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Wertheim’s solution of the mean spherical model (MSM) for pure fluids composed of hard spheres
with embedded dipoles [J. Chem. Phys. §5, 4291 (1971)] is extended to multicomponent polar fluid mix-
tures. The components are restricted to have equal hard sphere radii but may have different dipole mo-
ments. The anisotropic part of the pair correlation functions for an m-component fluid characterized by hard
sphere diameter d, temperature parameter 8, dipole moments my, u,, --- ,M,, and densities p;, p,,

,p,, are shown to be expressable in terms of the corresponding functions for an effective pure
MSM polar fluid with the same hard sphere radius and the same temperature parameter but with an
effective dipole moment 4= [m™ (u} +u3 + -+« +p? )] 2 and an effective density p = 12
(ipy + plp, + + p2p.,). The excess thermodynamic properties of the mixture (relative to a
pure hard sphere Percus-Yevick fluid) are shown to be those of the effective pure fluid. The dielectric
constant of the mixture is also that of the effective pure fluid. The case of polar-nonpolar mixtures is
considered by allowing one or more of the dipole moments to vanish. It is found that the potential of
mean force and spatial distribution of the nonpolar molecules is independent of the magnitude of the
dipoles while the anisotropic correlations between the polar molecules are independent of the presence

of the nonpolar species.

I. INTRODUCTION AND SUMMARY OF RESULTS

The mean sphevical model (MSM) was introduced
by Lebowitz and Percus® as a generalization to fluid
systems with hard sphere interactions of the spher-
ical model for Ising spin systems. The MSM,
which is specified in Sec. II, is basedonreasonable
though somewhat drastic approximations. It invites
study because it has the virtue of yielding analytic
results for systems of physical interest.

Recently Wertheim? has presented an exact solu-
tion of the MSM for a pure polar fluid consisting of
hard spheres with embedded permanent dipole mo-
ments. The importance of Wertheim’s contribution
is that it provides remarkably simple analytic ex-
pressions for a variety of quantities of interest such
as the dielectric constant, Kirkwood’s “g* factor,?
and the thermodynamic functions® of the polar fluid.
Previously, models did not exist that yielded ex-
plicit results for these important quantities. Anal-
ysis of the MSM serves to sharpen our understand-
ing of real polar liquids, a most important class
of fluids.

In this paper we present an exact solution of the
MSM for a multicomponent polar mixture. The
model fluid, which is treated in the MSM approxi-
mation, consists of a mixture of hard spheres with
the molecules of each component bearing adifferent
embedded permanent electric dipole moment. For
reasons of mathematical simplicity, we have as-
sumed equal hard sphere diameters for the dif-
ferent components; however many of the conclusions
would be unchanged if this assumption were re-
moved. Attention is restricted to an infinite sys-
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tem. Our motivation for undertaking this study is
that it is the first example of an analytically solved
model of a fluid mixture where an anisotropic pair
potential is involved. Furthermore while the MSM
model is too crude to expect close agreement of its
predictions with experiment, the results we obtain
may prove useful to those interpreting measure-
ments on real solutions of polar molecules. Final-
1y we note that a most interesting limiting case of
the model occurs when the dipole moments of one
or more of the species are shrunk to zero. In this
limit our model reduces to a multicomponent solu-
tion of nonpolar species (hard spheres) in a polar
solvent and we are in a position to examine the pair
distribution and the potential of mean force between
two nonpolar molecules.

Because the mathematical analysis required for
solution of the MSM is rather involved, we sum-
marize for the reader the main results of the cal-
culation and point out where the results may be
found in the body of the paper.

(1) An exact expression is found for the two par-
ticle correlation function G;;=H;; +1 for species ¢
and j [Eq. (4.44)]. The remarkable fact is that
these correlation functions are completely deter-
mined from the pure polar fluid result of Wertheim.
Specifically, the correlation functions H;; of an
m-component mixture specified by number densi-
ties p;, P, +--, P, and dipole moments Ly, Ky, -+,
U, at a particular temperature are determined by
MSM for an effective pure polar fluid with dipole
moment

m
“Z:m-l Z “? (1. 1)
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at the same temperature and at a density

b: ﬁ-z Z /J,?Pi .

i=1

(1.2)

Thus the multicomponent MSM polar fluid problem
(with equal hard sphere radii) is reduced to an ef-
fective one-component MSM polar fluid problem.

(2) The excess thermodynamic properties rela-
tive to the reference hard sphere system are de-
termined for the internal energy [Eq. (5.3)], the
Helmholtz free energy [Eq. (5.5)], and the pres-
sure [Eq. (5.10)]. The expressions for the excess
thermodynamic properties of the multicomponent
MSM polar fluid system are identical to the expres-
sions for the excess properties in the pure polar
MSM system® evaluated at the effective density p
and the effective dipole moment L.

(3) An expression is obtained for the dielectric
constant of the polar mixture [Eq. (6.2)] which,
again, is identical to the expression for the dielec-
tric constant of the effective pure dipolar fluid.

(4) An explicit expression is obtained for the po-
tential of mean force between any two species at
large separation [Eq. (7.2)]. The form of this ex-
pression is similar to the one-component result.

(5) The interesting limiting case where the dipole
moments of one or more of the components vanish
corresponds to a crude model of a polar—nonpolar
solution. In this limit we find from the model (Sec.
VIII) that (a) the pair correlation functions of the
nonpolar species are unaffected by the dipoles on
the remaining polar components, (b) the anisotropic
part of the pair correlation function of the polar
species is unaffected by the presence of the non-
polar species, and (c) the dielectric constant and
excess thermodynamic properties of the mixture
are unchanged if some or all of the nonpolar mole-
cules are removed under conditions which keep the
densities of the polar species and the temperature
constant. These results represent important quali-
tative limitations of the MSM since we would antici-
pate effects on all these quantities from the expected
local segregation of nonpolar species as the polari-
ty of the polar solvent is increased. These limita-
tions are a consequence of the assumed linearity in
the MSM between the direct correlation function and
the dipole—dipole potential [Eq. (2.4)]. They can
be overcome by introducing nonlinearity into the
model in a way that will mix the effects of the hard
core and dipole—dipole forces. Alternatively, addi-
tion of anisotropic forces of appropriate symmetry
could couple polar and nonpolar molecules so as to
produce the segregation effect even within a linear
MSM-type theory. Analytically tractable models
whichincorporate either or both of these generaliza-
tions, however, have not yet been developed.

A. ADELMAN AND J. M. DEUTCH

1I. SPECIFICATION OF THE MODEL

The Ornstein—-Zernike equation for a multicom-
ponent fluid composed of linear molecules is

Hi; (X5, Xp) - CiylX,y, Xp)

= (1/4r) 2 f CilXy, X3) PpHy(X s, Xp)dX 5,

* (2.1)
where X, =(r,, Q,) refers to the center of mass
position r, and orientation Q,=(9,, ¢,) of mole-
cule ¢, p, is the number density of species #, and
C;; and H;; are, respectively, the direct and in-
direct correlation functions for species 7 and j. In
matrix notation, which we shall use throughout, Eq.
(2.1) is

H(‘Xl’ Xz) - C(Xla Xz)
:(1/4”)IC(X1,X3)PH(X3, Xp)dXs, (2.2)

where p is a diagonal matrix of species densities
and the elements F;;(X;, X,) of the correlation func-
tion matrix F(X,, X,) (F equals C or H here and
below) give the correlation of a molecule of species
i with configuration X, with a molecule of species

j with configuration X, .

The MSM model for the case of dipolar mixtures
with equal radii is defined by the Ornstein—Zernike
equation, Eq. (2.2), and the following closure con-
ditions:

VX, X;)= or HX,, X;)=—1 for 7,<d, (2.3)

ClXy, Xp)=-BVX,, X,)

In Eq. (2.3) the elements of the matrix v are the
potential energy terms between species ¢ and j,
B=(kzT)™, and | is a matrix with all elements
equal to unity. The restriction of the model to the
case where all species have equal hard core radii
is made by adopting a single value d for each ele-
ment in the matrices in Eqs. (2.3) and (2.4). For
the more general unequal radii case it would be
necessary to introduce different values d;; .

for v,>d. (2.4)

In the case of polar systems under consideration
here the potential energy terms are given by

Vij()(l, Xz) = /J-,'(Qi) . T(rij) ‘ I-Lj(ﬂj),

where {; is the permanent dipole moment of species
i and T is the dipole~dipole tensor:

(2.5)

T(r)=#3(U - 3rrr9), (2.6)

where U is the unit dyadic.

The multicomponent MSM model for dipolar fluids
is specified by Eqs. (2.2)-(2.5). In order to solve
the multidimensional integral equation, Eq. (2.2),
we first reduce it to a set of one-dimensional equa-
tions. This is accomplished in the next section by
closely following the procedure developed by Blum.?
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III. REDUCTION OF THE ORNSTEIN-ZERNIKE EQUATION

We expand the correlation functions F(X,, X,) in terms of a complete set of angular functions. For iso-
tropic fluids, the correlation functions must be independent of our choice of coordinate system and this in-
variance simplifies the expansion. Introducing the variable ry,= (75, €5)=rs—1r,;, we find®

F(Xy, Xp)= zzt 11,155 7’12)¢111213(Q1: Rz, Q3), 3.1)
tials
where
- 1y Iy I3 *
¢zlzzzs(91 22 9) -mlzms (=)™ (_m1 M, ma)ytlmlmﬂ Y my(S22) Yl3m3(912)' (3.2)

Equations for the expansion coefficients ¢(l;1,15; ) and h(l,1,15; v) are found by inserting Eqs. (3.1) and
(3.2) into Eq. (2.2). After integrating over Q; we obtain

A A A *
(@n)*’? ?x (=) (__ :11 H: “:)[h(xl AaAg; ¥12) = €y g A 715)] Yxlul(gl) Vpu,(R2) ¥gu 1 (Q12)
LSLE

Bykaks

l I 1 L, L, L *
=4 2 _ymi+Hy 1 2 ‘3 1 2 13 Y Q)Y J .
g 11:%3 L1§2L3 ( ) (‘7711 My My -M; M, M, 6'21'1 6""25’1 ’1"‘1( 1) LZMZ(QZ) c(lllz l3 ’ 712)

™YY M Moy
XPW(LyLaLs; 710) Y iymg(R13) V1 guy(Q2)drs.  (3.3)

The integral in Eq. (3.3) is of the Fourier convolution type and thus its Fourier transform can be simply
expressed in terms of the transforms

125055 R)Y 10 (Rp) = (1/20)*2 [ explik - 1) 111,055 712) Yy Q1) dryp

= [478'8/ (20) /21 1y @) [ 7250 (o) 101,155 7) v (3.4)
The transform of Eq. (3.3) is

Ay Ay A *
_ye 1 Mtz s A . = 9-3/2(4.\2
Z O 1(_ L us)[h(xl)\zxa,k) o B Yy () Ty () Ty (R0)= 2 2(dm)

L b 1t

L, I 1 l L, L *

x T (pem(h b 3) 2 2 s)Y Q)Y Q
Iyialy LaLg - my mgmy J\~mg My Mg ] = 11" DY 20,2
™IMeMy  M2M3

XY13m3(Qk)YL3M3(Qk) C(ZIZZZS; k)ph(laL2L3,' k). (3- 5)

Multiplying the above equation by Y,lml(ﬂl) YLauz(Qz) Yyguy (), integrating over @, ,, and Q,, and
using the formula for the integral of three spherical harmonics® gives

[h(IyLorg; k)~ c{ly Lyry; k)]( L L x3)=(zw)3/z Y (=)riees (ll Iy 13 >( Iy L Ls)("s Ig La)
~my My L -

InlgLy -y My My my My M3z /\O 0 0
mamaMg
Ay Il L
x ( >3 3)[(2)\3+1)(213+1)(2L3+1)]”2c(l1l2l3; k)ph(l,L,Ly; k). (3.6)
~ kg mg My

This equation can be further simplified by multiplying by (_’,,}1 ﬁg :‘-,33) summing over m,, M,, iz, using an
orthogonality property of the three-j symbol, ® and also using the definition of the six-j symbol as a sum of
products of four three-j symbols.® The result is

h(ll La)\.s; k) - c(l le )\3; k)

1
= (2m)¥ (—)'2*"3[(2x3+1)(213+1)(2L3+1)]“2{Ls f3 ’Z‘S}«; %3 >Z)3)c(lll2l3;k)ph(lzLaL3;k). 3.7)
Iaiglg 2 46 L2

Using the identity®
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jl jz jS jl ja ]3) - Z; (_)ll+lz+13+m1+m2+m3 jl lz l3 ll ja 13 ll lz j3
Uy Ly lg(\mymgymg Moyl my My ~Mg) \~M;my Mg J\M; ~ M, m,
and the definition

L I, I,

17, 1,5 k)z% (213+1)1/2<m e O)f(lllazs; k), (3.8)

we find, after multiplying Eq. (3.7) by (2x5+1)'/2(!1 '278) and summing over A4, that Eq. (3.7) can be re-
written as

h™ (I Ly; B) ~ ¢ ™, Ly; k) = (=)"(27)3/2 ?) ™1 1,; B)ph'™ (1, Ly; F). (3.9)
The Fourier transform of Eq. (3.9) is ’
h™ I Ly; 7y5) = €™ (U Ly; 749) = (=)™ :L‘: ™1y 153715) ph™ Uy Ly 5 vg5)drs (3.10)
where
1™, 1y; 710)=(1/27)%/2 [ exp(-ik-r,) £, I,; k) dk
=[4n/(2m)*/2] [T RR jolkr o) 1701, 1,5 R) k. (3.11)

Equation (3.10) is the desired set of one-dimensional integral equations. We must relate the solutions
of these equations, the f’(1,1,; #), to the expansion coefficients #,1,15; 7) of C(Xy, X,) and H(X,, X,). To
accomplish this we define

Ty 15055 i) =(1/20)"2 [exp(=ik - r ) £, 1,15 k)d k
=[4n/(@n)*'3] [ R%o(kr12) 10,1505 k) dE. (3.12)
Comparing Eqs. (3.8), (3.11), and (3.12) we see

n I, Iy L\ =
1 13 719)= E (.213+1)1/2(m1 _;1 3) f(lla05; 710). (3.13)
The inverse of the above equation is
- I, I, 1
F(,1,15; v15) = mZ (zz,,+1)”2(m1 _72% 3) £, 1,5 710). (3.14)

Thus if we have a relation between T(I,1,15; 7,,) and #(,1;13; 7,) we can relate the latter functions to the
solutions of Eq. (3.10) through Eq. (3.14). This relation can be obtained by inserting the second form of
Eq. (3.4) into the second form of Eq. (3.12). We find

T Lals; 710)= @/m) [ 72 6, r1 70t oLy s ¥, (3.15)
where
6 (v, y)=i' [ K5, (kx)jolky) db.

The above integral is evaluated in Appendix A. We find, using Eq. (A7) in Eq. (3.15),

Ty lols; 7i0) =1 Lals; 745) = (1/745) f,;P;S(rlz/y) (1, 1,05; 7)dr, (3. 16)
where Pj(x) is the derivative of the /th Legendre Polynomial.

The inverse of Eq. (3.16) can be similarly obtained from the inverses of Egs. (3.4) and (3.12). We find

115055 712) =T (4 Lyls; 715) — (1/2%,) fo"z ¥ Piv/vie) Ty Lpls; v)dr. (3.17)

As discussed in the Appendix, Eqs. (3.16) and (3.17) only hold for I; even. For the MSM dipolar fluid
mixture problem we only require I3=0, 2 so Eqs. (3.16) and (3.17) are sufficient.

IV. SOLUTION OF THE MODEL matrix V(X;, X,) in terms of its angular compo-
nents. Since V(X,, X,) does not depend on the co-
The MSM is defined in Sec. I. In order to solve ordinate system, it has an expansion of the form
it for our case we must expand the potential energy (3.1), i.e.,
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VXy, X5)=(4n)%% 2 v(lilals; 712) 01,150, (R 22 Q12).

RN @1
For the dipolar case all v{I,1,15; 7)=0 except
v(000; 7) = for v<d
=0 for r>d, (4. 2a)
v(112; 7)=0 for r<d )
== GYEpyjrd for v>d.  (4.2Db)

In Eq. (4.2b) { is a diagonal matrix with ele-
ments equal to the dipole moments of the species
in the mixture. For a two-component mixture

. B py ke,
l“'=( 1 1
# Lo by HE

From Egs. (2.4) and (3. 6) and the fact that
v{i,1515; ¥)=0 unless (I,1,13)=(000) or (112) one
can verify that

F(X,, X, )= (4n)* 2 [£(000; 715) ¢ g00( Rz R12)
+1(110; 715) ¢110(2; 23 212)
+1(112; 715) $112(2 2 22)]  (4.3)

and all other #(I,1,13; v) vanish. The closure con-
ditions listed below follow from Eqs. (2.3), (2.4),
(4. 2a), and (4. 2b):

h(000; »)=—1\ for v<d, (4. 4a)
c(000; »)=0 for r>d, (4. 4p)
h(110; 7)=0 for r»<d, (4. 53)
c(110; »)=0 for v>d, - (4. 5b)
h(112; »)=0 for r<d, (4. 6a)
c(112; #)= (A)V2g i\ pir® for 7>d. (4. 6b)

Using the explicit forms, Py(x)=1 and P,(x)=1 (3x®
—-1), we verify from Egs. (3.16) and (3. 17) that

(000; 7)=t(000; 7), (4.7)
f(110; 7)=1(110; 7), (4.8)
T(112; )=1(112; 1) =3 [ 31112 3)dy, (4.9)

f(112; 7)=T(112; 7) - 377 [T5?1(112; y)dy.
4.10)
The Fourier transform of Eq. (3.8) gives us the
additional relationships

+9(00; )=~ (000; 7), (4.11)

£0(11; #) = G)V3[V2 1(112; )~ T(110; 7)],
(4.12)
FED(11; 7) = (3)Y2[3 V2 £(112; 7)+1(110; 7)].
(4.13)
Note that f“V(11; ) =f"*V(11; ). Consequently we
will only consider f©*¥(11; #) below.

Equation (3.10) for the dipolar MSM problem re-

duces to the following uncoupled equations:
h((00; 7,5) — ¢¥(00; 7,,)
= f c9(00; 7 5) ph'®(00; 75,),
W (115 715) = €™ (115 74,)
=(=)" [ "™ (11; 7,5) ph™(11; 7g5)d 13,
m=0,1. (4.15)

Equations (4.4a), (4.4b), and (4.14) define a hard
sphere Percus—Yevick” problem for which solutions
are known.® Thus

£(000; 7)=1t(r; p) I,

(4.14)

(4.16)

where f(r; p) is a correlation function for the one-
component hard sphere Percus—Yevick fluid with
hard sphere diameter d and density p=Trp.

To solve the dipolar part of the problem, it
proves useful to first make a brief digression and
consider the equation

h(x.12; N)—¢(x 25 N)
=(6/7) [ e(x13; N h(xg,; N)dx; (4.17)

with closure conditions
clx; N)=0
h(x; N)=—=N for x<1.

(4.18)
(4.19)

for x>1,

Suppose N is of the form
NZNXI/ZIKI/Z’

where X\ is diagonal. For this special choice,

t(x, N) takes the simple form
f(x; N)= Nf(x; AN) A 2112 (4. 20)

where A= Tr\ and the functions f(x; AN) satisfy

B(x13; MN) = c(x,5; AN)

= (BAN/7) [ c(x15; \N) (xgp; AN)dXg  (4.21)

with closure conditions
clx; A\N)=0 for x>1, (4. 22a)
h(x; AN)=-1 for x<1. (4.22b)

Thus the f(x; AN) are correlation functions for a
hard sphere Percus—Yevick fluid with a density
p=6\N/7 and a diameter d=1.

To verify Egs. (4.20) and (4. 21), we substitute
Eq. (4.20) into Eq. (4.1%7). This gives

[R(x125 AN) = €155 AN)]A/21I01/2

= (6/m)NXYEININY2 [ e(xyg; M) Rlxge; AN)dXg.
(4. 23)

Using the identity
IX1=1TrA=21 (4. 24)

valid for diagonal A, we recover Eq. (4.17). Com-
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paring Egs. (4.18) and (4.19) with Egs. (4.20) and
(4. 22), we also verify the correctness of the clo-
sure relations (4. 22).

The preceding discussion is helpful since the
functions {11; #) can be related to the solutions
of Eq. (4.17). To see this, we first obtain closure
conditions for the ™’ (11; ). From Egs. (4.5),

4.6), (4.9), (4.12), and (4.13) we find
cO(11; 7)=¢cV(11; )= 0 for r>d, (4. 25a)
h9(11; 7)= - 2n for r<d, (4. 25b)
h(11; v)= —n, (4. 25¢)
where
n=(3)Y2 [Ty h(112; 7)dr. (4. 26)
Introducing the dimensionless quantities
=(rd®/6)p and x=7v/d (4.27)

into Eq. (4.15) and pre- and postmultiplying the
resulting expression by 7'/2 we obtain an equation
of the same form as Eq. (4.17). We also verify
that the closure relations (4. 25) are reducible to
the form in Eq. (4.18). Thus we show

nEOLL; )Nt 2=t 20! 2an' ), (4.28)
20 )0t 2=~ t(x; ~n'/2anY?). (4. 29)

Using Eqs. (4.6b), (4.25a), (4.12), and (4.13),
we can evaluate Eq. (4.10) for »>d as

-~ - d
3BV i=-2 [ 7 [c®1; )+ V(1L )] dr.
(4. 30)
Pre- and postmultiplying Eq. (4.30) by p!/2 and

using Eqs. (4.27)-(4.29) then gives

(@ng/q) 0% B 1Bp" 2= [a(@n' 2m'/?) - q(~ 1/ 2m/2)],
(4. 31)

where

a(2n'/2n'/%=1 - 24[ x2c(x; 20t/ 2nnt/ Bdx. (4. 32)

In the above equation, 1 is the unit matrix.

Since p, [, and therefore p'/? i are diagonal, we
can write
P/ 2R ipt/ 2= p2pt/2 1pt/2, (4. 33)
where

p=L2p %= i2 i%p (4.34)

is a diagonal matrix of effective densities and ji2 is
the mean square dipole moment of the species in
the mixture, i.e., for an m-component mixture

m
pe=mt 25 pd.

i=1
Combining Egs.
(41r/q)BA2 1/2 lpl/z

=3[a(@n/2nn"/?) -

(4.31) and (4. 33) gives

q(-7"2nn*/3)].  (4.35)

A. ADELMAN AND J.

M. DEUTCH

This expression can be regarded as an equation

for n*/2nn!/2, We assume a solution of the form
1/2nn1/2:;l;71/2|;71/2’ (4. 36)
where
= (nd®/8)p (4.37)

and where 7 is to be determined. If Eq. (4.36) is
correct, we can use Eq. (4.20) (since 7 is diagonal)
and, therefore,

fie; 202 nnt/2)= 257 (x; 287) HY/ 217172, (4. 38)

where %= Tr7.

Thus if Eq. (4.36) is correct, our multicompo-
nent problem reduces to solving for f(x; 2n7), a
one-component hard sphere Percus—Yevick cor-
relation function.

To check Eq. (4.36), we combine it with Eqs.
(4. 20), (4.32), and (4.35). This gives

(4n/q) BP0 %1 pY

=3(q(2hn) —q(- 7)) P/ 21pY2,  (4.39)

where

g(z)=1- 24z folxzc(x; z)dx, (4.40a)

with ¢ (x) being the Percus-Yevick hard sphere di-
rect correlation function. Here ¢ is the Percus~
Yevick hard sphere inverse compressibility.

Equation (4. 39) shows that our assumed solution
of Eq. (4.35) is correct. Moreover cancelling the
tactor p'/21p!/2 from both sides of Eq. (4.39) gives
an equation identical to one which arose in Wer-
theim’s solution® of the one-component MSM dipolar
fluid:

(4n/q) Bp ii®

where

=3 [q(25R) - q(- 7)), (4. 40b)

— (nd%/6) B 5 py 3= (nd®/6) .
=1

.

In fact comparison of our results with Wertheim’s
shows that we have reduced the multicomponent
MSM polar fluid problem characterized by densi-
ties p, dipole moments {, and hard sphere diam-
eter d to a one-component MSM problem charac-
terized by an effective density p, an effective di-
pole moment [, and the same hard sphere diame-
ter d. More precisely, we see

nl/z f(m)(ll; 'V) n1/2:f(m)(11; 1,)?’1/2 | ﬁl/Z’

where f™X11; 7) is the correlation function for the
effective pure MSM polar fluid with dipole moment
i and density 5 analogous to f™’(11; »). That is
£™(11; ) satisfies the one-component limits of
Eqs. (4.15), (4.25), and (4. 31) with the parame-
ters being those of the effective fluid.

(4.41)
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Using Eqs. (4.34) and (4.37), Eq. (4.41) can be
rewritten as

(115 )= B2 RLRF™ (115 7). (4.42)

Combining Eqs. (4.12), (4.13), and (4. 42) shows
that similarly

f(117; 7) = B2 1 B QL 7),

where again f(117; ) is the effective pure fluid cor-
relation function analogous to f(117; 7).

(4.43)

Thus we have solved the equal radii multicom-
ponent MSM dipolar problem. We have demon-
strated that the correlation functions H and C may
be determined from the pure dipolar MSM at a dif-
ferent effective density and dipole moment. Ex-
plicit expressions for the correlation functions are
easily obtained from the preceding results. For
example the correlation function H is given by

H()(l, Xz)=h(000; 1’12) )
+ 072 p w[R(110; 745) 611024 Q2 Q1)

. +h(112; 712) 011221 R R15)], (4. 44)

where %(000; 7,,) is the hard sphere Percus—Ye-
vick correlation function™® at density p and tem-
perature [k B8] and /2(110; 7,) and A(112; 7,,) are,
respectively, the functions — vI/3 h,(r,,) and

V273 h 5(r,,) determined by Wertheim? for the pure
dipolar MSM fluid at the same temperature bearing
effective dipole moment { and at density p. Ex-
plicitly we have?®*

ha@)=2n{h (v, 20D) — h v, - 7D)],

hp(#) =hpr) - 3978 for s2h ps)ds,
with

hor) =7 [2h(r, 20D) +hy(r, —-7D)],

where h (7, p) is the hard sphere Percus-Yevick
correlation function at density p. The quantity n
is determined by implicitly solving Eq. (4.40b) for
# as a function of 8 and p.

V. THERMODYNAMICS

Given the results of Sec. IV, it is not surprising
that the dielectric constant and the dipolar contri-
bution to the thermodynamic properties of the MSM
mixture are just those of the effective MSM pure
fluid characterized by P, &, d. The dipolar poten-
tial energy per unit volume for a multicomponent
mixture is expressed as

V- AE = (VY3242 20 p; p,(4m)* /2
if

X J 04;(112; 715) 112(2 22 Q)

XG Xy, Xp)dX,dX,

which after performing the angular integrations may
be rewritten as

v-aE=2r [ TriTr] ot 2v(112; 7)

% p1/2p1/2h(112; ,r)pl/Z]d,r.
(5.1)

 Equation (5.1) can be reduced to

VAE = (-41/3) Tr(p' /241 Ept/2p* % n p'/?),
where we have used Egs. (4.2b) and (4. 26).

Finally using Eqs. (4.27), (4.33), (4.36), and
(4. 37) we simplify Eq. (5.2) to the one-component
form:

V-1AE = (- 47/3) p2li2 7,

(5.2)

(5.3)

which is the dipolar potential energy for the effec-
tive fluid.

Using the Gibbs-Helmholtz relation
3BAA(B)/88 = AE(B),

we calculate the dipolar Helmholtz free energy per
unit volume from Eq. (5.3) as

VlaA = - (4n/38) 5% [ (s dp’. (5.5)

Thus the Helmholtz free energy A of the multi-
component polar fluid in the MSM may be expressed
as

(5. 4)

A=Ag+AA, (5. 6)

where A, is the Helmholtz free energy of the pure
Percus~Yevick hard sphere reference fluid and

AA is the dipolar excess free energy given by Eq.
(5.5). The quadrature in Eq. (5.5) is accomplished,
for fixed density and composition, by inversion of
Eq. (4.40Db).

The internal energy of the multicomponent MSM
polar fluid is found by use of the Gibbs-Helmholtz

relation, Eq. (5.4), as
E=Ey+AE, (5.7)

where the excess dipolar internal energy AFE is
given in Eq. (5.3) and E is the internal energy of
the reference fluid.

The pressure p of a multicomponent system is
found from the thermodynamic relation

p=QA/8V) 1,y e0eny, - (5. 8)

For the polar multicomponent MSM model with
equal radii one obtains from Egs. (5.3)-(5.5)

p=po+ap, (5.9)

with the excess dipolar pressure Ap given by the

relationship
Ap=AE/V-AA/V, (5.10)

with AA and AE determined from Eqs. (5.3) and
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(5. 5), respectively. In Eq. (5.9) p, is the pres-
sure of the reference equal-radii hard sphere mix-
ture in the MSM approximation.

In summary the thermodynamics of this polar
multicomponent mixture in MSM approximation with
equal hard sphere radii at temperature (k58)™! and
composition (py, * -+, p,) is identical to the thermo-
dynamics of an effective pure polar fluid in the
MSM approximation with dipole moment ;7 at tem-
perature (¢, 8)"! and density p:

m

p=i? Zl #2p; . (5.11)

i=
The expressions for AE, AA, and Ap given by Egs.
(5.3), (5.5), and (5.6), respectively, are identical
to the expressions obtained for these quantities in
the pure MSM polar fluid.* We shall not further
explore the thermodynamics of the MSM polar mix-
tures here except to note that the model will exhibit
phase separations and critical behavior as well as
provide quantitative predictions for the thermo-
dynamics of polar solutions. A detailed study of
the polar multicomponent MSM thermodynamics
and comparison with experiment will be presented
in the near future.

For the MSM the compressibility theorem, Eq.
(4.40a), predicts that the compressibility of the
polar system is exactly equal to the compressibility
of the hard-sphere reference system. On the other
hand, if the expression for the pressure Eq. (5.9)
is employed to compute the compressibility one
finds a nonvanishing dipolar contribution. Since
the MSM is not exact these two procedures do not
lead to equivalent results which is a frequent fail-
ing of approximate models of the liquid state.

VL. DIELECTRIC CONSTANT

The dielectric constant € for the mixture can be
computed using the arguments Wertheim? gave for
the pure fluid case. The result is

(€ —1)/(e +2)=Tr{[q(2n"2n7'/?)
xq (= 02nn'/?) - 1] [a(2n'/2nn'/?)
x gl (-n2nn?)+ 2]}, (6.1)
After some algebra Eq. (5.7) can be reduced to

€=q(2#)q (- 0n), (6.2)
which is Wertheim’s formula for the dielectric
constant of the effective pure fluid. As can be seen
from Eq. (4.40Db) %% at a given temperature de-
pends only on

m
2:

i=1

ph P by . (6.3)
Hence € depends only on this quantity. Thus we

have the following combination rule for the MSM

S. A. ADELMAN AND J. M. DEUTCH

dielectric constant of a mixture:

o, 1= <t 2 o1 ). (6.4)
i=1

The Onsager formula for the dielectric constant

€oxs Of a rigid polar mixture is given by®

(€ons— 1) [(2eons+1)/3€0ns | = (47TB/3)§ p; 12

(6.5)
so that the same combination rule as Eq. (6. 4)
holds for the Onsager theory.

The combination rule is illustrated in Fig. 1.
There we plot the composition dependence of the
Wertheim and Onsager dielectric constants for a
two-component fluid with p=p,+p;= 10?2 molecules/
cc, T=300°K, 4;=1D, and p,=3D.

VII. THE ASYMPTOTIC POTENTIAL OF MEAN FORCE

The potential of mean force w;,(X,X,) between
two species ¢ and j in a multicomponent mixture
is defined by

wi; ==~ InG,; = -8~ In(H;; +1). (7.1)

At large interparticle separations k;; is small and
accordingly w3;~ — B'IH,-J. , where the superscript
infinity indicates that the relation is only correct
for large separations. Employing Eq. (4.44) and
Wertheim’s results for the pure fluid leads to the
asymptotic expression

w (X, Xp)=(4m)% 2v(112; 745) 110(R R D12)
x[g @A) g(- )] = @n)* 2 G) 2R

32
DIELECTRIC CONSTANT
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FIG. 1. MSM (continuous line) and Onsager (dotted)
line dielectric constants for a binary polar fluid mixture
as a function of mole fraction of component 2. Compo-
nents 1 and 2have dipole moments 1 and 3 D, respectively.
The total number density is constant at 10% molecules
cc™! and the temperature is 300 °K.
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X733 6 112(Q R Q1) [q (27 7) g (- T7)] .
(7.2)
This result is only correct for an infinite system.
For a system in a finite volume w* will contain
nonnegligible boundary contributions that depend
upon sample shape in a manner similar to that en-
countered in the pure polar fluid. % Note that

Wi /wey=v5(1125 9)/0,, (1125 )= 1y 1y / B s
(7.3)
with a similar relationship holding for the angular
dependent part of the correlation functions exhibited
in Eq. (4.44).

VIII. LIMITATIONS OF THE MODEL

In this section we discuss important qualitative
limitations of the MSM as a theory of polar solu-
tions. First we consider the interesting limiting
case where the dipole moments of one or more com-
ponents of the mixture vanish. This case is of in-
terest since it is a prototype model for the be-
havior of nonpolar species in polar solvents. One
might expect some “ hydrophobic bonding,” i.e.,
local segregation of the nonpolar molecules from
the polar species. Our result Eq. (4.44) for the
pair correlation function H;; shows that this does
not occur in the MSM. At all concentrations the
nonpolar molecules are simply distributed like hard
spheres at the total density p. Furthermore the
potential of mean force w;; for the nonpolar species,
computed according to Egs. (7.1) and (4. 44) will
be independent of the strength of the dipoles on the
remaining polar components. Accordingly if we
think of a hydrophobic bonding as increased at-
traction in the potential of mean force between non-
polar species as the dipole moments of the polar
solvent components are increased, we must con-
clude that the polar MSM will not exhibit this pro-
pensity for nonpolar species to gather together.

Also if we consider the correlation functions of
the polar components in the MSM mixture we find
that the dipolar components of the correlation func-
tions of the polar species does not depend on the
presence of any nonpolar species. This occurs be-
cause p and [l always appear in the combination
pL? which is independent of the density of the non-
polar species. It follows that the dielectric con-
stant and excess thermodynamic properties of the
solution are unchanged if some or all of the non-
polar molecules are removed in a process which
leaves the densities of the polar species unchanged.
Similar results can be found in the work of Wais-
man and Lebowitz'' on the MSM for charged hard
sphere systems which includes the possibility of
adding a neutral species.

These results are unrealistic. We expect that
the polar species will influence the nonpolar
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species, and vice versa, in a more important man-
ner than exhibited by the MSM. Indeed, when
anisotropic forces are present, it is possible for
the asymptotic potential of mean force for the non-
polar species to behave exactly like the asymptotic
potential of mean force of the polar species. 2 As
long as the short-range potential energy of the non-~
polar species (here taken to be an isotropic hard
core) does not contain symmetry components
v(110; 7) or v(112; #), the MSM, where the direct
correlation function is linear in the pair potential,
will not exhibit the interplay between short-range
and dipolar forces that are expected to be of im-
portance in real polar fluids. These conclusions
about the defects of the polar mixture MSM would
stand if unequal hard core radii were permitted or
indeed any choice made for the v,;(000; ) compo-
nent of the pair potential. To improve the situa-
tion one must either introduce anisotropy in the
nonpolar part of the pair potential v;; or introduce
a nonlinear relation between the direct correlation
function C;; and vy, .

Anderson and Chandler have developed a device
to introduce nonlinear character into the MSM and
their own closely related linear fluid theory. This
procedure, which they call the EXP approxima-
tion, ** involves exponentiation of the perturbation
part of the pair distribution function given by the
linear theory. The EXP method has been shown to
substantially improve the quantitative predictions
of the linear theories as well as certain of their
qualitative features without adding any computation-
al labor. Unfortunately, EXP does not eliminate
the qualitative difficulties discussed in this section.

According to the EXP approximation, the cor-
relation functions H, given by the linear theory in
Eq. (4.44), are represented as

Hy; Xy, X5)= h(000; 7y;5) exp {82, by [R(110; 74,)
X p110(021 Q3 D12) + (1125 715) 112
X (@1 2,942)]}

For nonpolar species the EXP approximation pre-
dicts

H;7¥ (nonpolar ¢ or j)=k(000; #),

which again reveals no effect of the polar species
on the correlation functions of the nonpolar species.
Similarly, in the EXP approximation, the aniso-
tropic part of the polar species correlation func-
tions remain unaffected by the presence of nonpolar
species. The EXP approximation will however
lead to qualitatively different behavior for the polar
species correlation functions at small separation.
The EXP approximation will also lead to substan-
tially different formulas for the dielectric con-
stant and the excess thermodynamic properties of
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the polar mixture. It will not be possible to put
these new expressions into the form of an effective
pure polar fluid.

APPENDIX

We wish to perform the integration

b40x,9)=1" [ B, (kx)jolky ) db. (A1)
We begin with the integral representation
1
Gi(kx) =[(=3)!/2] [ €™ Py (u)du, (A2)

where P, (u) is the Ith Legendre polynomial, and the
explicit form

Jolky) = sinky /ky. (A3)

Inserting Eqs. (A2) and (A3) in Eq. (Al), inter-
changing integration orders and introducing a

lim e™
e~ 0

factor for convergence gives
1
&,(x,y)=1im (2p)™* f P,(u)du
e~0 -1
x f ksinky e g (A4)
0
The inner integral can be rewritten as

d r~© .
a1l @ : ik(ux+ie)
@) fo dk sinky e

d 1 1
= (2ix)™ -—( — - : > .
du\ux +y +i€  ux -y +i€
Inserting this in Eq. (A4) and then integrating by
parts gives

1 1 !
- . 4. _1 _
bu,9) E’J‘( i) [P’(u)(ux+y +3€ ux —y +i€ )_1
1
1 1
- p! _ .
j:l '(u)(ux+y+i€ ux —y +i€ >du]

Using P,(-u)= (=)' P,(u) and the identity (a5)

S. A. ADELMAN AND J.

M. DEUTCH

lim [1/(x +y +i€)]=P[1/(x +3)] —inb(x +¥)

=0
we can reduce Eq. (A5) to the following form for
the case of evenl

¢1(%, ¥) = (n/2xy) {6(x —9) - 5(x +¥)
- fol P[5 —y) -6 G +)]k. (A6)

For oddl, Eq. (A5) reduces to a more compli-
cated form involving principal valued integrals.
Since we only require /=0, 2 for the dipolar prob-
lem we will not consider this further. Since we
only require ¢,(x,y) for positive x, y in Eq. (3. 15),
we can further simplify Eq. (A6) to

®;(x,9)=@/29)[6(x —y) ~x 0 (x —y) Pily/x)] (A7)
In Eq. (A7), ©(x~») is the unit step function.
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