THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 59, NUMBER 2

Light scattering from dilute macromolecular solutions™

A. R. Altenberger’ and J. M. Deutch
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 9 March 1973)

The polarized light scattering spectrum from a dilute solution of spherical macromolecules is
customarily interpreted on the basis of independent particle diffusion. However, it is known that
diffusion in such a system is governed by a many particle diffusion equation with cross-diffusion
coefficients D,-j that depend on the inverse distance between all pairs of particles (i, /). Here we prove
that the spectrum from the system described by the N-particle diffusion equation is identical to the
spectrum obtained from the simple, but incorrect, independent particle diffusion model. The physical
reason for this suprising simplication is that the D are proportional to Oseen’s tensor which holds for
an incompressible fluid and hence has no longitudinal part. When short-range forces are taken into
account as well as the long-range hydrodynamic interaction present in D."’ it is possible to obtain simple ap-
proximate expression for a k-dependent effective diffusion constant D ore(K)- This expression is evaluated
for the case where the macromolecules are treated as hard spheres and one obtains D,g(k)=Dg[1+2.0¢] for
low k where ¢ is the volume fraction of macromolecules in solution.
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I. INTRODUCTION

The polarized light scattering spectrum from a
solution of spherical macromolecules in an optical-
ly inert solvent is proportional® to

Ik, w)=Re fowdt exp(-iwt)G(k, 1),

where w is the change in frequency and k the change
in wave vector upon scattering. The coherent
structure factor Gk, t) is defined by

(1.1)

N N
Gk, t)=(1/N) 2 25

m=1 n=1

x(exp| ik* R, (t)] exp[- ik R, (0)]), (1.2)

where the sums are over all the macromolecules
in the solution and R ,(f) denotes the position of
particle m at time ¢.

Experimenis on neutral macromolecular solu-
tions have invariably been interpreted®™® on the
basis that the solution is “dilute” and that inter-
actions between the particles may be neglected in
determining the diffusional motion of the particles.
Thus it is assumed that the N-particle coordinate
space distribution function P(R¥, t) is the product
of single particle distribution functions

P(RN, t):INI p(l) (Rjy t)
f=1
and that each single particle distribution function
p‘V(R, t) satisfies the single particle diffusion equation

(1. 3)

3p‘V(R,1)/8t=D, V2 p V(R, ). (1.4)
From these assumptions it follows that
G (&, t)=G(k, 0)exp[- Dyk*] (1. 5)

and that the spectrum is given by
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1(k, w)=G(k, 0){Dk?*/[w’+ (Dok*)?}. (1.6)

The width of the spectrum is determined by (Dy%?)
and does not depend upon concentration. The basis
for adopting this infinite dilution picture for solu-
tions that are actually at finite concentration is the
experimental observation that the measured width
is largely independent of concentration.

There is, however, a need for theoretical justi-
fication of these simplifying assumptions. The
reason is that the known, correct N-particle Smol-
uchowski diffusion equation®'® describing the dy-
namical motion of a dilute solution of heavy spheri-
cal particles does not have a solution of the form Eq.
(1.3). This equationwhich may be obtainedfrom
stochastic considerations,® from molecular consid-
erations, 1~ or through reduction of the correspond-

ing N-particle Fokker—Planck equation'? is

N N
8P (RY, t)/atz[Z) DoV3+ 25 9,:Dy,e v,] PR"1).
i=1 i,4=1
(1.7)
The second term onthe right hand side of this equation
contains the interactions between the particles
through cross diffusiontensors D;; whichare givenby
D”z(l—bl‘,)(kBT)TUE D(Ri—Rj), (1.8)

where §;, is the Kronecker delta, T the absolute
temperature, and T, is Oseen’s tensor®® that

-describes the hydrodynamic interaction between

particles ¢ and j:

Tiy= 8moR ) {1 +[(Ry; Ryy)/R},F= T (R -Ry).
(1.9)

In this equation 74 is the solvent shear viscosity,

| is the unit tensor, and Ry, is the vector distance

between particles i and j. The N-particle diffusion

equation Eq. (1.7) is valid when the particles are
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widely separated and consequently it does not con-
tain the concentration effects that arise when the
particles are sufficiently close to feel the direct
short-range interaction potential. Alsothe equation
has not been provento be valid for charged systems.

Potentially the most important dynamical con-
centration effect in the macromolecular solution
might arise from the interaction term in the N-par-
ticle diffusion equation. This interactionterm takes
into account the hydrodynamic interaction which is

always present between macromolecules in solution.

Since the hydrodynamic interaction is of long-range
i.e., D;;~R;} these effects might well be imagined
to be dramatic. It is necessary to understand why

the simple current interpretation that ignores these
interactions is successful.

The purpose of this article is to present a simple
and exact mathematical analysis which demonstrates
that the spectrum computed according to the com-
plete N-particle diffusion equation is identical to
the spectrum given in Eq. (1.6) obtained from the
independent particle diffusion model. In short the
long-range interaction terms in the correct N-par-
ticle diffusion equation do not contribute to the spec
trum and one need not be concerned that these
terms lead to concentration effects in light scat-
tering experiments. The result of the simple in-
dependent particle model is correct but the reason-
ing used in the past to obtain the result is not.

In the next section the derivation of an expres-
sion for the spectrum for the N-particle diffusion
model is presented. The physical basis for the
absence of long-range interaction effects on the
spectrum is discussed. In Sec. III it is shown that
the N-particle diffusion equation Eq. (1.7) has the
novel feature of yielding exact closed equations for
reduced distribution functions of the N-particle
system. The paper concludes with remarks con-
cerning extensions of the model and analysis pre-
sented to more general cases where interesting
concentration effects may well arise from the long-
range hydrodynamic interaction.

II. LIGHT SCATTERING SPECTRUM
For the N-particle diffusion model the dynamical

structure factor G(k, {) may be computed according
to Eq. (1. 2) as

G, t)=23 V¥ J' dRYdRY exp[ik+ Ry]
m,n
xexp[-ik* R,]JP(R" |RY, 0), (2.1)
where P(R”, ¢ | ﬁ”, 0) satisfies the N-particle dif-
fusion equation Eq. (1.7)

sP(RY,¢ | RY, 0)/0t=L®")PRY,t |RY, 0), (2.2)
LRY)=21 Do Vi+25 V;* D0 (2.3)
i i4d

2
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with initial condition
PR", 0| RY, 0)=6(R" - R"). (2.4)

In this expression for the equilibrium correlation
function G(k, {) use has been made of the fact that
the equilibrium solution to the N-particle diffu-
sion equation is simply V¥,

An alternative expression for G(k, ?) is
Gk, t)=22 V=¥ f dRY exp[- ik R,] exp[L (R")?]

xexp[sk* R]. (2.5)

This expression may be evaluated by considering
the differential equation satisfied by G(k, ¢):

G (K, {)/0t=2 V¥ fdn”exp[ _ik* R,]L(RY)

x exp[L (R")t]exp[ik* R,]. (2.6)

Substitution of the definition of L(RY), Eq. (2.3),
followed by integration by parts leads to the equa-
tion

aG(k, t)/9t=~Dok*G(k, t)+ 2 V'"fdn"

myn

x exp[ - ik* R,] 27 (ka,): D,
jEn)

x exp[L(R”Y, ¢)]explik* R,], (2.7)
where
[ikvj: Drll]: 2 [ika (a/aRBJ)D:jB] a, B’_‘x, ¥y, 2.
e (2.8)

and the gradient with respect to R; operates only
on D,;. The key step in the analysis is to recog-
nize that the second term on the right hand side of
Eq. (2.7) is identically zero. The reason is that

2 (8/3R“)D:f=0 (2-9)
8

as can be verified by direct substitution of the def-
inition of D,; given in Egs. (1.8) and (1.9). It is
also true that

Va'D®R-R')= VgD (R-R’)= 0. (2. 10)

Consequently it follows that for the N-particle dif-
fusion model

9G (k, t)/9t =~ DoK*G (K, t), (2.11)

which leads to an identical expression for the dy-
namic structure factor G(k, ¢) as in the independent
particle model, Eq. (1,5). Hence the spectrum
for the N-particle diffusion model and the indepen-
dent particle model are the same and given by Eq.
(1.6). The assertion that both models lead to iden-
tical light scattering spectra that do not exhibit con~
centration effects is established. The N-particle
diffusion model is a rare example of an interacting
many particle model where the dynamical struc-
ture factor is given exactly by zeroth order inde-~
pendent particle dynamics.

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



896 A. R. ALTENBERGER AND J. M. DEUTCH

It remains to examine the physical basis for the
simplification encountered in the N-particle dif-
fusion model. The simplification is a direct con-
sequence of the property of the Oseen tensor ex-
hibited in Eq. (2. 10):

Va' T(R-R')= Vg T(R-R')=0. (2. 12)

The reason why the Oseen tensor has no longitudinal
part may be appreciated by considering the assump-
tions that are employed in obtaining this quantity.
The Oseen tensor is the Green’s function for the
linearized Navier-Stokes equations for the velocity
field v under the assumption that the fluid may be
considered as incompressible and that inertial ef-
fects may be neglected. ' Thus

v(R)=T(R-R')'F, (2.13)
is the solution to the equation
POV(R, 1)/3t=0=nV2v— Vp+ F86(R-R’) (2.14)

with the additional constraint of an incompressible
fluid:

Vz* v(R)=0. (2.15)

It follows immediately from the condition for an
incompressible fluid Eq. (2. 15) that the velocity
field v(R) given in Eq. (2. 13) will be entirely trans-
verse and hence that Eq. (2, 12) is satisfied. In
terms of spatial Fourier transforms one has

#(k)=T(k)* Foexp[ik-R’] (2. 16)
with
T(k)= (k%) 1 - kk/k?]. (2.17)

The conditionofan incompressible fluid is ik G(k)
= 0 so that one has [ik*T(k)]=0.

III. EXACT DECOUPLING OF THE N-PARTICLE DIFFUSION
EQUATION

An additional consequence of the property Eq.
(2. 10) is that the N-particle diffusion yields exact
closed equations for reduced n-particle distribution
functions of the system. The reduced distribution
function p “(R", ¢) is defined by

p™R", t)= [dRY"P(RY, t) n<N. (3.1)

This quantity is useful for obtaining the nonequilib-
rium average of phase functions x ™[R"(¢) that de-
pend on a subset of the macromolecules:

xW)= [aR"X"®R") PR, t)= [ dR"xR"p MR, 1).
(3.2)
In order to obtain a kinetic equation for p*’ one

integrates the diffusion equation
3P (R¥ t)/ot=L(R")PR", ¢) (3.3)

over the coordinates of (N —=) particles. With the
observation that L (RY) may be written as

N N
LRY)=2D,v}+22D,,:9,9, (3.4)
i=1 i,
because of the property Eq. (2. 10) one easily ob-
tains the kinetic equation

p (R, t)/0t=LER"p "R, t)

N N
+27 2 fdn"'"ou:v,v,P(R",t),
i=1 j=n+l

(3.5)

The second term on the right hand side of Eq. (3. 5)
may be shown to vanish identically by integration
by parts with respect to R, the coordinate of par-
ticle j and use of the property Eq. (2.10). I fol-
lows that the exact kinetic equation for the reduced
n-particle distribution function is

9p M(R", t)/3t= LR")p(R", 1),

where the operator L (R") is given either by Eq.

(2. 3) or equivalently Eq. (3.4). The reduced Ki-
netic equation is of the same form as the N-particle
diffusion equation itself. In particular one has for
the single particle reduced distribution function

(R, 1)/8t=DoVEP VR, ). (3.7

(3.6)

The microscopic expression for the concentra-
tion of particles is

e(r, 1)=23 6(r-R,(t)) (3.8)
n

and the nonequilibrium average of this concentra-

tion is given by

e(r,t)=2, de” 5(r- R,)P(R", 1)

N
-2 [aR, 0 -RPV R 0. (3.9)
n=
We obtain as an immediate consequence of the de-
coupling property Eq. (3.6) that the nonequilibrium
concentration exactly satisfies the diffusion equa-
tion

8T (r, 1)/3t =Dy ViC(r, t), (3.10)
In terms of spatial Fourier coefficients

Tult)= [ dr exp(-ik* r)T (r,t) (3.11)
one has

BT (t)/8t = = Dok2T(t). (8.12)

The coherent structure factor G(k, ) may be ex-
pressed as

G(k, t)= (1/N){cx(t)cx (0P

and it follows that the usually approximate proce-
dure of employing the average transport equation
Eq. (3.12) to evaluate the equilibrium correlation
function yields the exact result Eq. (1.5).

(3.13)
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IV. OTHER SOURCES OF CONCENTRATION DEPENDENCE

The analysis of the preceding sections is based
on the adoption of the N-particle diffusion equation
Eq. (1.%7) as an adequate model for dilute macro-
molecular solutions. Two important limitations
of the model must be kept in mind. First, the
form of Oseen’s tensor Eq. (1.9) and hence the
position dependent cross diffusion coefficients Dy,
are based on the assumption of an incompressible
fluid. I this assumption is relaxed and one em-
ploys the form of Oseen’s tensor appropriate to a
compressible fluid the form of the diffusion equa-
tion will change and the cross diffusion coefficients
will become “frequency dependent. ” This may be
reflected in the light scattering spectrum by con-
centration dependent deviations from the Lorentz-
ian linewidths in the high frequency wings. We
are presently considering the more general situa-
tion of macromolecular diffusion in a compressible
fluid and the light scattering spectrum from such
a system.

The second limitation of the N-particle diffusion
model adopted here is that the direct short-range
forces between the solute macromolecules has not
been included in Eq. (1.7). These short-range
forces will give rise to conventional concentration
effects that arise from solute—sgolute or solvent—
solute interaction. When the direct short-range
forces are included, the form of the N-particle
diffusion equation becomes®

oPRY, t)/at=[L(R"Y, 1)+ SLRV]PR", ), (4.1)
where the operator L(R¥) is given by Eq. (2.3) or
alternatively Eq. (3.4) and the operator 8L (R") is
given by

N N
6L(R”)=-3D(,§ Va'Fy=B 2 Vg Dy F,.

fi=t (4.2)
In Eq. (4.2) F, is the force on macromolecule “i”
F;=- Vg URY), T 4.3)

where U(RY) is the direct potential energy of in-
teraction between the macromolecules which we
assume is composed of the sum of pair interac-
tions UR,;).

In order to investigate the concentration effects
that may be expected from these direct interac-
tions between the macromolecules we examine the
equation for the reduced one-particle distribution
function which according to Egs. (3. 1) and (4. 1) is
given by

ap (R, t)/9t=D, Vicl PRy, 1)
+(0-1) [dR06L(1,2)p® Ry, Ry, #)
(4.4)

with
0L(1,2)=-RDyVg,* [an U(Ry2)]

+BVg,* Dz [Ve,URy)].  (4.5)

This equation clearly is the first in a hierarchy
that couples together all the reduced distribution
functions. Thus a definitive determination of the
concentration dependence of the single particle
distribution function requires a detailed analysis
of the density expansion of the system Eq. (4.1).
This detailed analysis is not justified since the
N-particle diffusion model which is adopted here
as the basis for a theory of the concentration de-
pendence of the diffusion coefficient is too primi-
tive a model. For example the Oseen expression
for D;; is only valid for small values of (¢/R;;)
corresponding to large interparticle separations.
Accordingly rather than undertake a complete
analysis we shall make a simple physical state-
ment of the expected low concentration form of

p@ R 1).

The two particle reduced distribution function
may be expressed as

p(z)(Rls RZ, t)= W(RI’ t | RZ, t)p w (RZ’ t) » (4' 6)

where w is the time dependent conditional prob-
ability of finding particle “1” at R, at time ¢, given
particle “2” is at R, at time ¢, Our assumption is
that w may be adequately approximated by its equi-
librium form

Wa(Ry | Ry)=(1/V)g(Ry,), 4.7

where g(R ;) is the equilibrium radial distribution
function for the macromolecules in solution. The
low concentration form of g(R,,) is go(R%)

= exp|- fu(R,,)]. Thus we assume that p 2 (R?, ) is
of the form

pP@)=(1/V)exp| - BUR )P VR, 1),  (4.8)
When this expression is substituted into Eq. (4. 4)
one obtains
3p V(R 1)/8t=D Vi p

+c [dR0L(1,2)g0 Ry)p PRy, ¢),
(4.9)
where ¢ = (N - 1)/V is the concentration of macro-
molecules. This equation may be solved in terms
of spatial Fourier transforms of the one-particle
distribution function  *(k, ¢). If one takes the
Fourier transform of Eq. (4. 9) one obtains

3pV(k, £)/0t=[ ~k2Do—cD, (k)] pV(k, t),  (4.10)

where the first concentration correction to the dif-
fusion coefficient is given by

D,(k)= [ dRexp[ik* R]
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[DOVR_ Vg DR)| - Vg {exp[— BU(R )} - 1} .

(4. 11)
For hard spheres of diameter 0, the k-dependent

diffusion correction can be evaluated exactly. The
result is

D (k)= 1Dy0 {- cos(ko)+ [sin(ko)/ko]}
where use has been made of Stokes’ law D,
=[kT/3mw].

According to Eq. (3. 9) the nonequilibrium aver-
age of the local concentration for a system where
each particle is equivalent, is given by

E(t)=N [ dR,6(r =R)pV(R,, 1). (4.13)

It follows from Eqs. (4. 13) and (4. 10) that the dif-
fusion equation, in terms of spatial Fourier coef-
ficients satisfies the transport equation

9c, /9t = [—Dok2 - CD1(k)] Ty(f).

, (4.12)

(4. 14)

If this macroscopic transport equation is employed
to compute the light scattering spectrum according
to Egs. (1.1) and (3. 13) one obtains a Lorentzian
line shape

1(k, )=G(k, 0){I'(k)/[w®+ (T(k))*]} (4.15)

with a width I'(k)=D¢k%+cD,(k). Thus when con-
centration effects are taken into account, the width
of the spectrum is no longer proportional to B2

For small values of (k0), D,(k) may be expanded
and to order (Iecr)2 one obtaing the ordinary diffusion
equation

9T, /0t= — D 4, B%C, (4. 16)

with an effective, concentration dependent, diffu-
sion constant given by

D oy=Dy(1+cn0%/3). 4.17)

In terms of the volume fraction ¢ = (416%/24)c the
effective diffusion constant is Rye=Do(1+2¢). The
coefficient of the first concentration correction to
the diffusion coefficient K is closely related to the
first concentration correction to the friction coef-
ficient, " sedimentation coefficient, !"*® and viscos-
ity®® of dilute macromolecular solutions,

D=Dy(1+k¢). (4.18)

Qur result K = 2 should be compared with the re-
sults of more detailed microscopic theories: Bur-
gers' obtained K= 1. 143; Fixman'" obtained

K =0, 843, although this result has been criticized
by Kapustin and Khazanovich. 2 The experimental

results of Cheng and Scharchmann®"*® suggest

K =294, Related theoretical work has been pre-
sented by Saito, ¥ Yamakawa, 2* and Rotne and
Prager.
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