Utah Chemical Engineering Spring Teaching Retreat

Thinking about Curriculum

Barry S Johnston Department of Chemical Engineering Massachusetts Institute of Technology 2004 April 29

Drivers for Curriculum Change

- Breadth of employment opportunities for ChE graduates
- Importance of biology as a foundation science for ChE
- The web, and other opportunities for delivery of subject matter

R.C. Armstrong, "Curriculum Revitalization in Chemical Engineering", proposal to NSF, following July 2002 CCR meetings.

CCR/NSF Curriculum Workshops

- January 2003 Orlando (49, incl. 4 companies)
 - Day 1: assess curriculum keep, discard, add
 - Day 2: describe curriculum, without present categories
- Result was a new classification of the chemical engineering subject matter
- Details at web.mit.edu/che-curriculum

Workshops – Next Steps

- Refine classification and outline curriculum in April and June 2003 workshops
- Presently seeking to fund development of pilot modules
- Must have the broad participation of the chemical engineering community!

Curriculum Examination

- But do we <u>really</u> need to change the curriculum????
- "Just add a biology course and some new example problems"
- *Internal* drivers the mission of the university to conserve, refine, extend, teach

Four Questions

- For the profession:
 - Attributes and skills of BS graduates?
 - Organization of ChE subject matter?
 - Arrangement of subject matter into a curriculum?
- For particular departments:
 - Apply to University of Utah?

Method

- Divide into groups
- Introduce the question (3 minutes)
- Silent reflection (3 minutes)
- Collect ideas and organize
- Discuss and formulate response
- Summarize and prepare report
- Report to full audience (3 minutes)
- Take a break (10 minutes)

Attributes and Skills

- Attributes: the tendency to "think like an engineer"
 - Practical and creative
 - Not demoralized by messy data
- Skills: the ability to "think like an engineer"
 - Analyzes problems
 - Estimates magnitudes
- We teach ChE subject matter, but a very real purpose is to cultivate attributes and skills

Transferable Skills

- *Exclude* curriculum-specific skills: e.g., "skill in PFR design"
- *Include* skills useful to most engineers, irrespective of field
- What is necessary for career-long versatility in rapidly changing technology over a wide variety of application areas?

Question 1 (1:30 – 2:20)

What attributes and skills should characterize the B.S.ChE?

- Silent reflection (3 minutes)
- Collect ideas and organize
- Discuss and formulate
- Summarize and prepare report
- Report to full audience (3 minutes)

The Subject Matter of ChE

- "Subject matter" is the body of knowledge that ChEs use
- We first organized our subject matter as industrial chemistry
- Then material reorganized as unit operations
- Then these operations were described by thermo, transport, reaction engineering, etc.
- Older categories can remain useful!

On Classification

- Present categories are economical and useful
- But there may exist other economical and useful arrangements
- Already we select and emphasize consider ME versus ChE thermodynamics
- Possible organizing principles: themes that run through several courses
 - rate vs. equilibrium
 - transient vs. steady

• *Forbidden words*: thermodynamics, transport, reaction engineering

Question 2 (2:30 – 3:30)

How should we organize/classify the subject matter of chemical engineering?

- Silent reflection (3 minutes)
- Collect ideas and organize
- Discuss and formulate
- Summarize and prepare report
- Report to full audience (3 minutes)

Curriculum – Order of Presentation

- c.1974 (UA)
 - M&E balances
 - Fluid mechanics
 - Staged separations
 - Heat transfer
 - Diffusional separations
 - Reactor engineering
 - Lab
 - Thermodynamics
 - Process control
 - Design

- Introduction to ChE
- Thermodynamics
- Fluid mechanics
- Heat and mass transfer
- Reactor engineering
- Separations
- Lab
- Design

The Task of Curriculum

- Day-by-day presentation must result in an integrated understanding
- Courses organized by subject areas may not be best approach
- Could the curriculum be designed so that
 - Full structure is apparent more early?
 - At each level the student is capable of doing some engineering job?

Question 3 (3:40 – 4:30)

How should we arrange the subject matter for presentation over four years?

- Silent reflection (3 minutes)
- Collect ideas and organize
- Discuss and formulate
- Summarize and prepare report
- Report to full audience (3 minutes)

Question 4 (4:30 - 5:00)

How does this apply to the University of Utah?

2004 April 29

On Building a Curriculum

- CONSTRAINT: a new BSChE curriculum should produce a graduate fully capable of understanding and using the tools of the traditional chemical engineer.
- VISION: that graduate will have a superbly integrated skill set, honed by examples from the breadth of chemical engineering applications.

In Conclusion

- Walker and colleagues summer in Maine
 <u>Principles of Unit Operations</u>
- The McGraw-Hill series
 - "building the literature of a profession"
- Thank you

Desired Attributes of the Graduate

- Versatile/creative
- Willing to make assumptions and estimate
- Life-long professional growth
 - Knows how to learn
 - Desires life-long learning
 - Thinks critically
 - Receptive to new ideas
 - Seeks appropriate connections with other fields
- Broader context
 - Knows where ChE fits in
 - Has social responsibility
 - Has personal initiative
 - Is driven to add value
 - Leader/team member
 - Member of society/good citizen

- The engineer as problem-solver (both analysis and synthesis activities):
 - Keeps it simple
 - Makes rational assumptions
 - Communicates qualitative concepts
 - Determines important parameters
 - Applies skill set to open-ended and novel problems
 - Can cope with
 - Incomplete information
 - Multiple (often conflicting) objectives
 - Multiple solutions (multiple paths to solution)
 - Iterative problem solving
 - Uncertainty/messy data
 - Managing complexity
 - Risk taking
 - Rapid generation and pruning of alternatives
 - Understands and works with uncertainty and sensitivity
 - Thinks like a molecule

Teaching by Example

- Water Desalination
- Design for Self Assembly
 - Polymer coating
 - Nanotechnology
 - Hybrid systems
- Design of Membranes
 - Next generation beer bottles
 - Fuel cells
- CO₂ Emissions from vehicles
- Stationary Source Emission Abatement
- Bioartificial Pancreas
- Protein Expression
- Make Polystyrene Peanuts from Raw Materials
- Drug Delivery/drug patch
- Blood flow in body
- Mass and energy balance of CSTR

- Arrhenius plot from experimental data
- Trouble-shooting
- Quality control
- Economic & market analysis
- Design of Distillation Column → Molecular modeling of Non-ideal phase equilibria
- Chromatographic Separation of Proteins – all scales
- Catalytic and/or multiphase reactor design
- Hydrogen from biomass
- Climate change
- Viral infections
- Atomic Layer Deposition
- Controlled particle formation

Map of the Subject Matter

2004 April 29

Utah Chemical Engineering Spring Teaching Retreat

Page 23

An Example Curriculum

FRESHMAN	SOPHOMORE	JUNIOR	SENIOR
SYSTEMS 1	SYSTEMS 2	SYSTEMS 3	SYSTEMS 4
introduction	simple processes	advanced processes	design
	MULTISCALE 1	MULTISCALE 2	MULTISCALE 3
	conserv eqns/phys props	multiphase/reaction	equipment
MATH	MOLEC PROC 1	MOLEC PROC 2	MOLEC PROC 3
	intro transport/reaction	advanced transport/reaction	surfaces and structures
through ODEs	LABORATORY	LABORATORY	LABORATORY
PHYSICS	instruments/statistics	unit ops demonstrations	research
mech/electrical			
BIOLOGY	BIOLOGY	BIOLOGY	
general	cell	molecular	
CHEMISTRY	CHEMISTRY	CHEMISTRY	TECHNICAL
general	organic	physical	electives
HUMANITIES	HUMANITIES	HUMANITIES	HUMANITIES
read/write	read/write	econ/electives	electives