Mean field theory of polymer crossover behavior
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An argument is presented that the exponent previously employed to describe crossover behavior
of either a linear or randomly branched polymer from the theta region to the swollen or collapsed
state is inconsistent with the mean field description of the polymer free energy. In place of the
conventional exponent #(d) = [2 — dv,(d) ], itis suggested that mean field theory compels use
of the exponent ¥(d) = [v,(d)d — 1], where v, (d) is the index which describes the dependence
of polymer length on molecular weight in the theta region. The consequences of this different
choice of crossover index are discussed for crossover behavior of the polymer length and for phase
separation behavior. Comparison of the results of the different predictions with both Flory-
Huggins theory and e-expansion calculations is included. For linear chains in two dimensions
striking differences are found for the predicted behavior of the phase separation curve at high

monomer concentrations.

I. INTRODUCTION

A polymer chain can adopt greatly different configura-
tions in different regions of the temperature-composition
phase diagram. The chain will be swollen in the good solvent
region, adopt a more ideal configuration in the theta region,
and collapse in the poor solvent region. A good deal of atten-
tion has been given to the crossover behavior of the polymer
between these various regimes.

The purpose of this paper is to point out that the conven-
tional argument for determining the crossover behavior is
not consistent with the assumptions of mean field theory. We
present an alternative argument for describing the crossover
behavior within mean field theory and show that this has
substantial significance for scaling behavior and for the pre-
dicted phase separation behavior of the linear and randomly
branched polymer systems under consideration here.

The mean field theory of a polymer molecule in dilute
solution is based on a Flory-type free energy of the form'?

2 2 3

F(R) = R2 +2vN wN ’

N dR? dR?*
where R is the radius of gyration and v, = 1/2 for a linear
chain while ¥, = 1/4 for a randomly branched polymer
chain® (lattice animal). Here, & is the number of segments
taken to be of unit length, kT = 1, d is the dimensionality of
space, and v and w give the strength of the average repulsion
between pairs and triplets of segments, respectively, within
the polymer. In Eq. (1.1) we have neglected the entropy
term' proportional to In R, which is sometimes included in
the elastic free energy. Justification for omitting this term is
presented in the Appendix.

Minimization of this free energy and direct analysis*
permits determination of the chain size with length

R~N¥® (1.2)

in the different regimes of polymer configuration. There is a
critical dimensionality d. above which the polymer behaves
in an ideal manner v = v,,. In a good solvent » > 0; one finds

v=3/(d+2), d.=4 (L.3)

(1.1)
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for a linear chain and
v=5/2(d+2), d., =8 (1.4)

for a randomly branched polymer. At the theta point T,
v = 0; one finds

ve=2/(d+1), d,=3 (1.5)
for a linear chain and
ve=7/4d+1), d.=6 (1.6)

for a branched polymer. In a poor solvent v < 0, the polymer
collapses and one finds

v, =%, = (1/d)

for both the linear and branched polymer.

The crossover behavior of the polymer between these
various regimes depends upon how the pair potential varies
from net repulsion (v > 0) to attraction (v <0) as a function
of the dimensionless temperature 7= [(T — T,)/T,]. In
the vicinity of the theta temperature, one assumes

(.n

(1.8)

The scaling argument® for the crossover behavior is
based on introduction of a crossover exponent $(d) and in-
troduction of a dimensionless function which has the appro-
priate asymptotic dependence to describe the proper poly-
mer behavior in each regime. For example, in the case of
crossover behavior of a linear chain to the good solvent re-
gime, one assumes

R=N"h(rN*) (1.9)
and that the dimensionless function /#(x) has the properties

h(x)—1 as x—0; h(x)—x" x>l
with the exponent m determined to give the correct behavior
R~NY in the asymptotic regime; thus one finds v =1,
+ dm.

The analysis we present suggests that the conventional
mean field argument for determining ¢ is not consistent with

the assumptions of the theory and that a correct argument
leads to a different crossover exponent which we denote . In

v(7T)~T.
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particular, we find for linear chains ¢ = in d =3 but
#(2)#¢(2). For randomly branched polymers
#(d)#Y(d) ineitherd = 3ord = 2.

The body of this paper is devoted to presenting our rea-
soning on why the correct crossover exponent is ¥(d), the
implications of this exponent for crossover behavior and for
the predicted phase separation, including critical behavior,
for concentrated polymer solutions. A comparison of these
mean field results with the predictions of Flory—-Huggins
theory and the predictions of calculations based on € expan-
sions is also included.

Il. DETERMINATION OF THE CROSSOVER EXPONENT
A. The conventional argument

The conventional argument® for determination of the
crossover exponent ¢ is based on identification of a region in
the vicinity of the theta point where the pair interaction ener-
gy in Eq. (1.1) E®~[27N?/dr"] is “small,” i.e., of order

unity or less. Within this region R ~N *? so that
E®~(2./d)N*
with
6(d) =2-—dv,(d). (2.2)
One must be sufficiently close to the theta point for this pair
interaction energy to be small. This requiresthat 7SN ~?in
the theta region where more nearly ideal behavior is to be
expected.
For linear chains Eq. (2.2) predicts
#(d)=2/(d+1), d<3 (2.3)

and one obtains the expected ideal behavior ¢(3) = 1/2 in
three dimensions. For d = 2, one finds ¢(2) = 2/3 which, it
is important to note, is in good agreement with both simula-
tion results’ and the result of e-expansion calculations.®

2.1n
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FIG. 1. Schematic prediction of phase separation boundary according to
modified mean field theory for linear polymer chains in d = 2.

For branched polymer chains one obtains®
$(d) =2 —7(d) = [(8+d)/4(d+ 1], d<6 (2.4)

which yields ideal behavior in d =6, 5(6) =1/2, and
#(3) = 11/16, §(2) = 5/6.

These results can be employed to determine the behav-
ior of R as one leaves the theta region. For example, going
out of the theta region, towards the good solvent region, one
predicts via the scaling analysis described in the previous
section

R~Nv7_l/2[(d—l)/(d+2)], d<3 (2'5)
for linear chains. In general, one finds
R~N5C=70%, (2.6)

where & is the appropriate exponent in the asymptotic re-
gime, i.e., good (v) or poor (v,) solvent states, and where
the quantities v, and ¢ should have bar superscripts for
branched polymers.

B. The modified argument

The alternative argument we propose for determining
the crossover exponent is based on recognition of the phys-
ical fact that in the theta region, triplet interactions
E® = [wN3/dR*] remain present and, by assumption,
these interactions are net repulsions, i.e., w > 0. According-
ly, the appropriate criterion for the pair interactions to be
inconsequential is not that [E ?/kT] be small as in the con-
ventional argument but rather that the pair interaction ener-
gy be small compared to the triplet interaction energy. Thus,
the criterion we propose to define the theta region is [E %/
E P«1. This criterion leads to a different crossover exponent
¥(d). One finds

[e)] d
E - TR NN

Iy 2.7)

For linear chains this yields

Yd)=vo(d)d—1=[(d—-1)/(d+ 1], d<3
(2.8)

which leads to the expected classical result ind = 3 but gives
a quite different prediction in two dimensions #(2) = 1/3
compared to the conventional argument ¢(2) = 2/3. Note
that in one dimension, in contrast to the conventional pre-
diction, the modified result correctly predicts no crossover
behavior ¥(1) = 0, indicating that sufficient repulsions are
present to force the linear polymer into the conformation of
arigidrod v(1) =v,(1) = 1.

For the randomly branched polymer, identical reason-
ing leads to the result

W(d) =%,(d)d —1=[(3d —4)/4(d + 1)], d<6.
(2.9)

This result predicts ideal behavior, as expected, ind = 6. In
two and three dimensions, the prediction is quite different
from that of the conventional argument as presented by
Daoud et al.’ One finds #(3) = 5/16 and ¢(2) = 1/6 in
contrast to 9—5(3) = 11/16 and 5(2) = 5/6.

The modified crossover exponent may be employed in
scaling analysis in an identical manner to the conventional
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exponent. In place of Eq. (2.6) one has
R~N® ™7, (2.10)

For linear chains moving towards the good solvent regime
one finds R ~N *711/¢+1 in contrast to the prediction of
the conventional argument, Eq. (2.5).

An appealing aspect of the approach which employs the
crossover index # is that predicted temperature dependence
as one leaves the theta region agrees with the temperature
dependence expected in either the good or poor solvent re-
gion to which one is moving. For example, in the case of the
transition to the good solvent region for linear chains in two
dimensions, we predict R ~ N 3/*7'/4, Use of the crossover
exponent ¢ [see Eq. (2.5)] leads to the prediction
R ~N?3¥47V8 Thus there remains an unexplained crossover
in temperature behavior from a 7'/® dependence to a 7'/4
dependence on the good solvent side of the phase diagram
when the exponent ¢ is employed.

There is an alternative line of reasoning which leads to
the same conclusion that ¥ is the correct crossover exponent
within mean field theory. This reasoning is based on recog-
nizing that the Flory-type free energy [Eq. (1.1)] should
describe, as it stands, behavior in each regime and the transi-
tions among them. Consistent application of mean field the-
ory will give an unequivocal prediction for the crossover ex-
ponent. Here we show that consistent application of the
mean field theory leads to the crossover exponent ¥, not 4.

Minimization of the free energy, Eq. (1.1) withw =1,
leads to the resulting equation for R:

2d+2 2
(L) - [,-N«b](_B_) +1, (2.11)
R, R,
where we have introduced the notation
R,=N" (2.12)
and employed the result
2v,+ 3
=" 2.13
0 =3 @+ D ( )

For branched chains, a superscript bar should be added.

Clearly, from Eq. (2.11) the mean field free energy
leads to a description of the polymer dimension R in terms of
a universal function which depends on the crossover expo-
nent :

R=R,g(TN") . (2.14)

It is an easy matter to show from Eq. (2.11) that the scaling
function g(x) has the desired asymptotic behavior; g(x)—1
asx—0and g(x)—g* witha = [(v — v,)/¢] for x> 1. For
x <0, toward the poor solvent region, Eq. (2.11) yields the
behavior

Rc~lT|—l/dN—(¢/d)R6~|TI—l/le/d’ (215)

where R, is the expected polymer length in the collapsed
state.

We also note, although it will not be pursued here, that
the same reasoning leads to modification of the conventional
argument for crossover behavior for directed lattice ani-
mals.®

Finally, why would one advocate the adoption of the
conventional criterion BE? ~1 for crossover when strict

application of the Flory free energy leads to the modified
criterion E ®/E ® ~ 1? The criteria are suggested by a heuris-
tic argument that the end-to-end distance Ry of a chain
(even in the presence of excluded volume) can be deformed
by an energy kT. According to this view the appropriate
criterion for the magnitude of the free energy change caused
by a fluctuation is ~k7. We believe this argument to be
incorrect. The Flory free energy is expressed in terms of a
variable R which is a rough measure of polymer size and not
precisely R or any other particular variable. It corresponds
most closely to the radius of gyration R;. In most cases the
averages of R, R;, and R are not significantly different.
But, when one seeks to estimate the energy required to cause
a significant deviation of these variables, the difference is
crucial. Even in the presence of repulsions R can fluctuate
anywhere between ¢ SRy S Na where a is the monomer
size, but R or R is severely restricted in its fluctuations.
Consequently, kT is not sufficient to distort R or R; while it
is adequate to distort R ..

This point can be expressed more quantitatively as fol-
lows. When a force A, distorts a chain, the free energy is
BF (R) =BF(R) — BhR. A rough estimate of the energy
required to significantly distort the chain is given by SAR
~BF(R). For the end-to-end distance SF(R;) ~R /R %
and consequently AR ; ~ kT is the energy required to distort
the chain. For the variable R, however, Flory theory for a
linear chain with excluded volume gives SAR; ~R%/R 2
~N@=D/@+2 and so an energy hR; ~N 4~ 9/d+DT
is the typical energy required to distort R significantly.

Hi. PHASE SEPARATION BEHAVIOR

In this section, the consequences of the different cross-
over exponents ¢ and 3 for phase separation are discussed.
We follow closely the analysis of Daoud ez al.’

We assume that the free energy per unit volume in the
critical region may be expressed as

F=N —"0%[(c/c*), |7|N"], (3.1

where f(x, ) is the scaling function and c is the monomer
concentration. The quantity c* is the monomer concentra-
tion which leads to overlap of the chains at a volume fraction
of about unity

c*=N'T", (3.2)

The coexistence curve or the spinodal curve is found by
successive differentiation of Eq. (3.1) with respect to ¢. One
arrives at the relation

(c/c*) =k(|7|N?) . (3.3)
At high concentrations it has been argued'® that the coexis-
tence curve should be independent of molecular weight. Ac-
cordingly, we assume that k(x) has a power law behavior at
large x and the exponent is determined by the condition of
molecular weight independence. The result is

r~el¥ D] (3.4)

along the coexistence curve,
Since ¢ = (vod — 1) [see Eqgs. (2.7) and (2.9) ] we find
T~C (3.5)
for both linear and branched polymer chains independent of
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dimension. This is in agreement with the results of Flory—
Huggins theory and in sharp contrast to the results of Daoud
et al. who base their analysis on the crossover exponent ¢.
Use of this crossover exponent leads to the prediction®

rl®ed = 1] (3.6)
or by use of Egs. (2.2) and (2.4),
rl@— Ao/ ved — 1] , (3.7)

which exhibits a dependence on dimensionality. Note that
for linear chains in d = 3, Eq. (3.7) predicts 7~c in agree-
ment with Eq. (3.5). For linear chains in d = 2 or branched
chains ind = 2 and d = 3, the predictions differ. In particu-
Iar, for linear chains in d = 2 we propose that 7~c in the
high concentration limit while the standard approach pre-
dicts 7~c*.

Predictions for the location of the critical point also dif-
fer in the two approaches. According to the free energy
expression, Eq. (3.1), one expects

(3.8)

c.~c*
and
l7.|~N ~¥. (3.9)

Since in our approach ¢* ~N ~ ¥, we find ¢, ~ 7. which is in
agreement with Flory—Huggins theory.® Our results differ
from Flory-Huggins theory in the predicted molecular
weight dependence because in the latter theory ideal behav-
ior {¢ = 1/2] is always presumed to exist in the theta region.
(The predicted phase diagram is schematically displayed in
Fig. 1.)

The results of Daoud et al.” differ from those presented
in Eqgs. (3.8) and (3.9) since they find ¢.~N ~¥ and
|7]~N ~¢. For a linear chain in d =3, #(3) =¢(3) so
there is no difference in the prediction of the location of the
critical point. In other cases there is a difference. In particu-
lar for a linear chainind = 2, we predict |7 = ~|c.|~N ~ '/
while Daoud et al. predict |c.|~N ~'? and |r,|~N ~?/3.

Finally, we note that the interesting heuristic argument
presented by Daoud et a!. to determine the high concentra-
tion limit for the coexistence curve can be utilized in our
scheme as well. They propose that phase separation occurs
when the volume fraction ¢, reaches some constant indepen-
dent of N and 7. In the collapsed state,

#, = (¢/N)R?Z, (3.10)

where R, is the appropriate chain length in the collapsed
state. Use of Eq. (2.15) leads to 7~ in agreement with Eq.
(3.5).

1V. DISCUSSION

In this article, we claim that within mean field theory the
appropriate crossover exponent is ¥ {Eq. (2.8)] and not ¢
[Eq. (2.2)] for linear polymer chains. For randomly
branched polymer chains the appropriate quantity is ¢ [ Eq.
(2.9)] and not é [Eq. (2.4)].

This modification has major consequences for the pre-
dictions of polymer behavior. First, there is a different pre-
diction for the scaling behavior of linear chains ind = 2 and
of randomly branched chainsin bothd = 2 and d = 3 as the
system moves from the theta region to either the good or
poor solvent region. Second, use of the exponent ¢ predicts

high concentration phase separation behavior for both linear
and branched polymer chains below critical dimensionality
of the form r~¢. This is in agreement with Flory—-Huggins
theory and in sharp contrast with the predictions that follow
from use of the crossover index ¢. We predict that the critical
point for polymer phase separation is located by the relations
¢, ~7, and ¢, ~N ~ ¥ for both linear and branched poly-
mers. The first relation is in agreement with Flory—-Huggins
theory, the second is not. In contrast, use of the crossover
index ¢ predicts ¢, ~N ~¥ and |r.|~N ~%. These are all
substantial differences.

We do not intend to claim that mean field predictions
based on 1) are better than predictions based on ¢ compared
to reality. After all there is no reason to believe that mean
field theory is an adequate description for all aspects of poly-
mer behavior. Moreover, for linear chains in two dimensions
there is support for use of the value ¢(2) = 2/3 in the critical
regions from both simulation results’ and e-expansion calcu-
lations® which suggest the tricritical crossover exponent
?,(2) =0.6364.

Consistent application of the mean field results com-
pared to consistent application of the results of € expansion
can be quite striking. A particularly striking case is a linear
polymer in two dimensions which conveniently is the situa-
tion most likely to be amenable to experimental test. Here, it
is already known that the mean field prediction'! v, (2)

= 2/3 differs markedly from the results of ¢-expansion'?

calculation v; (2) = 0.505. In the critical region according
to the scaling discussion for the free energy in the previous
section one predicts approximately

rcl#/0H =] ces (4.1)

if one consistently employs e-expansion values for ¢ and v,,.
In contrast, consistent use of mean field values predicts the
linear relationship 7 ~c.

This sharp difference evidently arises because of the fac-
tor (ved — 1) ~' which appears in the exponent and it will be
manifest in other physical situations where the same factor
appears. The concentration dependence of the surface pres-
sure 77 of a polymer monolayer which has been examined
experimentally'>'* presents another example since 7~c¢”
withy = [(dv,/(dvy, — 1)].

In the high concentration limit we believe the appropri-
ate crossover index to employ is ¢ and not ¢ within the con-
text of mean field theory. This leads to the different predic-
tions for the behavior of 7 vs ¢ along the phase boundary, We
do not believe that an acceptable way to proceed in this re-
gion is to employ mean field values for v and v, and the
crossover index ¢ which seems correct because of its resem-
blance to ¢,.

Substantial discrepancies between the predictions of a
Flory-type mean field and more refined methods is disturb-
ing in polymer chemistry. The agreement which is found in
certain key quantities, e.g., v(3) = 3/5and v, (3) = 1/2 has
led to an expectation that mean field theory is quite reliable
for practical use. An improved understanding of the limita-
tions of mean field theory compared to ¢-expansion tech-
niques (and vice versa) is very much to be desired. An espe-
cially important question concerns the identification of the
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region within which the Flory-type mean free theory cannot
be expected to hold and the proper description requires anal-
ysis supercrossover behavior from the tricritical exponent ¢,

to ¥.

APPENDIX

For a linear chain the Flory free energy including the
spatial entropy term which is proportional to In R (this term
comes from the volume element in the configurational inte-
gral) is

dR?> wN? wN?
F(R)= —dInR + + -+ . (Al
(%) 2N R¢ 2R* )
Minimizing the energy yields
2 3
0= 1 R vN wN (A2)

TRTN RA+'  Ru+1’
Introducing the expansion factor a by R = N /%« into Eq.
(2) gives

a*(a@?— 1) =a®N?*" 4?4 wN3 7, (A3)

The spatial entropy term has replaced a” by (@® — 1) in Eq.
(A3).

It has been argued'” that when v and w are small, this
term becomes significant. This may especially be expected to
be the case when considering the transition from & to col-
lapsed behavior in d = 2. Here, we specialize to the d = 2
case and show that #(2) is still the correct crossover expo-
nent to use within mean field theory.

Ford = 2,1 Eq. (A3) becomes

at(a®*—1) =Nwa® +w).
We proceed to analyze Eq. (A4) for various cases.

(A4)

1.v>0

The right-hand side of Eq. (A4)— o0 as N— 0 and con-
sequently @— o as N— w0 . Equation (A4) thus simplifies to
a®~Nva?in thislimitand @ ~v"/*N 4or R ~v'/*N *'* This
is the good solvent result and the In R contribution is irrele-
vant.

2.v=0
In this case Eq. (A4) becomes
at(a®—1)=Nw. (A5)

The right-hand side of Eq. (A5)— o as N— and conse-
quently a—w as N—w. Thus Eq. (AS) simplifies to
a® ~ Nwin this limit and @ ~w'/®N 2/> or R ~w"/*N */>. This
is the @ solvent result and again the In R contribution is irre-
levant.

There exists a crossover from 8 to good solvent behavior
for small v when Va® ~w or vN /3 =w?/?. Since v ~ 7, analy-
sis identical to that given in Sec. II B leads the crossover
exponent in ¢(2) = 1/3 as expected.

v=—|v|

In this case Eq. (A4) becomes

a*(@*—1) =N(— |v|e®* +w) . (A6)
This is the regime where the spatial entropy term is expected

to be significant. The argument goes as follows: collapse oc-
curs when ( — |v|a® + w) becomes zero. At this point the
right-hand side of Eq. (6) is zero independent of N, a = 1,
and consequently |v| = w. This argument would suggest
that & solvent behavior is observed for |v| < w, and at [v| = w
a collapse occurs.

The above argument is fallacious and does not take into
account the limiting behavior of how ( — |v|a® + w)—0 as
N-—oc. This is of great importance as the right-hand side of
Eq. (A6) includes a prefactor N which diverges. A closer
analysis of Eq. (A6) suggests that for all v = — |v| <0 as
N—w collapse occurs with a® = w/|v| and for small |v|
there exists a crossover from 6 to collapse with a crossover
exponent #(2) = 1/3.

Clearly as N—w, a cannot diverge for in this case
a®~ — |v|Na? and the left- and right-hand sides of the equa-
tion have opposite signs. Suppose instead that « tends to a
constant (the condition for collapse) as N-—w, ie,
a*(N)=a+b/N+c/N?+ ... Substitution into Egq.
(A6) yields a solution if @ = w/|v|, b2 = w?(|v| — w)/|v[*,
etc. Thus Eq. (A6) yields collapse with R ~ (w/|v| )N '/? for
d =2forallv = — |v| <0, though there exist corrections to
scaling at small V. For the special value of the parameter
[v| =w,a=1and all b=c¢ =+ =0, and thus all correc-
tions to scaling disappear.

For small values of |v|, @ behavior will be observed so
longas |v|a®<w, orasa ~w'/°N '/®in the O regime, solong as
[v|N /3 ~w?’3. In other words, as |v]|~|7|, ¥(2) =1/3 is
again the correct crossover exponent to use.

We find that inclusion of the term d1n R in the free
energy does not change any of the considerations presented
in the body of the paper for linear chains. A similar conclu-
sion holds for randomly branched polymers.
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