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A model considering both short-range and long-range interactions for liquid crystals mixtures of
rod-like and plate-like molecules is presented in this paper. The model is treated in the framework
of a mean field, van der Waals-type theory. The relationship of the model to a Landau-type
treatment is discussed in an Appendix. It can be shown for this model that a multiphase critical
point exists between the isotropic, rod nematic, plate nematic, and biaxial nematic phases. This
point can be located from a set of analytic equations. The fluctuations and the magnetically
induced birefringence around this point are calculated. The model predicts the phase diagrams of
binary liquid crystal mixtures both with and without reentry transition. The reentrant phase
transitions from the biaxial to the uniaxial nematic phase and from the uniaxial nematic to the
isotropic phase have not received prior theoretical attention but have been demonstrated in recent

experiments.

I. INTRODUCTION

Liquid crystals have richer phase diagrams than simple
liquid systems and exhibit novel phase transitions.! How-
ever, the underlying mechanism of these transitions is not
difficult to understand qualitatively. For example, simple
theoretical models where only the hard core repulsion of
rod-like molecules is considered, exhibit the isotropic to ne-
matic phase transitions.”™®

There are several methods available to study phase
transitions of this type. One method relies upon the intro-
duction of an impurity molecule. For each type of impurity
molecule introduced, the effect of the interaction with the
molecules of the other species is analogous to the effect of an
external field. The magnitude of the interaction between dif-
ferent molecules is normally of the same order as the interac-
tion between molecules of the same species. Therefore, the
addition of another kind of molecule will alter the phase
transition of a pure system. Of course the distribution of two
different kinds of molecules are dependent upon each other,
so the interaction is nonlinear.

An example of this method is Alben’s important study
of binary mixtures® by use of a method similar to that em-
ployed by Flory.'® Alben includes only the hard core repul-
sion of rod-like and plate-like molecules, and obtains a num-
ber of interesting results. For example, the introduction of
plate-like molecules increases the isotropic—nematic transi-
tion temperature of rod-like molecules, because the addition
of plate-like molecules makes it more difficult for the rods to
distribute randomly. Another result is that, at a lower tem-
perature, the uniaxial nematic phase can undergo a second
order transition to a more highly ordered biaxial nematic
phase. In this biaxial nematic phase there is a second favor-
able axis for the rod and plate molecules in addition to the
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most favorable axis. This problem has also been studied by
Gelbart!! and by Rabin, McMaullen, and Gelbart.'?

It is easy to understand that at low concentrations of
plate-like molecules, the system will pass from the isotropic
phase to the rod-nematic phase N( + ) as the temperature
decreases. This is because the interaction energy between the
rods is the dominant contribution to the total energy. Simi-
larly, at a high concentration of plate-like molecules, there
will be a transition from the isotropic to the plate-nematic
phase N ( — ), in which most plates stack in one direction. In
this phase most rod-like molecules will line up in the plane
where most plates are stacked, while in the rod-nematic
phase most rods line up in one direction instead of one plane.

Between thetwo regions N ( + Jand N ( — ), Alben’s cal-
culation shows that the two second order lines between the
uniaxial nematic and biaxial nematic phases form a sharp
cusp separating the rod-nematic phase ¥ ( + ) and plate-ne-
matic phase N ( — ), and that the cusp touches the first order
isotropic-uniaxial nematic transition line. The intersection
of two second order lines and the first order transition line
forms a special critical point. However, because the phase
diagram which Alben presented in his paper is the result of a
numerical calculation, it is difficult to examine the detailed
behavior in the region between rod-nematic and plate-nema-
tic phase.

In order to study this interesting phase behavior and its
associated special critical point, we have formulated a model
which contains both long-range and short-range interac-
tions. Thus, the present model includes more phenomena
than Alben’s model. In particular when the long-range and
short-range interactions tend to align the molecules in oppo-
site ways, we expect a reentry phase transition from the biax-
ial nematic phase to the uniaxial nematic phase and from the
uniaxial nematic phase to the isotropic phase. It is interest-
ing to point out that the recent experimental result!> shows
the existence of this kind of reentry transitions.
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This paper consists of seven sections. In Secs. Il and 11
we present the theoretical model and the calculated phase
diagram. In Sec. IV we derive the conditions for determining
the critical point, and the correlation function for the order
parameter is calculated in Sec. V. In Sec. VI the reentry
phase transition is described and qualitatively compared
with the experimental results. In Sec. VII we summarize the
results of this work. Finally, in the Appendix we briefly dis-
cuss the relationship of our model to Landau theory and
calculate the magnetically induced birefringence near the
critical point.

. THEORETICAL MODEL

The mode] we employ to describe the 1wo component
liquid crystal mixture is adapted from the work of Zwanzig,*
further developed by Cotter® and by Wulf and De Rocco® for
pure rods. In this model, the system is divided into 7 cells of
volume 4 and the molecules in each cell can only adopt three
discrete orientations in the x, y, and z direction. The mole-
cules interact by a short-range repulsion which acts only
within each cell and a long-range interaction which acts
between cells. The long-range attraction is taken to be very
weak and the size of the cell 4 /3 is large compared to the
range of intermolecular repulsion. This approximation per-
mits the long-range attraction to be assumed constant over
any particular cell so that the attractive interaction energy
may be expressed in terms of the occupancy of each pair of
cells.

The partition function for this van der Waals type mod-
el is evaluated by a maximum term method as described by
van Kampen'* and later employed by Mountain and Zwan-
zig,'® Deutch and Zwanzig,'® and Cohen and Deutch.'” This
mean field type analysis reveals much of the important phys-
ics of this complex system while permitting simple calcula-

tions.
We assume the system is composed of ¥° rod shaped

molecules of volume v = d ?/ and N* plate shaped molecules
of volume v = w’A. The long-range interaction between each
pair of molecules in cell i and cell j is denoted w""3 wherea( )
refers to the orientation and species in cell 4( j). We define the
number of rod molecules N ® in cell 4, in orientation x, y, and
zas NV, N¥, and N ¥, respectively, and the number of plate
molecules N ?in cell /, in orientation x, y, and zas N¥), N,
N'®, respectively. Thus we have the conditions:
NE=NW ¢ N9+ N® and NI =N® 4 NO 4 N©

(2.1)
with

N, =NF4 N[ and YN, =N. {2.2)

The configurational partition function for this system
may be expressed as

NA NN
- uv%n CRICE] H NN PIN Gy NN O O
a= 1.6
-~ +H
II 4R exp [ s L)] (2.3)
=1
where
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L1
N N

i=1
The integral in Eq. (2.3) is evaluated for a fixed distribu-
tion of the molecules among the various cells.
We approximate the long-range contribution to the
Boltzmann factor as

=P [ B %F] [ZkT 2 [VPej

aﬁ

CiX)= , x=RP. 2.4)

N(Bl]]

(2.5)

The short-ranged contribution is approximated by a product
of configurational integrals for &; molecules in each cell.

il H
dR [- —S]
[1 4R, exp T

=1

n N; H.
- R _ Ay,
,-IJJ 24 ’exP[ kT

where H, denotes the configurational Hamiltonian of the N,
particles interacting within cell i. Accordingly, each integral
can be associated with the configurational free energy for the
N, molecules

(2.6)

Nl
AN T PAIET Il 2R, exp| — H,/kT').
=1
Following Onsager” and Zwanzig* we evaluate this free en-

ergy in the limit of low density, which yields

2.7)

exp[ — @,(N,)/kT | = exp [Z N'"B "‘Wi”’], (2.8)
a, B

where B “# is related to the two particle cluster integral

Bk _ %%fdrl dr, [exp(— ’,‘(L;) - 1]. (2.9)

We shall assume that the short-range intermolecular repul-
sion is exclusively hard-core exclusion.

Truncation of the virial expansion is an approaimation
first introduced by Onsager for the limiting case of rods with
an infinite aspect ratio (/ /d ). Several authors'*-2° have stud-
ied the isotropic to nematic phase transition for one compo-
nent rod systems at smaller aspect ratios (/ /d ). These results
suggest that for (/ /d )>> 10 qualitatively correct transitions are
predicted by truncation of the expansion at the second virial
coefficient.

Evaluation of 8 ° requires calculation of the overlap
volume between the molecules in given orientation. For ex-

ample, B’ = —4id*/4 and B“ = — jjw4+d){I+h)
/24 ). The resulting matrix B is symmetric and of the form
(a & b e f f
b a b f e f
B b b a S f e (2.10)
e f f c d d
f e f d ¢ d
f f e d d c

Collecting the above results leads to the following
expression for the configurational free energy after use of
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Sterling’s approximation for the factorials:

— £ —N-Nm3+Nhna- S NN

+ S NOVENP, (2.11)
wp
where
Ve =B, + off/2KT. (2.12)

We shall restrict our attention to a spatially homogeneous
equilibrium state and deviations from the state. In this case
the V! and the mole fractions X, = (N !?/A4p) are constant
in each cell. Thus,

A
- ——=1—-In3—-Inp— YX,InX,
NkT p ;
+p > X VX, (2.13)
a, B

wherep = N/V and

Ve = B*A + wiP/2kT, (2.14)
with

0ff = lim ¥ 0ffA=nw J- o (r)dr. (2.15)

n—oo j=l 0

The free energy Eq. (2.13) can formally be expressed in
terms of a local mean field ¢, 5:

A
~ 2 _=1-l3-lnp- S X, nX, + 3 X, ¥,
NKT P - v

where

¢a =p zXﬁ VgB'
B

For simplicity we assume that the symmetry of the ma-
trix wg? is the same as B * so that V, retains the same form
exhibited in Eq. (2.10}.

The fraction of plate molecules denoted fis

[=X,+ X5+ X, (2.16)
and the fraction of rod-like molecules is therefore
l-f=X,+X,+ X, (2.17)

The equilibrium conditions require us to minimize the
free energy (2.13) with respect to X, X, and X, X; for fixed /.
This leads to the following four equations:

r Xl _ _ _ _
—In m] ppi(l — f—2X, — X,)

+ppof— 2K~ X5) =0, (2.18)
T R CHU X, —

s _XZ] ppil —f— X, — 2X,)

+ppo f— X4 — 2X5) =0, (2.19)
—In 73.4—'“—] —ppslf— 2X, — X,)

+ppi(l —f—2X, — X,) =0, (2.20)
—In RJT—_] —pps(f— Xy — 2X;)

+ppll —f— X, - 2X,) =0, (2.21)

where
pr= 2=} — o)+ 248"~ B™), 222)
pr= (o ~ ol +24 (B~ 8", 2.23)
py= k—‘T(wo — W) +24(B* - B%) (2.24)

It is interesting to note that p, corresponds to the differ-
ence in interaction energy of parallel and perpendicular
rods; p; corresponds to the difference between parallel and
perpendicular plates; and p, corresponds to the difference
between the configuration where the rod and plate are paral-
lel and the configuration where the rod and plate are perpen-
dicular.

The pressure of the system may be calculated according
to the formula

Lz__l_(a_"‘) —p—p? Y X, VEX,, (2.25
kT KT \o¥ ) =P 7P 2%V 5% (2.25)

which may, in turn, be solved to determine p = p(7, p).
Solving Eqgs. (2.18}~2.21) in combination with Eq.
(2.25) permits us to determine the minimum Gibbs free ener-
gy per particle(G /N ) = (4 /N ) + ( p/p)for fixed Tand pand
consequently the phase diagram for the system.

lil. PHASE DIAGRAM

In order to calculate the phase diagram we must adopt a
form of the long-range attraction wg”. If we assume the long-
range interaction can be expressed in terms of short-range
interaction parameters, the problem is greatly simplified.
For example we may write »3? as

0P =b+ cB®A with wg>0. (3.1)

It is easy to see that the choice of ¢ > 0 corresponds to
the case where the long-range attraction tends to align the
molecules in the same way as hard core interaction, i.e., to
align the molecules parallel to each other. Therefore ¢>0
favors the nematic phase.

In the case ¢ <0, the long-range force tends to favor
perpendicular configurations of molecular pairs. In this case
the long-range force is favorable to the isotropic phase and
the short-range, hard-core interaction tends to favor the ne-
matic phase. Thus the choice of ¢ < 0 will result in the inter-
esting circumstance of competition between long-range and
short-range interactions.

If b = ¢ = 0, the system contains only hard-core inter-
action, which corresponds to the situation considered by Al-
ben.®

In the case considered here, Eq. (3.1), the p, defined in
Eqgs. (2.22)-(2.24) take the form

Pa —13(m +1)pa, a=123, (3.2)
where
, 24
P, = F(13” —B"), (3.3)
, 24
D, = -IT(B I5_BY, (3.4)
pi= 2me-pe (3.5)
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FIG. 1. Rod distribution as function of temperature for f= 0.4, b=0.2,
c= 10, p/p* = 50.

With the selection, the solutions { X, } of Egs. (2.18)—2.21)
depend on the dimensionless parameter R =1I°p[c/
2kT) + 1]andf, p,T. When there are multiple solutions only
the solution which gives a global minimum in the Gibbs free
energy is retained.

As an example we assume rod dimensions /=1,
d =0.1 and plate dimensions w = 0.5 and & = 0.04 which
yields equal molecular volumes for the rods and plates. We
write b,c in units of energy € and define the reduced tempera-
ture I'* = 0.1e/kandreduced pressurep* = 0.1¢//°, where/
is the length of the rod.

The result of the calculations for the phase diagram are
displayed in Figs. | to 4 which give the rod and plate distri-
bution as functions of tempertaure T for fixed composition
and pressure with ¢ > 0. Figures 1 and 2 represent the cases
where the plate contribution to the free energy is more im-
portant than the corresponding contribution of rod, while
Figs. 3 and 4 represent the cases where the rod contribution
to the free energy is more important.

In all these figures, both rods and plates are in the iso-
tropic phase at high temperature. This is because at high
temperature the entropy is the dominant contribution to the
free energy.

At lower temperatures, the contribution of the interac-
tion energy to the free energy is comparable with that from
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FIG. 3. Rod distribution as function of temperature for f= 0.37, b = 0.2,
¢ =10, p/p* = 50.

the entropy. So the system will undergo transitions from the
isotropic phase to the nematic phase. Since the system con-
sists of two kinds of molecules, the free energy depends also
on the mixture ratio. When the concentration of plate mole-
cules is higher than a certain value, the system undergoes a
first order phase change to the plate nematic phase N ( — )
(see Figs. 1 and 2). In this phase most of the plates are orient-
ed in one direction X >X, = X [see the N{ — ) region in
Fig. 2], and most rods align in the x, y plane to accommodate
the plates in the zdirection X; = X, > X, [see N ( — ) regionin
Fig. 1].

When the concentration of plate molecules is lower
than a certain value, the isotropic phase makes a first order
transition to the rod nematic phase N ( + ) (see Figs. 3 and 4).
In this nematic phase N ( + ), most rods align in one direc-
tion, while in the plate nematic phase, N{ — ), most rods go to
one plane rather than a single axis.

Inthe uniaxial nematic phases [V ( + Jand ¥ ( — )], most
rods {or plates) are aligned in one direction; the rest of the
rods (or plates) are aligned equally in the other two direc-
tions. At even lower temperatures, the interaction between
the rods (or plates) in two equivalent directions competes
with the entropy, and the symmetry between these two di-

\ T3 T o 0.4 T T T T l 104
—  —— bioxial —+I- t-4———— isotropic bioxicl iﬁ N : isotropic
= —{03 - | ! o3
] |
| 1
I (@
- —H0.2 X‘g) — ' ! —o02 Xo
Xy X5 X,
B -0 — —o1
L _ig | |
24 77 23 24

T

FIG. 4. Plate distribution as function of temperature for £ =0.37, 6 = 0.2,
¢ =10, p/p* = 50.

FIG. 2. Plate distribution as function of temperature for f=0.4, b =0.2,
c= 10, p/p* =50
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FIG. 5. Calculated phase diagram for ¢> 0, p/p* =50, 56=0.2,c = 1.0.

rections is broken. In this case a secondary favorable axis is
formed and the phase forms a biaxial nematic ordering (see
the biaxial region in Figs. 1 to 4).

The phase diagram in the T-fplane (with constant pres-
sure) is given in Fig. 5. We add a note of caution concerning
the first order isotropic to nematic transition in Fig. 5 (and
Fig. 6 in Sec. VI). Our numerical calculations which involve
relatively coarse interval of f (4f~0.05) may not reveal a
narrow coexistence region between the isotropic and nema-
tic phases. This possibility is discussed in Ref. 9. This phase
diagram is qualitatively correct if the long-range interac-
tions which are present also tend to align the molecules par-
allel to each other or are negligible compared with the short-
range interaction (¢ >0 and ¢ = 0, b = 0, respectively).

For ¢ <0, the phase diagram is more complicated, as we
shall discuss in Sec. V1.

The phase transition from the uniaxial nematic to the
biaxial nematic is determined from our calculations to be a
second order transition. This second order transition is also

3

—2a,p, —a,p, 2a, p;

.y o D1 1—f D D2

—~a.p; 6 __ . P a.p;

A 1-f. 1-f

- r ’ 6 r
2acp2 acp2 f— —2acp3
’ ’ 3 ’
a.p; 2a, p; 7 —a. p;
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analyzed in Ref. 21. In the Appendix we relate the results of
this model to a Landau-type treatment of the free energy and
we show why the transition from isotropic to nematic phase
is first order in general and the nematic to biaxial transition
is second order. In Fig. 5 the two second order lines form a
sharp cusp which separates the rod nematic phase and the
plate nematic phase and forms a special critical point. We
analyze the nature of this point in the next section.

IV. THE CRITICAL POINT

In order to investigate the critical point (T, f,) within
mean field theory, the free energy is expanded in terms of the
order parameters X, from the presumed critical point
{X ¢ 1. The dimensionless free energy per particle F = (4 /
NkT)is expressed as

F({XS +6X,})=F({X5}) + I0XT-ASX + -, (4.1)

where we have introduced vector notation with the matrix A
defined by
- _OF
A 9X,0X, |

At the critical point we expect the first and third order con-
tributions to the free energy to vanish and the fourth order
contribution to be positive for all variations {8X, }. Without
loss of generality we may use the constraints Eqgs. (2.16) and
(2.17) to eliminate X, and 6X,.

At the critical point at least one of the positive eigenval-
ues of A vanishes and the eigenvector corresponding to this
eigenvalue (a particular combination of the 6X,,) gives the.
direction of the second order phase transition. The location
of the critical point is determined from the condition
A.6 X = 0 by searching for appropriate values of Tand £, In
general this will require numerical solution of four nonlinear

_equations. However, in our case the critical point touches
the isotropic phase for which we have the simple conditions:

XS=X{=XS= A and X§ = X5 = g=’-§—.

4.2)

Thus, we may express the [ X ¢, } in terms of £, and determine
the matrix A:

where a, = pl°(c/2kT, + 1) and p; is given by Egs. (3.3) to (3.5).

After rearranging this equation we obtain

o — (3/f. —p3a.)3/(1 —f) —pia.) —o,

r
Pzac

c

a.p;
2a, p;
, (4.3)
7;_ —a; pé
6
- - 2ac p’
f. ’ ]
(4.4)

which corresponds to det(A) = 0, and find that a. can be expressed in terms of f, according to

J. Chem. Phys., Vol. 80, No. 5, 1 March 1984

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2156 Z. Chen and J. M. Deutch: Binary liquid crystal mixtures
3 3 3 3 2 3 3

_ ’ + ’ ’ ’ 4 2 gt ot

g, = (/cp‘ l—fcp3)+3/(fcp‘+l—fcp3)+ (l—fc)(/c)[(m Pinl

2[(p3) —pi P ]

Here, the positive solution is chosen because the ordered
phase is only possible for positive a, .
Examination of the matrix equation A.5 X = 0 leads to

the solutions
1 ( 3
a p; \1—1.

1 3
Xy = — —— —pia. | 6X,,
5 acp;_(l_.fc j 41 ) 2

oX, = —

——p;ac) oX,, (4.6)

(4.7)

where use is made of Eq. (4.4). These equations show the
relation, close to the critical point, between the change in rod
and plate distributions.

We next compute the third order contribution to F. Di-
rect calculation, with use of Egs. (4.6) and (4.7), leads to

>F

—2= | 8X,8X,8X
a%, 9X,3X,0X, 0

[

=) - @)
X(aclps)s(ljfc "a"‘”;ﬂ

X [6X 36X, + 6X,6X1]. (4.8)

This third order contribution to the free energy must vanish
at the critical point for all variations X, and 8X,. For this to
be true, the first bracketed term must vanish which can be
further simplified to

a. =3[(1 - flpi +pFAT—F)] 7" (4.9)
- This equation together with Eq. (4.5) predicts the location of
the critical point £, and T-. Finally, the fourth order contri-
bution to F may be calculated in order to confirm that it is
positive definite for all nontrivial §X,,. Since this critical
point is shared by four phases, we call it a multiphase critical
point.

For the simple mixture model described in the previous
section one determines the critical point f, = 0.3815 and
T./T* = 2.245 at p/p* = 50 [see Fig. 5] where we have em-
ployed the equation of state Eq. (2.25). At the critical point
vp = 0.116, where v is the volume of a rod or plate.

The existence of a critical point is not always guaran-
teed. For example, in the case of a mixture of rods and cubes
[ p5 =p; = 0] which has been described by Alben® does
not possess a biaxial phase because the cubes cannot orient
the rods in a particular direction.

We have considered the case of a simple interaction de-
fined by Eq. (3.1). For a system where the long-range interac-
tion is more complicated, we may arrive at a condition for
the critical point equivalent to Egs. (4.5) and (4.9) with a, p],
a, p;, a. p; replaced by pp,, pp,, pp; with the definitions
Egs. (2.22)—(2.24).

[
V. FLUCTUATIONS AT THE CRITICAL POINT

In this section we study the fluctuations that occur at
the critical point within the mean field theory which has
been developed. We apply the methods developed previously
for treating pure'*'> and binary fluids.'®!” The isotropic to
nematic transition is known to be weakly first order and
turns to be second order at the critical point, so considerable
fluctuations may be observed at this transition.?*"?5 Qur
model sheds some light on the character of these fluctu-
ations.

We proceed by writing the free energy per particle as

F=F°+ %Z&X’(i)-A,»j«(S X(/), (5.1)
ij

where 6X, (i) denotes the deviation of species a from its equi-

librium value in the ith cell. The matrix A; depends only

upon the distance between cells

1 3’4

- =A®(R, —R,|), (52
Y NkT 39X, (i)3X,(j) ( sl (52)
where R, is the position of the center of cell 7.
In terms of the Fourier transformation
X, ()= —— 3 8%, (Mexp[AR,], (5.3)
Jn 7o
5%, (k) = — ' 6X, (fexp[ — &R, ], (5.4)
\/7{ R;
we may write
SF= — 3 6R7(— KpAK)SR(K). (5.6)

2
The matrix 4 3 has the following structure, when X, and X
are eliminated according to Eqs. (2.16) and (2.17):
J W 20 Q
w K Q@ 2
V120 ¢ M P}
¢ 20 P N

5.7

where

1 1
J = 6,“ _— +
’ (X? 1—f—X¢ —X‘;)

1
~2 (V0 + gl

1 1
’ (X;’ 1—f—X? — X3

. 2P (V(l)aq + —l—a)"-}’),

1 1
M=5i' —+———
J(X(a’ f—X‘;—XS)

1
2 (Vﬂ’a,.j + o= wﬁ.;'),
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1 1
V=4 (5 + )
1
V(3)5 (‘3))’
2”( T

W=2_5. 1 —p (V(l)a._ + __l_w(}i),

"\1—f—Xx% - X} Y kT Y

1 1

p=t (7rar) (70 ret)

Q=p (V‘”& + %wm) (5.8)

The quantities V™6, + o)/kT (v = 1,2,3) are defined
as follows:

1 1 1 12
V(l)5q+ kTw(li_zA(Bll 12)5ij+ 'ﬁ(w:} P Y
(5.9)
1 1
V(Z)aij“i' kT [2)_2A(B 15 14)6ij+ ﬁ(w}js_w;;t)’
(5.10)
1 1
V(3)6ij+ k_ng)zzA(BM_B4S)6”+ _;7:( '414_‘0
(5.11)
The matrix K(k) has the same form as Eq. {5.7) with
?: L + 1 _2)0V(1) 2p mm(k)’
X0 1—f-Xx°—x9 kT A
~ 1 1 2 3(1)(]()
K= — + —2py0 - L2 01
X0 1—f—X%—x9 » kT 4
el U e 2 8%)
X9 f—Xx%-X9 kT 4
Y S W 3 2%
X9 f—Xx5-x9 kT A
e 1o £ )
1—f—X°— X9 kT A
po — | oy )
f-XxX9—x9 kT 4
’\(Z)k)
—pre— £ 21 5.12
e=r kT 4 (5.12)

Since we know that {X 9} is an implicit function of T
and f in the ordered phase, it is easier to study the fluctu-
ation from the isotropic side. For the isotropic phase, a rela-
tion between X J and fsimilar to Eq. {4.2) holds and A(k) has
the following simple form:

Ak
2AB—A4B) B—AB 2C—AC) C-AC
B—AB 2B—A4B) C—AC 2(C—AC)
~l2c—4C) C—4AC 2AD—4D) D—A4AD |’
C—AC 2(C—4C) D-A4D 2D -—AD)
(5.13)
where
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i
B= —/— 1 4
1—7 P\ " %ra
3 53(0)
D= =2 _ V(3) )’
F -’ ( * T2
( )0)
C= V(Z) ( )
=F ( * %74
AB— ( A(l)(k ) ’\(l)(o))
kT\ 4 a4/
AD — L(a(:&)(k) _ 6(3)(0))
~ kT \ 4 A
AC— __P_ ( 5}(2)(}{) B @(2)(0))
T kT\ 4 a4/

The probability of a fluctuation in the system is as-
sumed to be Gaussian®® according to

P, [6X(k)] « exp[ — NSF 1. (5.14)
Thus the mean square fluctuation is given by
8%, (— KSX,(K)) = [AK) ] o0y = —22-8
(6X,(— Kk)oX,(k')) = [Ak)™'] 0w A
(5.15)

where 4 ga 18 the cofactor of the matrix element 4 «p (k). In
coordinate space we have

CaB(IRijI) = (5Xa (Ri)bxﬁ(Rj))

Lﬂ}jdkzﬁa exp[ k<R, — R,)][|A|]
(5.16)
Ag,
7 TAT k=0
To calculate this integral we must know the long-range
interaction function o(|R; — R;|). However, since w(r) is a

slow varying function of », we can expand w(k ) in terms of k,
and retain only the lowest order term.

SR, —R,).

olk) = wo — wok > + ok *): (5.17)
Then
AB— _ P (6(21)1( 2)’
KT\ 4
D= _ L (E"A‘i"_z)
KT\ 4
o2k 2
AC= — L(“” ) (5.18)
KT\ 4
Substituting Eq. (5.18) into (5.13), we obtain
[AK)] = 4, 4+ Uk? 4 ofk*) (5.19)
with
Ay, =9(BD — C??, (5.20)
= 18(BD — C¥(Dal) — 2Caf? + Boff) £ (521
Similarly we find
A, =G+ Hk*+olk* (5.22)
with
G =6D(BD —C?, (5.23)
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H= Z% [D%) + 2BD — C%o — 2DCo?].
(5.24)

We proceed to compute an explicit expression, valid for
large distance, for the fluctuation matrix (5.16). For exam-

ple,

— 2
Cll('Rij“ = M — R, ~Rj/¢
47|R, — R,
1 (G
7 (T) S(R; —R,), (5.25)
0
where
f= L [2De—2C0d + BaPlp/AkT

(5.26)

We see that the correlation length £ is proportional to
J1/(BD — C?). At the critical point (BD — C?—0, so the
correlation length will diverge.

It is possible to calculate the manner in which the corre-
lation length diverges as the critical point is approached. We
approach the critical point from the isotropic side along
f=F. and express B, D, and C in terms of their values at the
critical point and the deviation 7 = T — T,. A lengthy cal-
culation yields

BD — C*= [BD — C?], + 6T-const = 6T-const.

(5.27)

Therefore, as we expect, from a mean field treatment
E~(T—T.)"" with v=1/2 (5.28)

and the correlation of the order parameter behaves as
e~ "%/~ 2+ 7 with = 0. Measurements of the critical ex-
ponent for liquid crystal mixtures will determine the appli-
cability of mean field theory to this type of system.

VI. THE REENTRY TRANSITION

It is interesting to point out, that although the existence
of a biaxial nematic phase was predicted in the early
1970’s,%%! it was not until 1980 that this phase was first ob-
served by Yu and Saupe.'® More recent experiments have
been carried out by Bartolino ez a/.>” The experiment of Yu
and Saupe'? was carried out on a three-component mixture
of potassium laurate, 1-decanol, and water. This system can
form both plate- and rod-like micelles so it is quite plausible
to characterize this real system in terms of the model pre-
sented here. However, it is possible that the biaxial phase in
the real system is composed of a third type of ellipsoidal
micelle with three different axial lengths in the biaxial phase.
Also, the experimental result shows that at a lower tempera-
ture, the system reenters from the biaxial nematic phase to
the uniaxial nematic phase and from the uniaxial nematic
phase to the isotropic phase. The biaxial region in the phase
diagram becomes narrow at lower temperatures.

This reentry phase behavior is quite different from the
phase diagram shown in Fig. 5. In a system of the type con-
sidered above and shown in Fig. 5, the ground state is an
ordered nematic phase. In contrast, for the reentry transition
system, the ground state is an isotropic phase. Additionally,
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in Fig. 5, the biaxial nematic phase forms an open area, but in
the reentry system the biaxial region becomes narrow at low-
er temperatures and one can expect it to close somewhere.

This comparison indicates that the underlying interac-
tion is different for the two cases. Since the equilibrium state
is determined by the competition between entropy and ener-
gy, the reentry phase diagram reflects a more complex de-
pendence of the energy on orientation.

The model considered here may be modified to include
the possibility of reentrant behavior. In our model we con-
sider both long- and short-range interactions, and the rela-
tion between these two interactions is simply determined by
the parameter ¢ in Eq. {3.1). For ¢ > 0 the long-range interac-
tion tends to align the molecules in the same way as the
short-range force so the energy is always lower for the or-
dered phase. This is the case presented in Fig. 5.

For ¢ <0, the long-range force tends to align the mole-
cules in the opposite way from the short-range interaction.
Moreover, in this model the short-range interaction is a
hard-core type repulsion: u,; = 0 when two molecules do
not overlap, and u,; = « when two molecules intersect.
Obviously, u,4/kT is independent of temperature.

At high temperature the entropy dominates the free en-
ergy and the system is in the disordered phase {isotropic).

At intermediate temperature the short-range, hard-
core interaction makes the major contribution to the total
configurational energy and the system is determined by the
competition between the short-range interaction and the en-
tropy. In this case the system becomes more ordered when
the temperature decreases.

At low temperatures the long-range interaction domi-
nates the configuration energy. For ¢ <0, the molecules tend
to align in a disordered way, so the system reenters from the
biaxial nematic phase to uniaxial nematic phase and from
the nematic phase to the isotropic phase. This is the reentry
transition.

A sample calculation is given in Fig. 6 forc = — 0.8,

nE N+ \ N —

- Iso
i 1 | 1 1 ] | 1

0 01 0.2 03 04 f 0.5 0.6 07 08 0.9

FIG. 6. Calculated phase diagram with reentry tramsition p/p* = 80,
b=0.1x10"%c= ~08.
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b = 0.1 X 1075, while the molecules have the same geomet-
ric shape as in Fig. 5. The phase diagram shows reentry tran-
sitions similar to the experimental result and the biaxial
phase forms a closed region.

It is interesting to note that the biaxial regions has an
asymmetric shape. The shape of the biaxial region depends
on the extent to which the molecules are anisotropic. For
example, if the plate molecules get flatter, the biaxial region
will tilt towards N ( + ) region near f = f,. The sample calcu-
lation for plates having size [1 X 1 X 0.01] shows stronger tilt
than the plates with size of [0.5X0.5X0.04}. The similar
tendency can also be seen in Ref. 9. Figure 6 exhibits the
sequence of phase transitions Iso—»N{— }>Bi>N{—)
—Iso at certain concentrations upon cooling. This is experi-
mentally observed. '® It is possible that with greater assumed
molecular asymmetry when the cusp tilts further to N{ + )
the more complicated sequence of phases which is also ob-
served'® upon cooling at constant concentration Iso—N
(— }>Bi—»>N( + }»Bi—>N( — }—Iso may also be predicted
by our model.

There is another critical point at the reentry transition
and both critical points occur at the same composition of the
mixture f, . This occurs because our model simplifies the re-
lation between the long-range and the short-range interac-
tion through the single parameter ¢ which introduces a pro-
portionality between these two interactions. For real
systems the relation between the long-range and the short-
range interaction can be expected to be more complicated, so
the reentry critical point will, in general, occur at a different
concentration ratio.

A reentry critical point is not evident in the experimen-
tal phase diagram shown in Ref. 13. But in this experiment,
the biaxial region in that phase diagram becomes narrower
at low temperatures in the phase diagram, and it may be
expected that two second order lines surrounding the biaxial
region will form a second critical point. A multiphase criti-
cal point wherethe N ( + ), N — ), and biaxial phase all meet
at a single point on the isotropic phase boundary is plausible
from extrapolation of existing experiments.'®> In Ref. 28
Saupe et al. present additional experiment results to support
this possibility. An alternative possibility is that the nematic-
biaxial phase boundaries meet at a point below the isotropic
phase line and that a direct N ( + )/N ( — ) transition occurs
from this point to the isotropic phase boundary.

Although 2 hard-core potential approximation is used
for the short-range repulsion in our model, it will in general
be true that the temperature dependences of the long-range
and the short-range interactions behave differently. There-
fore, the competition between these two general interactions
can credibly result in a similar picture as shown in Fig. 6.

VIi. SUMMARY DISCUSSION

The model of liquid crystal mixtures developed here
calculates interactions between molecules on a special lattice
basis. The model also approximates the interaction by separ-
ation into short-range repulsions and long-range, van der
Waals-like attractions. Competition between energy and en-
tropy gives rise to a phase diagram which exhibits a variety
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Iso Iso

- + Aot
T \ '

bi\\
N+ /l/) ‘ NG
1

FIG. 7. Heuristic explanation of these phase diagram.

of subtle phenomena that have recently been observed in
liquid crystal mixtures.'> These include the existence of a
biaxial nematic phase for binary liquid crystal mixtures and
the existence of a reentrant phase transition. Qur method
also permits calculation of the effect of fluctuations at the
critical point albeit in the restricted framework of a mean
field theory.

The principal virtue of the model we propose is its sim-
plicity and, we believe, its clarity in relating observed phase
behavior to molecular interactions. It differs from Alben’s
model® in several respects; most importantly we include the
effect of attractive forces and we adopt a simpler approxi-
mate method for evaluation of the partition function. Using
a simple form of free energy in conjunction with the Landau
theory we show (see the Appendix) that the transition from
the isotropic phase to the nematic phase is first order in gen-
eral and the nematic to biaxial transition is second order. We
also show that the isotropic to nematic transition becomes
second order only when two transitions (isotropic—nematic
and nematic—biaxial} occurs simultaneously.

The most novel feature of the plate-rod nematic system
is the existence of a special critical point which is shared by
four phases in apparent violation of the “phase rule”. But
notice that the two nematic phases are separated from the
biaxial phase by a second order phase transition as described
in the Appendix.

The formation of this multiphase critical point can be
understood by comparing the effect of introducing another
kind of molecule with the effect of an external field. For each
kind of molecule introduced the interaction is similar to ap-
plying a nonlinear external field. This impurity field will ad-
just the discontinuity of the order parameter over the iso-
tropic to nematic transition (which is reflected in the cubic
term in the free energy expansion), and at a certain mixture
ratio the isotropic to nematic transition becomes a second
order transition. The influence of one species over the other
is mutual, so we may view the phase diagram as the addition
of two phase diagrams as heuristically displayed in Fig. 7.
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APPENDIX: RELATIONSHIP TO LANDAU-TYPE
THEORY

In this section we relate the formalism developed to a
Landau-type theory' where the free energy is expanded in a
power series in relevant order parameters. For a liquid crys-
tal the order parameter can be taken as a real, symmetric,
and traceless tensor.

In a system consisting of two species, generally two or-
der tensor parameters are needed to describe the system. The
free energy per particle then can be written in the following
form:

A A°

NkT ~ NkT 2

+ %Ter:ﬂQ%a +B,Tr 0750%

C r r r C
+ —6—‘TrQaﬂQB,Q,,., + %TrQﬂpQ’by S
C. r o C.
+ —Z—STT QaﬂQBy ba + ‘_24

3 1r 91,05

Tr 0%05,€Q
Dl r r r r
+ -27 Tr Q50 5,2 769 5o

+ -%Trgf;p%%%
D r Ar e
+ -6—3T1' Q’;BQByQyBQ:Sa

D r
+ -'Z‘" Tr Qﬁprsy 1;'5Q8a

+ %TTQ;aQEyQ%Qﬂa

+ 210 02,05,0340%
where Q ;5 and Q% are the tensor order parameters for rods
and plates, respectively, and the coeficients of the terms
B,,B,,... are functions of temperature 7, the fraction of plates
/, and the pressure.

In order to apply Landau theory to our model, we must
identify the relevant order parameter. Although our model
has a cubic symmetry, we understand that all the properties
calculated through this model are equivalent to a system
described by second-rank tensors with rotational symmetry.

In some representation the tensor order parameter for
rods and plates will be diagonal and can be written as

(A1)

2p, 0 0

QraB =|0 D +a 0 y (A2)
0 0 —Pi—4
2p, 0 0

Q=0 —p+aq 0 5 (A3)
0 0 —P2—9q

where p, and p, are the nematic order parameters, ¢, and g,
are the biaxial nematic order parameters. The case p; = 0,
q; = 0 (i = 1,2) corresponds to the isotropic phase. The case
P:#0,q, =0,0rgq; = 3p; (i = 1,2) corresponds to the uniax-
ial nematic phase and the case p; #0, ¢g; #0, and ¢, #3p,
(i = 1,2) corresponds to the biaxial nematic phase.

In this representation the coordinates x,y,z are exactly
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the principal coordinates for the tensors Q ; and Q%,.
We choose the following definitions for the rods:

36X,/(1 —f)=2p,,

38X/(1 = f)= —p1+ 4y

— 36X, +6X,)/ (1 -f)= —p1—q,
and for the plates

38X,/f = 2p,,

38Xs/f= —p,+ 42

— 36X, +8X)/f= —pr— ¢ (A5)

This selection of the order tensor parameters is not
unique and the different definitions of the order parameters
will result in different coefficients in the free energy expan-
sion, but the thermodynamic quantities calculated will not
be affected by the definition of the order parameters.

Employing the results of Sec. IV where the free energy
was expanded in terms of {6X; }, we find to fourth order:

(A4)

A A° B [ 3\
NkT _ NkT Tl(l_f) (6XT +8X3 + 5X,6X,)

2
+ 521 (%) (BX2 +8X2 + SX.5X,)

+B3(1if)(_;-)

X (26X,6X, + 26X,0X; + 6X,6X + 5X,8X,)

C, 3 ¥ 2 2

3
+ % (%) (36X 26X, + 36X, 5X2)

D ( 3
+ —27'(1—_7) [6X% + 86X + (6X, + 6X,)*]

4
2(3) 1oxivoxs + x4 2], (A6

where the coefficients B,,...,D, are given by
3 1 —1£\?
B - ( — I) ( ) ’
1 1—r P 3
3 A%
B - (—— - a ; ) (_) ’
2 7 D3 3

e (50)(4)

c.=— (10),

+

(A7)

3
C2= _f/3’
D1=2('__1 _./’),
3
D2=2f/3-

Employing the definition for Q; and Q%, given in
Eqs. (A2} to {A5) one finds that the free energy can be written
as
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A A° B,
2 - 2 et TI' r ra
NT - NkT T 2 QusQs

+ 2LTr 0, 0% + B, Tr 0%y 0%
C'1 r r r C2 ¥4 P p
+ TTrQaﬂQﬂ'yan + TTrQaBQByQYG
Dl r r r r
+ 'EITrQaBQBystgtSa

+ 22 Tr 02505,0% Q% (A8)
where the coefficients are defined in Eq. (A7).

Thus we see that our model may be cast in the form of
Landau theory. However, since our approach is based on a
molecular model, it is possible to identify the coefficients
which appear in the free energy expansion of the order pa-
rameters with molecular parameters.

Furthermore, for our work we find that the free energy
functional can be written in terms of scaler order parameters
P14, and p,, g

A _ A

NkT  NkT

+ (3B,p3 + Cyp3 +3D, )

D
+6B;p,p, + (-Bl -Cip+ ‘2—11’%) T

+ (3B, p} + C,p} + %Dll’?)

D
+ (82—C2P2+ —2—2p§)q§
D D
2B 1 4 22 0.4
+ 2859,9, + T q: + T q>

From the structure of this free energy functional the
following conclusion can be drawn:

(i) The phase transition from the isotropic phase to the
nematic phase must occur before, or simultaneously with,
the transition from the nematic phase to the biaxial phase.
This is because there is a pg® term in the free energy. The
transition from the isotropic phase ( p = 0) to the nematic
phase ( p#0)is only possible where there is no linear term of
p- (ii) The transition from the isotropic to the nematic phase
is a first-order transition except at the multiphase critical
point, becuase generally the third order terms in the free
energy do not vanish. (iii) The transition from the nematic to
the biaxial phase is second order, because there is no third-
order term in q in the free energy expansion. This is a conse-
quence of the symmetry of the tensor order parameters. The
free energy has an even symmetry for the order parameter g.

The conditions for the transition from the nematic to
the biaxial phase are

(4 /NKT)
99,9,

d(4 /NKkT)

ap,
(A /NKT)

ap,

This yields
D D

(8- cini+ 2 (B~ o + 22} 1=,
(Al1)

(A9)

(A10)
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2B,p, + C,p} + D, p} +2B;p, =0, (A12)
2B,p, + C:p} + D, p; +2B;p, =0. (A13)

All the coefficients B,,C,,D,,... are functions of T and f
with pressure fixed. Solving Eqs. (A11)~(A13) simultaneous-
ly will determine the two second-order transition lines from
the nematic phases [N ( 4+ and N { — )] to the biaxial phase in
the 7-f plane.

At the first order transition line (isotropic-nematic), the
free energies are equal for the isotropic phase { p; = 0) and
the nematic phase ( p; #0); therefore

3B, pt +C,p; +3D,p}
+3B,p5 +C,p; +3D,p3 + 6By p, p,=0.  (Al4)

Equations (A12)—{A14) determine the location of the
first-order transition in the T — fplane. See Fig. 8 for a quali-
tative display of the various phase boundaries.

When approaching the multiphase critical point along
with the two transition lines from the nematic phase to the
biaxial phase, we can simplify Egs. {A11)~(A13) by keeping
the leading terms. Equations (A 12) and (A 13) are reduced to

2B, p,+2B;p, =0, (A15)

2B, p, + 2B, p, =0, (A16)
which in turn yields

B\B,— B} =0, (A17)

P2= —(B\/By)p, = — (Bs/By)p,. (A18)

Equation (A11) is reduced to

B\B,— B} —C,B,p,— C,B,p, =0, (A19)
which becomes with the aid of Eqs. (A17) and (A18):

C, — C,(By/B,)* =0. (A20)

Equations (A 17) and (A20) are exactly the second and third
order conditions determined in Sec. IV, Egs. (4.4) and (4.9),
respectively.

As an illustration of the application of Landau theory in
biaxial nematic phase we consider the behavior of the mag-
netically induced birefringence near the critical point. Stin-
son and Litster” have shown that there is a divergence of
magnetically induced birefringence near the isotropic to ne-
matic phase transition. For a binary mixture system de-
scribed by this model, there is also a similar divergence of the
birefringence.

determined by (A.12}(A13)(A.14)

determined by (A11)(A12)(A.13)

f

FIG. 8. Determination of transition lines in the vicinity of critical point by
using Landau theory.
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For a binary mixture of rods and plates, the diamagne-
tic susceptibility y.s and dielectric constant tensors €,z
may be written as follows:

Xes = [(1 =S + X5 1as

+3[(1 =1y, Qo + /A%, Q% ], (A21)
€op = [(1 = f)E, + /€, 18,5
+3[(1 =/)de,Q0p + /46,00, (A22)

where Ay, , 4¢, and 4y, A¢, are the anisotropies in y.g
and €,z for a completely ordered rods and plates, respec-
tively.

In a magnetic field the free energy functional becomes

A A° B,
. = ___Tr r r
NkT  NkT = 2 QsQbe

B
+ —21 TrQ%Q% + B Tr Q0%

C r r r
+ 'El" Tr QﬂﬁQB?’Q ya

C
+ -6—2 Tr Q%05 0%
Dy
24

D
+ 2 Tr0%,05,05:05

TrQ0s059%Q 5

- %xaBHGHB- (A23)

Minimizing the free energy Eq. (A23) with the condition
Tr Q.5 = 0and Tr @45 = 0, and keeping the lowest order
terms leads to

[(1 —F)B.Ay, —fB:4y, |3BH Hp — H?5,4)

Qi = )
g 9(B.B, — B?)
(A24)
? [fBlAXp _(1 _f)BSAXr](3HaHB _Hzaaﬁ)
aB — .
9(B,B, — B?)
(A25)
When f= 0, or f= 1, Egs. (A24) and (A25) reduced to
4
0, = X 3H,H, — H,,), (A26)
9B,
4
v, = Ao 3H,H, — H,,) (A27)
9B,
These are identical to the formula in Ref. 29 for pure liquid
crystals.

If we take the H to lie along the z axis, the resulting
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birefringence will be

2
_ 72 172 H

1
4n = € — €5 =
" 3 9f(1 —fJe, + fe, (BB, —B3)
X [(1 —f)B,A€, Ay, — f(1 — f)By(d€, 4y,
+ d€,4y,) + /B d€, 4y, ]. (A28)

Here BB, — B3 is proportional to |d%4 /NkT)/
dX;dX; |. For reasons similar to those discussed in Ref. 29,
for a phase transition to occur it is necessary that the deter-
minant |3*(4 /NkT)/3X,dX;| go through zero. Therefore,
we will observe a similar divergence of birefringence near the
isotropic to the nematic transition. In Ref. 29 the transition
from the isotropic to the nematic phase is first order, so the
experiment does not exhibit complete divergence. But for the
case of biaxial phase there will be a divergence at the critical
point which should be experimentally observable.

'P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford,
1974).

2L. Onsager, Phys. Rev. 62, 558 (1942); Ann. N.Y. Acad. Sci. 51, 627
(1949). Also see S. Isihara, J. Chem. Phys. 19, 1142 (1951).

3P. J. Flory, Proc. R. Soc. London Ser. A 234, 73 (1956).

“R. Zwanzig, J. Chem. Phys. 39, 1714 (1963).

L. K. Runnels and C. Colvin, J. Chem. Phys. 53, 4219 (1970).

SM. A. Cotter, in The Molecular Physics of Liguid Crystals, edited by G. R.
Luckhurst and G. W. Gray (Academic, London, 1979).

'B. Barboy and W. M. Gelbart, J. Chem. Phys. 71, 3053 (1979); J. Stat.
Phys. 22, 709 (1980).

8A. Wulf and A. G. DeRocco, J. Chem. Phys. 55, 12 (1971).

°R. Alben, J. Chem. Phys. 59, 4299 (1973).

19p_J. Flory, J. Chem. Phys. 12, 425 (1944); Proc. R. Soc. London Ser. A
234, 60, 73 (1956).

''W, M. Gelbart, J. Phys. Chem. 86, 4298 (1982).

12y, Rabin, W. E. McMullen, and W. M. Gelbart, Mol. Cryst. Liq. Cryst.
89, 67 (1982).

BL.J. Yuand A. Saupe, Phys. Rev. Lett. 45, 1000 (1980).

N. G. van Kampen, Phys. Rev. A 135, 362 (1964).

R. D. Mountain and R. Zwanzig, J. Chem. Phys. 48, 1451 (1968).

163, M. Deutch and R. Zwanzig, J. Chem. Phys. 46, 1612 (1967).

YC. Cohen and J. M. Deutch, J. Chem. Phys. 54, 4965 (1971).

183, P. Straley, Mol. Cryst. Liq. Cryst. 24, 7 (1973).

M. A. Cotter and D. E. Martire, J. Chem. Phys. 53, 4500 (1970).

G, Lasher, J. Chem. Phys. 53, 4141 (1970).

2M. J. Frieser, Phys. Rev. Lett. 24, 1041 (1970).

22T, W. Stinson III and J. D. Litster, Phys. Rev. Lett. 25, 503 (1970).

2B. Chu, C. S. Bak, and F. L. Lin, Phys. Rev. Lett. 28, 1111 (1972).

24C. P. Fan and M. J. Stephen, Phys. Rev. Lett. 25, 500 (1970).

2R Alben, Mol. Cryst. Liq. Cryst. 10, 21 {1970); 13, 193 (1971).

2L, D. Landau and E. M. Lifshitz, Statistical Physics, english translation
(Pergamon, New York, 1970).

2R, Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, Phys. Rev. A
26, 1116 (1982).

8A. Saupe, P. Boonbrahm, and L. J. Yu, J. Chim. Phys. 80, 7 (1983).

*>T. W. Stinson, J. D. Litster, and N. A. Clark, Suppl. J. Phys. {Paris} 33,
C1-69 (1972).

J. Chem. Phys., Vol. 80, No. 5, 1 March 1984

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



