Individual Working Group Reports Five working groups were charged to create the building blocks of the curriculum, specifically avoiding the terms "thermodynamics", "kinetics", "transport", "material and energy balances". They reported Tuesday 2003 Jan 28. #### Group 1 - Technical/technology overview (math/science/engineering. based) - Math/computational - Physics (through discoveries/revolutions) - Chemistry/biology (with discovery as theme) - Engineering/modeling (molecular based chem./bio systems) - Multiple scale (ChE core) through integration - Designing/analyzing (Chem/bio systems) - o Combination of approaches (Engr./Sci) - o Multiple scales - Depth/specialization? BS Degree 9 Advanced Study #### Orlando Workshop **Proceedings** 2003 Jan 27-29 #### Group 2 #### Goals: - Corporate leader - Functioning member of society - Good citizen - Versatility Organize curriculum around goals and building blocks #### Attributes: - Ability to deal with incomplete info - Managing complexity - Managing large amounts of messy data - Willingness to make assumptions - Ability to formulate and solve problems - Risk-taker/ personal initiative - "Armstrong attributes" - (1) Case Study Approach motif: -----? time Each arrow above is a ChE principle or application Sample motifs: polymer, bio, microelectronic Positives: external expertise, collect like-minded faculty Negatives: textbooks (can be a positive), coverage of hard topics - (2) ChE Essence Building Blocks - Enabling Sci/Math - "ChE essence" - o ChE principles - o ChE Applied - General Education - Theme (specialization within chemical engineering) - Lots of electives - Professional focus, personal development, cultural enrichment - (3) Organizing Paradigm ### Develop integration tools: - Relating molecular structure and function to properties/process/function - Bond additivity calculations for reactions - Origin of viscosity - Tear apart lab helps to motivate - Energy balance on solar cells - Synthesis and design Observation: Two years of math education is a black hole of time (4)Turn-key Paradigm – focus more on the use of tools instead of the development of tools Can we judiciously ensure that learning trajectory matches reality of use of turn-key tools? ### Orlando Workshop ### Proceedings 2003 Jan 27-29 #### Group 3 #### **CORE** - A. Thermodynamics - 1. enthalpy/entropy - 2. equilibrium/dynamic (phase & reaction) - 3. structure property - 4. structure function - 5. EOS, G^{EX} - 6. state functions - B. Kinetics - 1. rates of reaction - 2. catalysis - 3. reaction order - 4. biocatalysis - 5. reaction mechanisms/transition states - 6. reaction networks - 7. metabolic paths - C. Transport phenomena - 1. heat transfer - 2. mass - 3. driving forces/resistances - 4. momentum - 5. turbulence/laminar - 6. multi-phase flow - 7. rheology/solids flow - 8. transport properties - 9. field effects - D. Mass & energy balances - 1. conservation principles - 2. steady state & dynamics #### APPLICATIONS - E. Separations - 1. mass transport/dynamic - 2. kinetics - 3. rate processes - 4. equilibrium - 5. staged processes - 6. bioseparation - 7. common separation processes - F. Reaction engineering - 1. reactors/bioreactor - 2. stability - 3. coupled phenomena - 4. homogeneous & heterogeneous - 5. selectivity/yields #### Orlando Workshop # Proceedings 2003 Jan 27-29 - 6. safety - G. Systems (design, control) - 1. process thermodynamics - 2. constraint identification - 3. equipment - 4. assumptions - 5. optimization - 6. process dynamics & stability - 7. modeling - 8. safety - 9. defining the need & product performance - 10. market analysis - 11. economics #### BASIC SCIENCES - H. Math - 1. calculus - 2. differential equations - 3. statistics - 4. numerical methods - I. Chemistry - 1. general - 2. physical (stat mechanical quantum) - 3. organic - 4. biochemistry - 5. materials chemistry - J. Physics - 1. kinematics - 2. electromagnetics (optics) - 3. quantum - K. Biology - 1. biochemistry - 2. cell biology - 3. molecular biology (tools of manipulation) #### TOOLS & SKILLS & EXPERIENCES - L. Communications experiences - 1. technical - 2. interpersonal - M. Teaming - N. Research skills (lifelong learning) judging resource credibility - O. Ethics - 1. use of Web - 2. data integrity - 3. accountability - P. Co-op/internship/research exp. (desirable, but not universally required) # Orlando Workshop Proceedings 2003 Jan 27-29 - Q. Computer literacy - 1. use computer to solve problems - 2. electronic resources - R. Laboratory skills - 1. correct data analysis - 2. experimental design - 3. error analysis - 4. problem definition - 5. troubleshooting - S. Lab experience - 1. assemble & dissemble laboratory apparatus - 2. qualitative & quantitative - 3. practical experience w/open ended problems - 4. varied application - 5. connect to classes but learning more on their own # Orlando Workshop Proceedings 2003 Jan 27-29 #### Group 4 #### **Basic Sciences** - Not only enabling sciences, but important to well-educated students in their own right - Not necessarily front-loaded in curriculum possible integrated with ChemEng Science "core" - Mathematics - o Chemistry - o Physics - o Biology #### Chemical Engineering Science - Quantitative description of molecules & collections of molecules (including biomolecules) - Controlled transformation of molecules and collections of molecules (molecular → macroscopic) (including bio-molecules) - Critical evaluation of problems with incomplete information and many solutions - Integration and synthesis - Implications of chemical change (safety, ethical, environmental, sustainability) #### The Engineering Scientist - Common to all engineering disciplines (may combine engineers in instruction) - Creative thinking/learning skills - Oral & written communications - Use of computational tools - Team/group problem solving - Language/foreign culture - "Hands on" experience - Engineering economics # Orlando Workshop Proceedings 2003 Jan 27-29 #### Group 5 - 1. Science and math - a. Chemistry - i. Molecular interactions/transformations (some depth) - ii. Materials science - b. Physics - i. Fundamentals (overview) - c. Biology - i. Cellular - ii. Molecular interactions/transformations - d. Mathematics and computation - 2. Processes - a. Physical - b. Chemical - c. Biological - d. Rate processes - 3. Problem analysis and solution - a. Intuition - b. Model development/estimation - c. Open ended problems - d. Uncertainty/risk - 4. Conservation - a. Balance equation - 5. Systems/synthesis - a. Multiscale - b. Process & product design - c. Economics - d. Compositional control - 6. Laboratory skills - a. Intuition - b. Design - c. Data analysis - d. Integration with lectures - e. Safety - f. Critical thinking - g. Trouble shooting - h. Analytical skills - i. Physical intuition/judgment - 7. Equilibrium Phenomena - a. Phase - b. Reaction - c. Non-ideal systems - 8. Communication - a. Written - b. Oral - 9. Teamwork ### New Frontiers in Chemical Engineering Education Proceedings ### Orlando Workshop 2003 Jan 27-29 - a. Multidisciplinary (maybe not high priority) - 10. Educated human being - 11. Humanities # New Ideas – Building Blocks VERTICAL INTEGRATION | Year | 1 | ••• |
 | ••• | 6,8 | |------------------|---|-----|------|-----|-----| | Fresh | | | | | | | "Project | | | | | | | "Project
A" | | | | | | | Soph "Project B" | | | | | | | "Project | | | | | | | В" | | | | | | | Jun "Project C" | | | | | | | "Project | | | | | | | C" | | | | | | | Senior | | | | | | | "Project
D" | | | | | | | D" | | | | | | ### Intuitive Engineering - 1. Teach by immersion - a. College-wide (all engineering) - b. Very successful - 2. Studio environment - 3. Team internship (MIT Practice School) - 4. Evolving design - 5. Direction repair - 6. Entrepreneurship - 7. Laptop/use of computers reinforce ideas immediately after class - 8. Learning community