Session 3: definition of the curriculum Thursday afternoon, 2003 June 12

Workshop participants were divided into six groups to define the curriculum content. Three groups worked on the three organizing principles, a fourth examined laboratories, a fifth considered supporting courses, and a sixth identified the gaps - what remains to be done. Their reports are given here:

Group 1 (Molecular Transformations) Sophomore

- Simple Calculations
 - Heat capacity, latent heats
 - Some bio things
 - equations of state
- Classifications of molecules/groups and properties
 - correlations
 - intermolecular forces
 - o biomolecules
 - biological binding energies

Sophomore/Junior

- Phase transitions
- Transport properties
 - Polymer/protein conformation issues
 - Mixture properties
- Chemical Equilibrium
- Reaction Rate Theory
 - Diffusion-limited
- Molecular biology

Special Topics

- Self assembly
- Interfacial Phenomena
- Nucleation/growth
- Material properties

Needs

- Parallel examples between Molecular/Multiscale/Systems/labs
- Texts should include the appropriate molecular theory
 - o e.g. include kinetics in Reaction Engineering.
- Include self-instruction

Cape Cod Workshop

Group 2 (Multiscale Analysis)

Topic?

- Application of <u>conservation laws</u> at different length and time scales
 - Outcomes of physical processes depend on scales
 - Scaling up or down
- Year 1
 - Introduction of scaling laws
 - Dimensional analysis

Year 1	Year 2	Year 3	Year 4
	Nano-tech	Continuum	Product design
Scaling laws	↓ ↓	Descriptions	(uses multiscale info)
Dimensional /	Assemblies	Heterogeneous	
Analysis	Colloids	systems	
	Interfacial		
	Homogeneous	Assemblies	
•	Reactor Eng.	(Advanced)	
Intro Course		• Flow	
	Could be:	Diffusion	
	• Cell	• Thermal	
	Atmosphere	effects	
	• µ reactors	Colloidal	
		phenomena	

New Frontiers in Chemical Engineering Education

Cape Cod Workshop

Proceedings

Group 3 (Systems Analysis and Synthesis)

Intro to Systems - Sophomore

- Conservation Laws for simple dynamic/static [mostly] systems
- Statistics and Data Analysis
- Numerical simulation tools
- Experimental Design (including the sensors)
- Plant viewpoint (the product)
- Exposure to complexity, dynamics, uncertainty
- Degrees of freedom

Systems Meets the Molecule – Junior

- Stochastic
- Molecule level reaction as a system
- Design: from molecule to product
- Catalyst deactivation (steady-state feedback?)
- Systems at <u>all</u> scales
- Data analysis/lab
 - Uncertainty, reconciliation
- Simulation as an enabling technology
 - Simulation result as a driver to experiment
- System evolution
- Optimization principles
- Examples: separation, microelectronics

Systems and the Marketplace - Senior

- multi-scale systems
 - o resolution at time and length scales
- dynamic analysis and feedback
- use of constitutive equations, etc., for analysis and design
- process and product design (see Session 1, Group 4)
- lab experience
- 'softer' skills
- business skills, entrepreneurship

Interactions with other parts of the curriculum

- math requirements: matrix analysis and ODEs
- molecular dynamics (F = ma)
- Monte Carlo (randomness)
 - \circ sensitivity
 - o statistics
 - uncertainty propagation (μ vs. σ^2 /covariance)
- CFD
- molecular and multiscale
 - \circ are there design elements?
 - how much understanding of software manuals?

Session 3: curriculum definition

New Frontiers in Chemical Engineering EducationCape Cod WorkshopProceedings

- Where are
 - reaction engineering?
 - separations?
 - physical property prediction (pure component properties as functions of T)?

Miscellaneous recommendations, beyond the topic

- Assessment
 - hire experts to measure retention vs time
 - o use alumni surveys
 - meet again in 2020s to assess curriculum
 - what are job opportunities in 2020s?
- Dissemination
 - o do as 'conference style'

Proceedings

Group 4 (Laboratory Experience)

What is the topic?

Undergraduate Laboratory

• Real, Virtual, and/or Remote

Objectives/Goals

- Teamwork
- Communication skills
- Dealing with "real" problems/data
- Open-ended problem solving
- Experimental Design
- Integration of course/module material into and via lab
- Safety
- Environmental & regulatory issues

What are the particular needs?

- Develop specific labs/projects (real, virtual, and/or remote)
- Industry input (problem statements)
- "Complete" project (addresses all goals/issues)
- Propose methods for administrative systems/maintenance

How do we measure?

- What do we measure?
 - o attainment of goals
- Outside evaluators
- Academic "swapping" of evaluators
- Performance assessments (have the students actually do something)
- "Seek professional help"

Incentives?

- I-Lab sharing system
- Fund development of laboratory experiences
- Reform of reward system
- Recognize contributions as being critically important
- Provide release time for curriculum developers
- TA support/Post-docs

SUPER-LAB

- Come up with *x* projects
- Each project must contain all of the objectives/goals
- Should serve as suitable templates for future projects
- Must contain the major/core curriculum
- Competition
- Cycle through different sector topics (e.g. food, microelectronics, biotech)

Session 3: curriculum definition

Cape Cod Workshop

Proceedings

MODULAR LAB

- Remote labs/virtual labs combination
- Come up with *y* projects
- Flexibility
- Targeted objectives
- Industry input
- "Industrial remote labs"
- National distribution & collection
- Interactive

Cape Cod Workshop

Proceedings

Group 5 (Supporting Courses)

Main Points

- Physics: include biophysics, solid state; eliminate relativity
- Chemistry: keep existing except organic synthesis; add analytical/quantitative techniques; delete thermo from physical chemistry, add quantum
- 2 Bio classes:
 - o Biochemistry
 - Molecular & cellular Bio
- Computer Science: Excel & visual basic & a math package

Physics	Statics/Dynamics
Chemistry	Statistics
Biology	Circuits
Math	Economics
Computer Science	Management/Business
Materials Science	Second language
English/Communications	Ethics
Humanities	

Recitation section(s) to supply context for differential equations, chemistry, physics, statistics, biochemistry.

<u>OR</u>

Context supplied by vertically-integrated lab or project.

Supplementary and Supporting Material

Math		
•	Calculus through ODEs	
•	(minimize analytical integration, derivativation, proofs, series)	
•	Increase emphasis on vectors & tensors	
•	Numerical methods	
•	Linear algebra	
٠	Statistics (Design of experiments)	
•	ANOVA, basic metrics, parametric studies	

Comp. Science		
C++	Fortran	
Excel	Visual Basic	
Math package		

New Frontiers in Chemical Engineering EducationCape Cod WorkshopProceedings

Physics		
Electricity and magnetism	Astronomy	
Forces	Fluid mechanics	
RLC circuits	Sound	
Waves	Solid State	
Optics (lenses)	Biophysics	
Relativity	Physics of macromolecules	
Quantum Physics	Self assembly	
Mechanics	Spectroscopy	
Statistics	Plasmas	

Chemistry		
Stoichiometry	Analytical/Quantitative technique	
Acid/base	van der Waals	
Solution chemistry	Dipole	
Atomic structure	Induced dipole	
Molecular orbitals	Ionic/ Covalent	
Periodic table	Plasmas	
Electronegativity	Stereochemistry	
Ionization potential	Electrochemistry	
Reactivity	Nomenclature	
Colloids/dispersions/gels	Molecular reactivity.	
Thermo	Reaction mechanism	
Crystal structure	Transition states	
Distribution functions	Schrodinger equation.	
Quantum mechanics	Hamiltonian	
Statistical mechanics.	Solution equilibrium	
Monte Carlo	Spectroscopy	
Molecular dynamics	Kinetics	
Quantum calculations	Mean free path	
Radicals	Kinetic theory of gases	

Organic Chemistry		
Basic reaction mechanisms	Bonding	
Polymers/polymerization	Acid/Base catalysis	

Biology		
Biochemistry	Molecular and cell biology	

Materials Science	
•	Multiscale: relate molecular structure to macroscopic
	properties
•	Chemistry of materials

• Dispersions, colloids

New Frontiers in Chemical Engineering Education p Proceedings

Group 6 (Gaps)

Workshop 1 – Common Themes	Common Themes continued
 Biology is a foundation science Agreement that the need for change goes beyond biology Diversity of employment Public perception Recognition of molecular-level understanding Competition for best students Need to engage enabling sciences in change Infuse curriculum with contemporary examples that integrate principles of chemical engineering Chemical engineering involves analysis, design, and synthesis 	 Need to articulate to freshmen the intellectual challenges and professional opportunities Chemical engineering includes multi-scale descriptions of materials and phenomena Agreement on the desired attributes of the chemical engineering graduate Experience in labs Communication skills Problem solving skills Etc Curriculum should be designed for flexibility
Building Blocks – Areas of Agreement	New Technologies
 The enabling sciences are: biology chemistry physics math There is a core set of chemical engineering principles Molecular level design is a new core principle Chemical engineering contains both product & process design There is a need for 1st year chemical engineering experience 	 Nanotechnology Microchemical systems Fast science New materials Organic LEDs, new coatings, Improvements in processing engineering and science Energy production and storage Biological science and engineering: food, medical, genetic engineering, Environment Information technology – handling large amounts of information
What Chemical Engineers Do	Example Problems
 Use molecular sciences and engineering to create, design and operate products and processes that meet societal needs 	 Customize, design, and produce an organic LED to reflect only certain colors Design and production of bio-organic computing chips of the future Control batch reactors, e.g. deal with large set of data to manageable system
Potential Gaps	Bridges/Problems
 Freshman year experience IT Ensure coverage of skills and attributes Communication, critical thinking, dealing with uncertainty, fearlessness Do we have a sufficiently broad set of examples to capture modern chemical engineering Is there an adequate balance between biology and chemistry as enabling science 	 Find the right balance for teaching molecular sciences in chemical engineering vs. biology and chemistry From biology and chemistry – what enables us to create, analyze and manipulate molecules/systems Do we have sufficient repetition of key ideas? Have we limited our objectives sufficiently to ensure learning can take place?

New Fr Cape Cod Workshop	ontiers in Chemical Engineering Ed Proceedings	2003 June 11-13
Α	ctual Gaps	
 Phase changes Constitutive equations Basic experimental skills 		