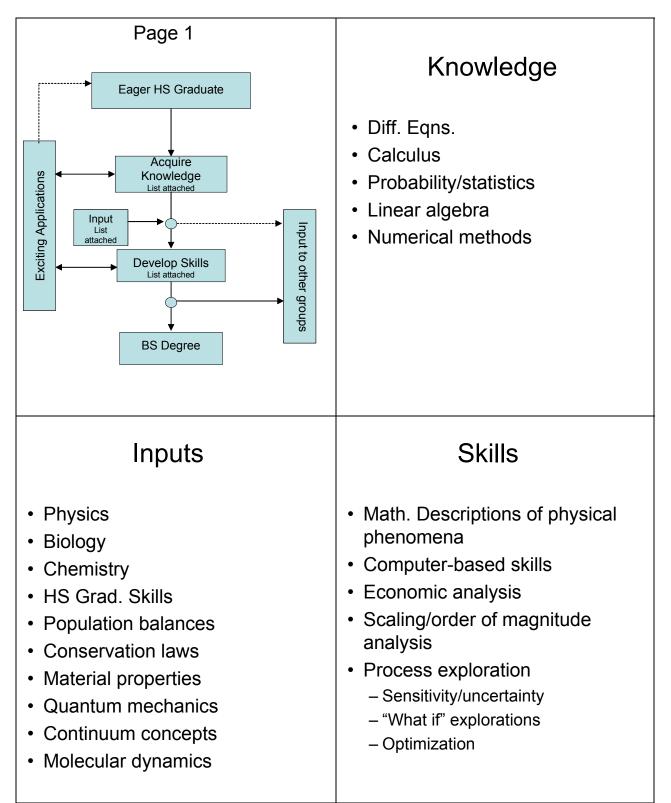

Session 2: connections among the organizing principles Wednesday morning, 2003 April 9

Workshop participants remained in their four working groups from Session 1, each charged to identify points at which their organizing principle connected with the others.



New Frontiers in Chemical Engineering EducationAustin WorkshopProceedings2003 Apr 8-			
Applications	Links		
 Metallurgy Thin film deposition Material processing Protein folding Personal care products 	 Multiscale Molecular → continuum [stat mech] Driving forces Quant Algebra, cale., diff eq, stochastic Systems Reactor design Unit ops 		

Group 2 (Quantitative Analysis)

<i>Group 3 (Multiscale Analyst</i> Ramon Cerro Mike Dudukovic Peter Kilpatrick) Mike Prudich Raj Rajagopalan Mike Thien	Dick Turton Fred Weber Ted Weisner		
					Molecular Transformations
Connections	Organizing and Motivating Themes	Physical	Chemical	Biological	Dependencies
Systems integration of scales Molecular Nano/Molecu aggregate	Sub-molecular		-Quantum chemistry (DFT, energy/ quantum)		-Translation of science/physical laws into math -Sensitivities
	Molecular	-Quantum/ Molecular dynamics		-Biochemical rxn mechanisms -Molecular biology -Molecular immunology	Analysis -Rational assumptions – incomplete or excess information -Order of Magnitude analysis -Dimensional analysis -Stochastic and probabilistic processes -Engineering math
	Nano/Molecular aggregate	-Interfacial transport -Statistical thermo, DLVO -Adsorption -Nucleation theory -Colloidal interactions -Molecular assemblies	-Catalyst development	-Secondary, tertiary, quaternary protein structure -Protein folding, aggregation, vesicles, signal transduction, enzymology	
	Micro/Continuum	-Fluid mechanics -Thermodynamics -Transport -Crystallization -Phase separations, -MEMS, Micro- fluidics	-Reaction engineering	-Cell physiology -Cell culture and fermentation	
	Macro	-Mass & energy balances -Control volumes -CFD -Control -Separations/unit ops	-Reactor design -Scale-up	-Bioreactor & bioprocess design -Bioseparations- macro -Systems biology	
	Super-macro		Atmospheric chemistry and dispersion		

2003 Apr 8-10

Austin Workshop

Group 4 (Synthesis/Systems)

Group 4 - Synthesis/Systems	Five Key Questions		
Wayne Bequette Tom Edgar Christos Georgakis Cammy Kao David Hackleman Kenneth Hall Greg McRae Jim Rawlings Bill Olbricht	 How does one communicate the excitement of Chemical Engineering to students? Can a systems perspective be used to teach Intro to Chemical Engineering? Design should not be a "capstone" course? How to provide faculty with systems examples? How to strengthen links to experiment? 		
An Overall Perspective	Systems Core Knowledge		
Real World Context Examples Knowledge Core	 Mathematical modeling and simulation Optimization Design strategies (iterative/combinatoric) Statistics/Data Analysis/Acquisition/DOE Feedback Dynamics (Time and Frequency) Finance/Business and new knowledge 		
Linkages/Opportunities	Introduction to ChE		
Traditional Approach $r = kC^n$ $\ln(r)$ n $\ln(c)$	Examples provide context to: – Present a compelling roadmap four 4 years • e.g. Why do I need to learn Thermodynamics – Show the need for understanding fundamentals		
Using Modern Systems Approach	Bio, Math, Thermo, Kinetics		
$i_{\underline{c},t} r_i = k_i C_j C_k \min_{\underline{c},t} c_i - c_{obs} $ New knowledge How to do estimation for 100's of molecules?	 To appreciate and be comfortable with limits of understanding Provides the motivation for continuous learning A framework for assumptions / approximations Problem solving requires iterations External factors (regulation, market needs) 		

Linkage Example: Desalination

- Market needs (Water shortage)
- Knowledge Needed (linkages)
 - Salt solutions (Thermodynamics, activities)
 - Evaporation (Heat/Mass transfer)
 - Corrosion (Materials science)
 - Salt disposal (Environmental)
 - Energy use (Economics)
 - Process choice (Alternatives, economics)
 - Piping and distribution (Fluid dynamics)
- Business Context
 - Innovation

Connections/Dependencies

- Chemical Engineering <u>IS</u> Systems Engineering
- Introduce systems quantitative ideas into other courses, especially Biology
- Creating examples that show the connections/dependencies
- Identify "new" knowledge needed tackle systems examples

Discussion following Small Group Reports

- Group 1 Report
 - "system design <u>and operation</u>" added
 - Each Organizing Principle addresses all of ChE
- Optimistic about curriculum development
- This is a new paradigm scales and connections
- The connections illustrate what a modern ChE can do
- ChEs should be taught to think differently
- "Multiscale" concepts are ~20 years old, but now we're seeing the possibility to use them in an organized way
- We teach the <u>components</u> at present, but do not integrate well (usually only at macro-level)
- A new appreciation of co-teaching; e.g. two instructors who emphasize different scales
- Teach to complement

General reflections on Session 2

• Is <u>quantitative analysis</u> even needed as an organizing principle?