Influence of Gaussian fluctuations on a model kinetic
system exhibiting explosive behavior?

Elaine Chandler

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

J. M. Deutch

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
{(Received 17 June 1982; accepted 17 September 1982)

We examine the influence of fluctuations on a model kinetic equation which exhibits explosive behavior. The
particular model kinetic equation ¥ = kx? — ax has fixed points at x = 0 and x = x, = (@ /k). For constant
coefficients k and a, the trajectory x(2) diverges in a finite time if the initial value x> x ;, and x(¢) approaches
zero if x, <x; fluctuations in the coefficients may change this deterministic behavior. We consider three
different models incorporating Gaussian fluctuations. In case A, the rate coefficient k(z) has a fluctuating
part; in this case it is possible to determine exactly the entire probability distribution p(x,t|x,) as well as N(t)
the probability that the system has not exploded (for a given x,) at time ¢. In case B, the rate coefficients k(z)
and a(t) contain identical fluctuating parts; we show that this type of fluctuating behavior has no influence on
the transition between stable and unstable behavior. In case C, the rate coefficient o (¢) contains a fluctuating
part. An approximation solution leads to an effective kinetic equation which is identical to the deterministic
equation except that « is replaced by a . = a(1 — ag), where ¢ is a measure of the strength of the fluctuation
in a(t). This model kinetic equation is helpful for illustrating how fluctuations may influence kinetic systems
that contain explosive character, including the problem of passage over a barrier in the overdamped limit.

Evidently the reaction mechanisms Eq. (1.1) is highly
artificial although it mimics some features of models
of combustion. !? The major deficiency of the model is
the nonconservation of species x, The model’s advantage,
however, is that it is one of the simplest examples of a
nonlinear dynamical equation that exhibits both regions
of stable and unstable behavior.

i. INTRODUCTION

In recent years there has been growing interest in the
influence of fluctuations on chemically reacting systems
that are controlled by nonlinear mechanisms which sup-
port multiple steady states. -4 geveral investigations
have studied the role of fluctuations in the dynamics of
such systems, focusing on the stability of the steady
state and transitions among the states, -1 These stud-
ies have considered states of local or marginal stability
and described the influence of fluctuations included as a
appropriate random terms, usually assumed to be
Gaussian.

The deterministic kinetic equation for the reaction
mechanism (1.1) is
dx

—=kxt -ax,

pr (1.2)

k,a>0.
Note that this equation has two stationary points, x=0
and x; = (a/k). The former point is stable and the latter,
unstable; thus for any initial condition in the interval 0
= x,<x, all trajectories will approach x=0 as -,
while for any initial condition x> x all trajectories

Our purpose in this paper is to describe the influence
of fluctuations on a simple reaction mechanism which
exhibits explosive behavior. Specifically we wish to
examine how fluctuations may drive the system from a

region of stability into a region of explosive instability.
We introduce fluctuations in the reaction mechanism

in several ways and discover that each way influences
the transition quite differently.

The reaction mechanism that we examine is one of
the simplest that exhibits explosive behavior!!:

*% B,
(1.1)
A+2x%3x .

For simplicity we assume that the reactant A is supplied
in a manner that maintains its concentration constant;
we choose this concentration to be unity. We also ne-
glect diffusion and other transport processes that are
pertinent in the description of chemically reactive fluids.
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lead to explosive behavior x(t)—=,
The explicit solution to Eq. (1.1) is
Ayt

x(t)=[explat)xg! = %7') + x] (1.3)

For x,> x;, x(¢) diverges in a finite time t., dependent
upon initial conditions, given by

at,:_xn[l-;—i] X (1.4)

0

The time ¢, increases as the initial concentration ap-
proaches x; from above.

An interesting limiting case of Eq. (1.2)is @ =0.
For this case, all initial trajectories lead to explosive
behavior, according to

x(t) =[x/ (1 = kxgt)] , (1.5)

with 7, = (kxo)". The more usual case of a stable sta-
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tionary state x, is realized by changing the sign of both
k and a.

Our purpose is to examine how fluctuations influence
the transition from stable to explosive behavior. In
particular, we seek an answer to the question: “In the
presence of fluctuations, what is the chance that the
system in an initial state x,<x; will make a transition
to explosive behavior?” In the next section we demon-
strate that the answer to this question depends on how
fluctuations are introduced into the mechanism. We
consider three different models and solve two of these
exactly and the third approximately.

Il. INFLUENCE OF FLUCTUATIONS ON EXPLOSIVE
BEHAVIOR

We modify the deterministic kinetic equation (1. 2) to
permit time-dependent rate coefficients that include
the influence of fluctuations

dx(t)

— =k{t)¥* () -a(t)x() .

(2.1)

Here the influence of fluctuations is introduced through a
a multiplicative time dependence of the rate coefficients

in contrast to an additive external random flux.

The key to our attack consists of recognizing that Eq.
(2.1) is a Bernoulli equation and making the standard sub-
stitution!? #(f) =x(t)™! transforms Eq. (2.1) into a linear
equation,

gtﬁ = a () - k() . (2.2)
If ¢(t) and/or k(t) are considered Gaussian random
variables then Eq. (2.1) or (2. 2) can be transformed
into a Fokker —Planck equation. This approach has
been pursued with some success for the Verhults type
population growth differential equation considered here
by Keizer® and by Fox.? We proceed to consider three
different models for the fluctuations.

I1l. MODEL A—QUADRATIC FLUCTUATIONS ONLY

For this model we assume that the rate coefficient of
the first order term does not contain fluctuations «(t)
=a and that the rate coefficient of the second order
term includes a fluctuating part f(¢) which is Gaussian;
thus k() =F + f(¢) with

F&Y*=0 and f&)6) " = qb(t ~1,) . (3.1)

A note of caution is required in the use of the white
noise condition (3.1) in Eq. (2.1). The delta function
makes the value of x jump in such a singular way that the
appropriate value for x on the right-hand side of Eq.

(2. 1) at the moment of action of f(£) is unclear.!® This
question does not arise if the Gaussian fluctuation has
a finite correlation time 7, and we follow, in principle,
the approach of Stratonovich, 4 ot taking the limit 7,
-0 at the end of the calculation.

For this model Eq. (2.2) becomes
du
ﬂ:au(t)—k—f(t). (3.2)

If we make the substitution

4187

= —E—;—Z y (3- 3)
Eq. (3.3) becomes
y=ay —f(t) (3.4)

which, except for sign changes, is the form of the
Langevin equation. A lemma due to Clnandrasgkhar15
immediately leads to an exact expression for p (v, t1y,),
the probability that the variable is in the neighborhood
of y at time £, given that it was in the neighborhood of
Vo at t= 0,

1;(3), t|y0)=[2—£—q- (et — 1)]'1/2 exp )- 22’)‘(3’::“)21)5 .
a

(3.5)
In terms of the variable of interest x the probability
distribution is

p(x,t'xo)-_—[g—zti (ezdt _]])]

G5

-1/2 1

;2'
e“'>+§- (e** - 1)]z

X —-- . (3.6
exp 7 (3. 6)
a
Note that as ¢ -0,
Dlx,t]xg) ., 8 = %p) 3.7

and that in the limit of vanishing fluctuations ¢ -0,

1 1 k 1
p(x,t|x0) q-:O 5[(;-;—0- e"")+ a— (eai —1)] ;2' .

The expression (3. 6) is one of the main results of our
inquiry. It provides an exact expression for the prob-
ability distribution function, not just a few moments of
the distribution, for the model of Gaussian quadratic
fluctuations. Various moments may be found according
to the prescription

(3.8)

)?(t_)"‘o:f 2"p(x, t| x0) dx . (3.9)
0

The limit ¢ -~ 0 leads to an expression for x~(t_)x° from
Eq. (3.8) which, as expected, is identical to the deter-
ministic expression (1. 3).

The numerator of the argument of the exponential in
the probability distribution (3. 6) vanishes when

LA et
X \x; X x4
where x;=(a/k). If x,< x;, then x~0 as t-=, How-
ever, if x;>x then the right-hand side of Eq. {3.10)
vanishes and x diverges in the finite time ¢, given by Eq.
(1.4). Thus for x,<x;, the peak of the probability dis-
tribution moves gradually toward the origin. But for
Xy %, the probability distribution peak only remains on
the interval 0<x<w during the time interval 0<¢ <f,.
We may conclude that there is an abrupt change in be-
havior of the probability distribution depending upon the
initial condition just as in the deterministic case.

(3.10)

The critical quantity of interest is the probability at
time ¢ that the system is within the range 0= x=<w, This
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probability N(¢) is given by
N(t):j dxp(x,t|x0)=f duwlu, t|uy) , (3.11)
0 0

where p(x, t1x,) is given by Eq. (3. 6); and w(u, ¢}u,),
with u=x"!, is found from Eq. (3.6) to be

2 -1/2 - t 2
w(u,t|uo)=[—:!—q (ezu:_l)] expl - [;t uy(t)]
(Tai)(eza‘_l)
where
SESVENL Y
Xy xo X4

Examination of the explicit expressions for p(x, ¢ix,),
0<x<w and wlu, fluy), 0<u<ew, indicate the behavior to
be expected from the quantity N(¢). In terms of the
variable u, the probability distribution w and the flux
(8w/ &u) is nonzero at u=0, but these quantities vanish
at =, This means that the dynamics carries the
system into the region #<0 but never into the neighbor -
hood of u=<. It follows that in terms of the variable
x, the flux vanishes at x =0 but is finite at x ==, Thus
the dynamics carries the system beyond x =<, at which
point we may refer to the system as having exploded.
Similar conclusions about the behavior of the probabil-
ities w and p and their associated fluxes at the extreme
points zero and infinity can be reached by examining
the Fokker ~Planck equation which the probability dis-
tributions must satisfy. 2:1%

It should be noted that the behavior at x=0 can be
anticipated from the model stochastic dynamical equa-
tion (3.1). Regardless of the sign or magnitude of the
fluctuations, the system cannot reach the point x =0 be-
cause the random rate coefficients are multiplied by
terms involving x which vanish as x—0. In contrast,
stochastic differential equations of the Langevin form
that involves the stochastic term as a linear forcing func-
tion, e.g., Eq. (3.2), can arrive at the origin.

This reasoning leads one to conclude that N(¢) gives
the probability that the system has not exploded by time
¢, i.e., the fraction of the probability distribution w(p]
that initially was a delta function centered at ug[x,]
which has not yet vanished past the point 0 «].

An explicit expression for N(f) may be obtained by
substitution of Eq. (3. 6) into Eq. (3.11). The result is

1 - -v2/
NO) == f_m dye?/? 3. 12)
where
1 11N\ . [ y 1/2
h(t)=a+(-x—o- —x—1>e 7['; (e? t—l)] (3.13)

All limits of interest may be extracted from this expres-

sion. For example, as { -,
h(t)--h‘,\,=[(l -i)/V2q7a] (3.14)
Xg X
and N(¢) - N. with
1 “ -2 /2
= d . .1
N, 7-; . ly e (3 5)

Influence of Gaussian fluctuations

(1)

FIG. 1. Probability N(7) that system has not exploded vs re-
duced time 7=at for initial condition xy=x,/(0.9). Reduced
fluctuation strength 2¢ x}/0:=0.01. See Egs. (3.12) and (3.13).

If xy<x, then k>0 and N, lies between the limits 1
=N.=1/2. As q-0, the influence of fluctuations is
negligible and N, —~1; the system does not explode, in
agreement with the prediction of the deterministic equa-
tion. As ¢ -, the fluctuations dominate and N, -1/2
indicating that, at most, one-half the systems will ex-
plode from the stable region.

If x4> x;, then %,<0 and N, lies between the limits
1/2<N,<0. As g -0 theresults of deterministic equations
with explosive behavior are found; N, —~0. As g—,
N.—1/2 indicating that large fluctuations have, at most,
a probability of 1/2 of preventing the system from ex-
ploding.

The specific value N, =1/2 that is realized for large
fluctuations is best understood from Eq. (3.5). For ¢
- the p.d.f. w(x, tlu,) is spread progressively more
uniformly over the entire « axis. The fraction of the
probability density which lies on the negative « axis is
counted by us as “exploded. ” This fraction approaches
(1/2) as g—~=. Evidently it is sensitive to our treatment
of the boundary condition at u=0 (x=«),

Figure 1 presents a plot of N(f) vs time to illustrate
the difference in the behavior of the deterministic ex-
plosive behavior [¢=0, Eq. (1.2)] and the results of
this model of fluctuations in rate coefficients. We have
selected a case where the initial point x, lies in the un-
stable region, i.e., x> x1. If fluctuations were not
present (g —0), we would find N=1 for {<{,, and then
an abrupt jump to N=0 for {>{.. The curve exhibits
the influence of fluctuations and the nonvanishing limit
N.. For this model it is always true that N(t.)=1/2.

IV. MODEL B—EQUAL FLUCTUATIONS

The second model we consider has equal fluctuations

for both the first and second order terms. Thus we as-
sume
at)=a[l +£(¢)] and EE)=F1+f(F)] (4.1)

with f(¢) a Gaussian random variable as defined by Eq.
(3.1). The rate equation (2. 1) becomes
dx \ 2
5= [ +HfOlkx*@) - ax@)] . (4.2)

In this model, the effect of the fluctuation is simply
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to rescale the time. Thus if we let

r(t):t+f'f(s)ds .3)
0
and define x[ 7]=x(¢), one finds
L _patlr] -asf7) .9

which is precisely the deterministic equation except that

T varies over the entire range —© <7<+, Thus one
finds
1 1 1 1
Bl (U Plalail T 4.5
[x[‘r] xl] [xo xt] explaT) (4.5)

or, in terms of the real time ¢,

[%-;] [,:0 ;]exv{ [t+f f(S)ds]}. (4.6)

Regardless of the behavior of the fluctuations, the re-
gion where x decays 0<x(f)<x;, and the region where x
explodes x(£)> x; will not be connected. This follows
immediately by noting that the exponential factor is
nonnegative and does not change sign regardless of
events in its argument. Thus if x, is greater (less) than
%y, it follows that x(#) will be greater (less) than x; for
all time,

An exact expression can be found for the probability
density, provided f(¢) is Gaussian. The substitution
(3. 3) leads to

B —alt 6y @
and
¢
y(t):yoexp{a[t+-£ f(s)ds]} . (4.8)

If ¥o> 0 then y{¢#) will be nonnegative so we can make the
substitution z(f)=Iny () with

%[z(t)—at]:af(t) . 4. 9)

Application of Chandrasekhar’s lemma'® leads to the re-

sult

(4.10)

[z—zQ-at]z} ’

plz, t|z) =[4nqa’]1/? eXP{— o

or in terms of the variable of interest x,

MEE) B o] Sl

plx,t|xy) =[4ngat]?/? ¢

4qa’t

X1

X -2 (4.11)

0<x<xy .

On the other hand, if yy<0, we set z(¢)=In[-y(¢)] and
obtain by a precisely similar argument

(=G -]

dqa’t

plx,t|xy)=[4rqa’t] 2 exp ~

X4

X e om) (4.12)

Influence of Gaussian fluctuations
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Thus we have been able to obtain an exact expression
for the probability distribution for model B when there
are Gaussian fluctuations. For model B, in contrast
to model A, we find that fluctuations do not influence
the transition. If the system has an initial value in the
interval 0<x;<xy, it will remain in that interval and
never exhibit explosive behavior. The parameter x; re-
mains a discrete boundary between decaying and explos-
ive behavior. However, the fluctuations do influence the
time to probable explosion when the system is initially
in the explosive region x,> x;.

V. MODEL C-LINEAR FLUCTUATIONS

The third model we consider contains fluctuations in
the linear term a(t)=a[l +f(t)] in Eq. (2.1), with f({¢)
a Gaussian random variable, and a constant second or-
der term. The resulting rate equation is

%:kxz—a[l ). (5.1)
We define the propagator Q(¢) as a solution to the sto-
chastic equation

O __af1+/0100), @0)=@y=1 (5.2)
a special case of model B, Eqs. {4.7) and (4. 8). This
equation has the solution
%
Q(t):exp[—at—af f(s)ds] . (5.3)
0

In terms of this propagator the solution for x(¢) becomes

() = Q(t)[xio -+f ' Q(r)dr]'1

=[‘%‘t—’ —k jo' oi(r) d‘r]-l

In contrast to the treatment of models A and B, we are
unable to find an exact solution for the probability dis-
tribution of x(¢). The reason for this difficulty is that
the random propagator in the expression for x(¢) enters
in a nonlinear manner and involves values of @ at dif~
ferent times. Accordingly we must resort to an approx-
imation.

(5.4)

The approximation we introduce!® consists of replacing
Q(7) in the denominator of x(¢) [Eq. (5.4)], by its aver-
age value @(7) ° Thus

x(t)mQ(t)[xlo —k fo Q(—T)Qod‘r:l-t . .5)

For a Gaussian random variable the average value of
@ may be easily determined:

o3 [ [ aran iy .

In the simple case of a delta-function correlation in
the random fluxes [Eq. (3.1)] one finds

Q"= expl - (a -aq)t] . 5.7

The possibility of more complex correlation functions
may also be explored, e.g., an exponential form in
place of the delta function in Eq. (3.1).

AW = (5. 6)
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FI1G. 2. Reduced explosion time {(at.)
vs initial position for various values
of the strength of large fluctuations
{ag) <1 according to Eq. (5.9).

1Q
o
8
T
8°&r
] 5 L
4 —
3L,
2 -
[ —

i { 1 T

o} 05 1.0 2.0 30

)(0/Xl

With this approximation and the result [Eq. (5. 7)]one
obtains the following result for x(t) %

xgexp| - (@ —a’q)t]

X 1 ]
-2 oy -eml= o~}
(5. 8)

For lavge amplitude fluctuations (ga> 1), x() >=
for long times for all values of the initial value x; ex-~
cluding the case x;=0. The finite explosion time ¢,
is found from Eq. (5.8) to be

1 Xy
:a———-—-(aq ) ln[l +;; (g —1)] .

x(@{Fo=
{1

tw (5.9)
For these large fluctuations the system is always driv-
en to explode regardless of whether the initial condi-
tion was in the stable (x;< x;) or unstable (x,> x) re-
gion. This behavior is shown in Fig. 2.

4.0

For small ampl_i_t_gde fluctuations {ga}<1, the long
time behavior of x(Z)° depends upon the magnitude of
the initial condition, For (xo/x)<(l —~ag)<1, the sys-
tem begins in the stable region and the strength of the
fluctuations is insufficient to cause an explosion. For
{xo/%1)> (1 ~ag) the system will explode in a finite time
given by

1

= m in (5. 10)

. Pazlﬂ—aqﬂ (@g<1).
Xq

Thus the strength of the fluctuations, measured by ag,

has effectively lowered the unstable fixed point of the

system from x, to x,(1 - ag). Furthermore, comparisonof

this expression with Eq. (1.4) demonstrates that an

additional effect of the fluctuations, if the system is ini-

tially in the unstable regime (xy>x;), is to decrease

the time to divergence as illustrated in Fig. 3.

ateo

FIG. 3. Reduced explosion time (at.) va
initial position for various value of the
strength of small fluctuations (ag) <1
according to Eq. (5.10).

!

30

20
Xo/X,

4.0 5.0
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T<cat

FIG. 4. Average concentration x(5) ° vs reduced time «f for
initial conditions xy=0.9 and 0.5 for various values of the re-
duced strength of fluctuations ag <1. See Eq. (5.8).

Finally we note that a consequence of this new fixed
point is that if the system begins exactly at the special
point xy=x(1 — ag) then x(¢)"0= x, for all succeeding
time.

Figure 4 illustrates the behavior in model C for two
initial conditions x,=0. 5x; and x,=0. 9x; for various
values of ag<1. For example, note the behavior for
%y="0.5%;: For values of ®g<0.5, x(¢) decays, while
for values of ag>0.5, the system explodes; it re-
mains constant if ag=3.

In summary, for this model system with the approxi-
mation introduced in Eq. (5.5) we find that the behavior
of the first moment with fluctuations Eq. (5. 8) is iden-
tical to the behavior of the deterministic system (1. 3)

with the identification of a new linear rate a 44,
agr=all -agq). (5.11)

The behavior of the first moment is described by an
effective nonlinear kinetic equation

‘E_—_kxz — QX

7 (5.12)

which exhibits a shifted fixed point if (ag)<1 given by

X1y = (@ ote/R)=(a/R) (1 ~aq) . (5.13)

VI. BERNOULLI EQUATIONS OF HIGHER DEGREE

We point out that the method we have introduced may
be applied to the general Bernoulli equation

t=—ax+kx", n>1. (6.1)
The substitution

u=x"m (6.2)
leads to the equation

- =—au-k (6. 3)

which should be compared to Eq. (2.2). For models A

Influence of Gaussian fluctuations
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and B one immediately obtains results identical to Eqgs.
(3.5) and (5. 10) with the rescaling

t-n-1}% and g-(-1l)g. (6.4)

For model C an additional modification of the approxi-
mation introducedx in Sec. V is required if one wishes
to determine X(f) ° for the case n> 2.

Vii. CONCLUDING REMARKS

In this paper we have explored how fluctuations can
modify the deterministic dynamics of a system that can
exhibit explosive behavior. The simple model we have
examined illustrates several distinct effects of fluctua-
tions. Indeed, according to the mechanisms of the fluc-
tuations one finds either no effect on the stability (mod-
el B), a broadening of the deterministic result (model
A), or a shift in the transition point between stable and
unstable behavior (model C). In two cases, models A
and B, we have found it possible to determine exact ex-
pressions for the probability distribution of the system
trajectory.

The main limitation of this work is the unphysical
nature of the reaction mechanism and the resulting ki-
netic equation. Future work will focus on more realis-
tic reaction mechanisms that may exhibit explosive be-
havior locally, e.g., the “Brusselator, 17 and on the
coupling of chemical reactions with heat evolution, '8

Finally, it should be noted that the central dynamical
equation under study may also be employed as a model
for barrier crossing. From this viewpoint the equation
of motion for a particle of mass m, moving in an effec-
tive one-dimensional potential v[x(¢)] subject to linear
dissipation is

m}é:-'yic—— (7.1)

ax

The overdamped limit (m — 0) with choice of potential

Vix)= y'l[%xz - g x3] (7.2)
corresponds precisely to Eq. (1.2) with the restriction
that the particle remains on the positive x axis, Thus
our considerations apply with appropriate modification
to the influence of fluctuations on barrier crossing; in
this case the potential barrier has a maximum at x=a/k
and crosses the x axis at x= (3 a/k) proceeding toward
(=). The situation we have examined differs from the
usual case of fluctuations arising from a linear inhomo-
geneous random force added to the right-hand side of
Eq. (1.2). Here we have been concerned with fluctua-
tions in the parameters that characterize the effective
potential.

The method of recursive functions introduced by Fei-
genbaum“’ to describe nonlinear dynamic system per-
haps may be usefully applied to the problem of explosive
behavior. However we note that the description of the
dynamical flows?® in these nonlinear, usually dissipative
systems, normally involve transitions between locally
stable steady states.
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