontiers in Chemical Engineering EducationAustin WorkshopProceedings

2003 Apr 8-10

- 2. Chromatographic Separation of Proteins all scales
- 3. Catalytic and/or multiphase reactor design
- 4. Drug Patch design

	phys		chem		bio			
elom-dua								
mole	nor /				metabolism			
cont			kinetic			skin adsorption		
miero			mbdng					
meso								
metro								
super macro environment								
	dist	column	bar	ch rei	actor		drug pat	ch

Group 4 (Systems Approach/Synthesis)

Austin Workshop

- Applications Examples (Organizing Framework and Context)
 - Hydrogen from biomass
 - Climate change
 - Viral infections
 - Atomic Layer Deposition
 - Controlled particle formation
 - \circ +15 Others
- Attributes of Example(s) (and Systems Viewpoint)
 - Need to feel comfortable with
 - Incomplete information
 - Multiple (often conflicting objectives)
 - Multiple solutions (and multiple paths to solution)
 - Iterative problem solving
 - Incorporation of uncertainty
 - Managing complexity
 - Risk taking
 - Rapid generation and pruning of alternatives
 - Social Responsibility (Broadly)
 - Driven to add value
- Skills Needed
 - How to treat and analyze data
 - Multivariate analysis
 - What data to acquire?
 - Integrate Knowledge
 - From chemistry/biology/physics/mathematics
 - Other fields
 - o Team work
 - Time (and resource) management
 - Active learning
 - Critical thinking
- Knowledge
 - Basic Systems Analysis Tools
 - Mathematical modeling and simulation
 - Feedback and recycle
 - Optimization
 - Control
 - Dynamic systems
 - Financial Analysis
 - Statistics and Experimental Design
- Challenges and Discussion

Austin Workshop

New Frontiers in Chemical Engineering Education Proceedings

- Lots of overlap with topics/examples from other groups; systems concepts are everywhere
 - How to integrate?
 - Where in the curriculum?
- Need for broader faculty participation
 - How?
- Supplementary Application Examples (generate excitement for ChE as a profession pick an area where ChEs work, and pick a major example)
 - metabolic systems
 - o drug delivery
 - o artificial organs
 - semiconductor unit processes
 - o aerosols, carbon nanotubes, etc.
 - reaction /diffusion system
 - heterogeneous system
 - o defense against chemical warfare
 - protein and cell catalysts
 - o synthetic biology biosensors, tissues
 - o substitute for MTBE
 - buy a chemical company
 - 0
- Supplementary Notes
 - all examples integrated into curriculum
 - \circ use shared instruction
 - o relate educational goals to students
 - use systems approach to frame the ChE curriculum
 - o the students need to know they must add value!
 - \circ students must have the ability to relate to normal humans
 - we must educate the faculty

Austin Workshop

Group reports – Audience Feedback

Group 1 (Molecular Transformations)

• Include some quantum mechanics

Group 2 (Quantitative Analysis)

- Add optimization w/r/t handling "messy data"
- Get students to recognize what's being neglected for later evaluation

Group 4 (Systems Approach/Synthesis)

- Bioinformatics could contribute to systems teaching
 - o Similarly, ChE systems could inform bio systems
- Need interesting applications to teach systems
- Want core tools to present <u>systems</u>, not <u>dispersed</u> to other areas

General Discussion

- Sum of this material greatly exceeds a B.S. degree
- We must make decisions and choices to form a curriculum
- How to make materials transferable so that multi-faculty can teach?
- This is a challenge, but worthwhile to pursue
- Great principles; mismatch with present curriculum \rightarrow opportunity and lots of work
- Examples cut across organizing principles
- Examples <u>can</u> cut across so there is lots of opportunity
- This material reminds of research; therefore more interesting to teach
- Remember that students must be interested, too
- Can't <u>control</u> what other departments offer in service courses \rightarrow a constraint
- Service departments may be able (and willing) to modularize
- The example of med school teach in short, intense blocks
- How to come up with textbooks?
- Textbooks may become virtual modifiable, adaptable assembled from modules ad hoc
- Design/synthesis problem presented early, motivating subject matter study, before returning to design
- Will radical curriculum reorganization affect the hiring process?
- the curriculum should change, because industry has changed

Reflections on Session 1 Work - gathered Wednesday morning, 2003 April 9

- Outcome how to implement?
- Flexible according to department needs and mission
- This curriculum is not so radical, yet
- Plan to engender acceptance?
 - e.g. trial runs at particular schools?
- Describe at AIChE?
 - Discuss at Cape Cod Workshop
- There is indeed curriculum variability at present
- Need follow-on workshops to promote new curriculum, convert faculty to the new materials
 - \circ 10 years required?
- Should we propose incremental or sweeping revision?

Austin Workshop

•

- Industry stakeholders should they review changes?
- Discuss with lots of industry segments; each WS participant could do this now.
- Early, frequent, diverse discussions will help
- WS I too premature to communicate. WS II may be better
- WS I key bio, molecular design is new principle.
 - Some faculty ambivalent.
- Striking result of WS I consensus that all ChE students should study biology
 - Now convinced that bio <u>IS</u> important
 - Fidelity of message is IMPORTANT
- SUGGEST POWERPOINT SLIDES for use in communicating
 - Satellite link in Cape Cod workshop?
 - As means to inspire others
- AIChE forum standalone, or keynote
 - In San Francisco meeting? (Nov)
 - Sunday afternoon time slot
 - Have large segment of WS participants at meeting with AIChE
- Amundsen report said to have made a difference can we do as well?
- Tirrell report focuses on research some connection with our work