Utah Chemical Engineering Spring Teaching Retreat

Thinking about Curriculum

Barry S Johnston
Department of Chemical Engineering
Massachusetts Institute of Technology
2004 April 29
Drivers for Curriculum Change

• Breadth of employment opportunities for ChE graduates
• Importance of biology as a foundation science for ChE
• The web, and other opportunities for delivery of subject matter

CCR/NSF Curriculum Workshops

• January 2003 – Orlando (49, incl. 4 companies)
 – Day 1: assess curriculum – keep, discard, add
 – Day 2: describe curriculum, without present categories

• Result was a new classification of the chemical engineering subject matter

• Details at web.mit.edu/che-curriculum
Workshops – Next Steps

- Refine classification and outline curriculum in April and June 2003 workshops
- Presently seeking to fund development of pilot modules
- Must have the broad participation of the chemical engineering community!
Curriculum Examination

• But do we really need to change the curriculum????

• “Just add a biology course and some new example problems”

• *Internal* drivers – the mission of the university to conserve, refine, extend, teach
Four Questions

• For the profession:
 – Attributes and skills of BS graduates?
 – Organization of ChE subject matter?
 – Arrangement of subject matter into a curriculum?

• For particular departments:
 – Apply to University of Utah?
Method

• Divide into groups
• Introduce the question (3 minutes)
• Silent reflection (3 minutes)
• Collect ideas and organize
• Discuss and formulate response
• Summarize and prepare report
• Report to full audience (3 minutes)
• Take a break (10 minutes)
Attributes and Skills

• Attributes: the tendency to “think like an engineer”
 – Practical and creative
 – Not demoralized by messy data
• Skills: the ability to “think like an engineer”
 – Analyzes problems
 – Estimates magnitudes
• We teach ChE subject matter, but a very real purpose is to cultivate attributes and skills
Transferable Skills

- *Exclude* curriculum-specific skills: e.g., “skill in PFR design”
- *Include* skills useful to most engineers, irrespective of field
- What is necessary for career-long versatility in rapidly changing technology over a wide variety of application areas?
Question 1 (1:30 – 2:20)

- Silent reflection (3 minutes)
- Collect ideas and organize
- Discuss and formulate
- Summarize and prepare report
- Report to full audience (3 minutes)

What attributes and skills should characterize the B.S.ChE?
The Subject Matter of ChE

• “Subject matter” is the body of knowledge that ChEs use
• We first organized our subject matter as industrial chemistry
• Then material reorganized as unit operations
• Then these operations were described by thermo, transport, reaction engineering, etc.
• Older categories can remain useful!
On Classification

• Present categories are economical and useful
• But there may exist other economical and useful arrangements
• Already we select and emphasize – consider ME versus ChE thermodynamics
• Possible organizing principles: themes that run through several courses
 – rate vs. equilibrium
 – transient vs. steady
Rearranging the File Cabinet

- **Forbidden words**: thermodynamics, transport, reaction engineering
How should we organize/classify the subject matter of chemical engineering?

• Silent reflection (3 minutes)
• Collect ideas and organize
• Discuss and formulate
• Summarize and prepare report
• Report to full audience (3 minutes)
Curriculum – Order of Presentation

• c.1974 (UA)
 – M&E balances
 – Fluid mechanics
 – Staged separations
 – Heat transfer
 – Diffusional separations
 – Reactor engineering
 – Lab
 – Thermodynamics
 – Process control
 – Design

• c.2004 (MIT)
 – Introduction to ChE
 – Thermodynamics
 – Fluid mechanics
 – Heat and mass transfer
 – Reactor engineering
 – Separations
 – Lab
 – Design
The Task of Curriculum

- Day-by-day presentation must result in an integrated understanding
- Courses organized by subject areas may not be best approach
- Could the curriculum be designed so that
 - Full structure is apparent more early?
 - At each level the student is capable of doing some engineering job?
Question 3 (3:40 – 4:30)

How should we arrange the subject matter for presentation over four years?

• Silent reflection (3 minutes)
• Collect ideas and organize
• Discuss and formulate
• Summarize and prepare report
• Report to full audience (3 minutes)
Question 4 (4:30 – 5:00)

How does this apply to the University of Utah?
On Building a Curriculum

• CONSTRAINT: a new BSChE curriculum should produce a graduate fully capable of understanding and using the tools of the traditional chemical engineer.

• VISION: that graduate will have a superbly integrated skill set, honed by examples from the breadth of chemical engineering applications.
In Conclusion

• Walker and colleagues - summer in Maine
 – *Principles of Unit Operations*

• The McGraw-Hill series
 – “building the literature of a profession”

• Thank you
Desired Attributes of the Graduate

• Versatile/creative
• Willing to make assumptions and estimate
• Life-long professional growth
 – Knows how to learn
 – Desires life-long learning
 – Thinks critically
 – Receptive to new ideas
 – Seeks appropriate connections with other fields
• Broader context
 – Knows where ChE fits in
 – Has social responsibility
 – Has personal initiative
 – Is driven to add value
 – Leader/team member
 – Member of society/good citizen

• The engineer as problem-solver (both analysis and synthesis activities):
 – Keeps it simple
 – Makes rational assumptions
 – Communicates qualitative concepts
 – Determines important parameters
 – Applies skill set to open-ended and novel problems
 – Can cope with
 • Incomplete information
 • Multiple (often conflicting) objectives
 • Multiple solutions (multiple paths to solution)
 • Iterative problem solving
 • Uncertainty/messy data
 • Managing complexity
 • Risk taking
 • Rapid generation and pruning of alternatives
 – Understands and works with uncertainty and sensitivity
 – Thinks like a molecule
Teaching by Example

- Water Desalination
- Design for Self Assembly
 - Polymer coating
 - Nanotechnology
 - Hybrid systems
- Design of Membranes
 - Next generation beer bottles
 - Fuel cells
- CO₂ Emissions from vehicles
- Stationary Source Emission Abatement
- Bioartificial Pancreas
- Protein Expression
- Make Polystyrene Peanuts from Raw Materials
- Drug Delivery/drug patch
- Blood flow in body
- Mass and energy balance of CSTR
- Arrhenius plot from experimental data
- Trouble-shooting
- Quality control
- Economic & market analysis
- Design of Distillation Column → Molecular modeling of Non-ideal phase equilibria
- Chromatographic Separation of Proteins – all scales
- Catalytic and/or multiphase reactor design
- Hydrogen from biomass
- Climate change
- Viral infections
- Atomic Layer Deposition
- Controlled particle formation

2004 April 29
Utah Chemical Engineering Spring Teaching Retreat
Page 22
An Example Curriculum

<table>
<thead>
<tr>
<th>FRESHMAN</th>
<th>SOPHOMORE</th>
<th>JUNIOR</th>
<th>SENIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEMS 1 introduction</td>
<td>SYSTEMS 2 simple processes</td>
<td>SYSTEMS 3 advanced processes</td>
<td>SYSTEMS 4 design</td>
</tr>
<tr>
<td>MATH through ODEs</td>
<td>PHYSICS mech/electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY general</td>
<td>BIOLOGY cell</td>
<td>BIOLOGY molecular</td>
<td></td>
</tr>
<tr>
<td>CHEMISTRY general</td>
<td>CHEMISTRY organic</td>
<td>CHEMISTRY physical</td>
<td></td>
</tr>
<tr>
<td>HUMANITIES read/write</td>
<td>HUMANITIES read/write</td>
<td>HUMANITIES econ/electives</td>
<td>HUMANITIES electives</td>
</tr>
</tbody>
</table>

MULTISCALE 1 conserv eqns/phys props | MULTISCALE 2 multiphase/reaction | MULTISCALE 3 equipment |
| MOLEC PROC 1 intro transport/reaction | MOLEC PROC 2 advanced transport/reaction | MOLEC PROC 3 surfaces and structures |
| LABORATORY instruments/statistics | LABORATORY unit ops demonstrations | LABORATORY research |

LABORATORY demonstrations | LABORATORY research | LABORATORY research | LABORATORY research |

SYSTEMS 3 advanced processes | SYSTEMS 4 design | SYSTEMS 4 design | SYSTEMS 4 design |

TECHNICAL electives | TECHNICAL electives | TECHNICAL electives | TECHNICAL electives |