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The effect of rotational diffusion on the growth of Witten—Sander aggregates is examined.
Computer simulations of a model are analyzed where the growing aggregate rotates with a
rotational diffusion constant D, (R ) ~1/[7,,, (R /a ) ], while the irreversibly aggregating
particles jump with a diffusivity a*/74(70,7,,, are the time constants for translational and
rotational jumps and q is the lattice spacing). In the simulations 0.0002 < (74/7.: ) < 1600 is
varied over seven orders of magnitude. In general the aggregates are anisotropic (despite the
inherent symmetry of the model) with longitudinal and transverse length scales R ; and R, . On
scales 7<R, the cluster remains fractal, but on scales R, <r<R, the cluster becomes linear.
Estimates of the dependence of R on N, (7,/7,o ), and 6 are made and compared with the
computer data. Both initial and asymptotic behavior are investigated, and several regimes of

growth identified.

i. INTRODUCTION

Aggregates in nature are often not compact but have a
tenuous dendritic structure' characterized as fractals.? Wit-
ten and Sander’ introduced a model of diffusion-limited ag-
gregation (DLA)) which leads to such fractal structures. A
seed particle is placed on the origin of a lattice and particles
which are released isotropically from the periphery perform
a random Brownian walk. If a particle reaches a nearest-
neighbor site, it becomes part of the growing cluster. Com-
puter simulations® have shown that the resulting aggregates
are fractals, and can be characterized by a fractal dimension
D which can be extracted from the relationship N~ R ¥
between the number of particles & in the aggregate and its
radius of gyration R. Here ~ means “scales-like” and d is
the embedding dimension of the Euclidean space. The same
information can also be found from the correlation function

C(r) = {p)p(r' + 1)) ~rP -1 (1.1)

where p(r) is the local particle density.

Though the Witten—Sander model has proved vital to
our understanding, several important phenomena affecting
growth have been neglected, and the model has been general-
ized in many directions by later studies in order to make it
conform more closely to the growth processes which occur
in physical systems.>® For example, variable striking prob-
ability>* thickens the arms of the aggregate at short scales
but does not change the fractal structure at large scales. Per-
mitting the aggregate to grow in a bath of finite concentra-
tion>® causes the fractal structure to break down asymptoti-
cally after which the aggregate grows as a compact object.
Similarly, if the aggregation proceeds by coagulation, where
all particles may act as clusters in a medium where they
collide, the model of single particle aggregation must be re-
placed by a model for cluster—cluster aggregation. Computer
simulations have shown”® that though the resulting cluster~
cluster aggregates are fractal, their fractal dimension is in a
completely different universality class from DLA.°
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Rotational Brownian motion due to thermal fluctu-
ations is another effect which may be expected to alter the
structure of real aggregates in a medium. Up to the present
rotational motion has not been included in the study of
DLA-type growth. Therefore, in this paper we investigate
the effect of rotational Brownian motion on Witten—Sander
aggregates especially as regards their fractal dimension and
structure. We shall see that on short scales the aggregate
retains a fractal structure but there exists a dynamical sym-
metry breaking which creates globally anisotropic aggre-
gates. This occurs, despite the inherently isotropic nature of
the model: both the rotating aggregate and the diffusing par-
ticles have no preferred symmetry axis. This effect can be
understood qualitatively. A random fluctuation in size in
some direction is unstable since it tends to catch the particles
diffusing in from the periphery before the rest of the aggre-
gate. Whether this effect is transient or asymptotically rel-
evant depends on the relationship between the rotational dif-
fusion of the cluster and the particle diffusivity.

In Sec. II we present a scaling theory for this effect and
also estimate the relative size and structure of the aggregate
under different conditions of growth. The results are dis-
cussed in Sec. IIIL

il. THEORY

In this section we consider the effect of rotational Brow-
nian motion on growth of a Witten—Sander aggregate by us-
ing scaling arguments on a jump model. We compare our
results with computer simulations.

Assume a particle is released from the periphery and
performs a Brownian walk on a lattice with spacing g, taking
a jump every time interval 7,. The aggregate is randomly
rotating about its center of mass with a rotational diffusion
constant D, (R ) where

Dyoy (R)) ~ [ 700 (R /2)°] . (2.1)
Here, we assume that the aggregate is not necessarily spheri-
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cal but has a unique symmetry R axis which is taken to be
the largest principal radius of gyration; R, is the size of the
other (d — 1) principal radii.

The computer simulations were carried out using an off
lattice® DLA model. Both the diffusion of the mobile particle
and the rotational Brownian motion of the cluster are repre-
sented by moving the particle relative to a stationary cluster.
If the particle is in the vicinity of the cluster, the distance
from the center of the mobile particle to the center of the
closest particle on the cluster (7., ) is obtained. The particle
then follows a path consisting of a sequence of angular and
translational displacements until it reaches the edge of a cir-
cle of radius r,;,, — 1 particle diameters from the original
position of the mobile particle. The lengths of the transla-
tional and rotational displacements are a small fraction (less
than 10%) of r,,;, — 1 and the relative probabilities of trans-
lation and rotation are calculated from the translational and
rotational diffusion coefficients. When the mobile particle
reaches a distance of r_;, — 1 particle diameters, the new
minimum distance is obtained and the process outlined
above is repeated. When the mobile particle is only a small
distance from a particle in the cluster (within 1/4 particle
diameters in our simulations), the rotational motion is
stopped and the particle takes translational steps of length
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FIG. 1. (a) Cluster “b” of Table I1. § = 0, (/7. ) = 0.004, N= 11 107.
The late stage (V, =315, consequently N>N,) of growth of an initially
slowly rotating cluster. The remnants of the initial Witten—Sander growth
(when N<N,) can be seen at the cluster center. The cluster is growing lin-
early (R, /a) ~ (1o/7,5 )P~ /2~ PN, (b) A log-log plot of the density
correlation function C(r) vs (r/a) for cluster b at small scales. The break-
down of fractal structure at R, and the crossover to linear behavior can be
seen.

1/4 particle diameters. If one of these steps causes the mobile
particle to contact one of the stationary particles in the clus-
ter, it is moved to the position of first contact and incorporat-
ed into the growing cluster of particles. In the case of very
fast rotational diffusion of the cluster, the distance from the
cluster for purely translational motion and the minimum
step length would have to be reduced below 1/4 particle
diameters. This was not necessary in our simulations.

If the particle is outside of the region occupied by the
cluster, it undergoes only translational diffusion. However,
the “time” (proportional to =, /? where /, is the length of the
ith step) spent outside of the region occupied by the cluster is
recorded and a corresponding rotation (randomly selected
from an appropriate Gaussian distribution of angles calcu-
lated from the time and the rotational diffusion coefficient)
is carried out when the particle returns to the region occu-
pied by the cluster.

Results for aggregates generated in computer simula-
tions of the model in two dimensions for several values of
(7o/T.x ) and & are presented in Figs. 1-6. Log-log plots of
the correlation function C(r) at small scales are also includ-
ed. Note the anisotropic nature of the clusters. The param-
eters 7, 7., and the exponent § are quantities which are
fixed by choice in the computer simulation. On the basis of
hydrodynamics for compact spherical objects (d>2) one
expects D, ~R ~“and D; ~R > ~ ¢ where Dy is the transla-
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FIG. 2. (a) Cluster “f” of Table II. § =1.0, (74/7,,) = 0.0025,
N = 14 053. The early stage (N, =22 153, consequently N < N,) of growth
of our initially slowly rotating cluster. The cluster is almost isotropic and
indistinguishable from the normal DLA. (b) A log-log plot of the density
correlation function C(r) vs (r/a) for cluster f. The correlation function is
similar to that expected for DLA.

J. Chem. Phys., Vol. 85, No. 4, 15 August 1986

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



Hentschel, Deutch, and Meakin: Rotational Brownian motion

700 Diameters »
T T T T T T T T T
-l - —d
_F Slope =-0.32 .
G -2k -
£
-3% -
1 ! 1 | | | I | 1
¢} | 3 4 5

in(r)

FIG. 3. (a) Cluster “g” of Table IL. § = 1.0, (7/7,,) = 0.01, N == 12 461,
Tobe compared with Fig. 2(a). The exponent § is the same but the cluster is
at a later growth stage (V, ~2188, consequently N> N,). The DLA struc-
ture has broken down and due to a dynamic equilibrium between particle
capture at the sides and cap of the aggregate — (R,/a)
~[(re/ T Y2 IN JVEP =D+ 2= D () A log-log plot of the density
correlation function C(r) vs (r/a) for cluster g at small scales.

tional diffusion coefficient. Of course, DLA clusters are not
compact. However, Chen et al.'° have found for DLA clus-
ters (without rotation) that D, ~R ~'ind = 3 is obeyed to
a surprising degree. Therefore, the identification § = d may
well be a good approximation.

It is apparent that the clusters in Figs. 1-6 can be de-
scribed by two length scales R, the maximum end-to-end
distance and a transverse length scale R, which is the “thick-
ness” of the aggregate. On length scales r<R, the aggregate
appears to be Witten—Sander-like, while on scales R, <r<R,
the cluster is one-dimensional. We note that the cluster can
be covered with (R /R ) blobs of size R, . Therefore, the
number of particles ¥ in the cluster scale as

N~(Rl/a)D((Rn/RL)~(Ri/a)D—l(R”/a). (2.2)

We can confirm that the aggregate is Witten-Sander-
like on scales r<R, . It is clear from the log—log plots of the
correlation function that fractal behavior with DLA expo-
nents is observed on scales <R, where we estimate R,
from the intercept of the two asymptotic slopes of the log-log
plots of the correlation function C(r). Similarly, we can esti-
mate (R, /a) from the relation (2.2) and our knowledge of
(Ry/a) and N as (R, /a)~[N/(R;/a)]"P~P. The re-
sults are tabulated in Table I for 18 different aggregates gen-
erated in computer simulations and in Fig. 7 can be seen a
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FIG. 4. (a) Cluster “k” of Table IL. 8 = 2.0, (7o/7,,) = 1.0, N= 12 811,
The marginal case § = 2.0. Perhaps the physically most realistic representa-
tion of the effect of thermal fluctuation in two dimensions as (7,/7,,, ) = 1.0.
(b) A log-log plot of the density correlation function C(r) vs (r/a) for
cluster X at small scales.

log-log plot for the estimates of R, against R, ; in fact R,
=~14R . is a good fit to the data. Thus Eq. (2.2) is valid
and, if we could estimate one length scale for instance R, we
would have a full description of the aggregate.

To find how the cluster grows, we have to estimate
where a particle diffusing in from the periphery is likely to
strike an aggregate of longitudinal length scale Ry, and
transverse length scale R, , performing rotational Brownian
motion with a diffusion constant given by Eq. (2.1). There
exist two competitive processes. These can be best under-
stood by treating the aggregate as a cylinder. First the rota-
tional motion will enhance the possibility of capture by the
caps of the cylindrical cluster. Second, because the surface
area of the sides is larger than the cap ends, this will favor
capture by the cylinder sides.

These ideas can be made quantitative and a differential
equation ford In R /d In N derived. First we define P, to
be the probability of the diffusing particle sticking to the cap
while P, is the probability of sticking to the sides of the
cylinder

Pend +Pside =1 (2.3)

We now estimate P, 4. Rotation will increase P,,; com-
pared to the static case. We argue that P, can be written

Pena = Pgic + Piinetics (24)
due to two processes. Either the diffusing particle hits a clus-
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FIG, 5. (a) Cluster “g” of Table I1. § = 3.0, (7¢/7.o, ) = 100, N = 13 962.
The late stage of growth of an initially quickly rotating cluster which has
slowed down to such an extent that the final DLA structure has appeared
(N, =2188, N, = 10, consequently N> N,»N,). No remnant of the initial
linear structure can be seen as N, is so small. (b) A log-log plot of the
density correlation formation C(r) vs (#/a) for cluster q.

ter monomer by chance as it reaches a distance R from the
center of mass with a probability P, where

Pstatic""(Rl/a)D-l/(R"/a)d_l, (2.5)

which is the probability that a site in the surface of a d-
dimensional sphere of radius R, is occupied by one of the
(R,/a)® ' cap monomers.

Alternatively the diffusing particle reaches an empty
site on the surface, but in the time 7, that it sits there, it gets
hit by one of the randomly moving cap monomers. This oc-
curs with a probability Py, ..., where

Pkinetic -~ (TO/Trot ) (Rll /0)3 _5—d(RL/a)D_— !

~(TO/Trot)(Rﬂ/a)z—aPstatic' (26)

Note that (7o/7.; ) (R /@)*~? is the ratio of the diffusivity
of an aggregate monomer in the cap ~R § D, (R) to the
particle diffusivity ~a*/7,.

To estimate P, we argue that, as the density is the
same ~ (R, /a)® ~“ everywhere, the ratio of Py, to P, is
simply proportional to the surface areas of the sides of the
cylinder R { 2R, to the surface area of the caps R { ~ ' or

Pside ~ (Rll /Ri )Pstalic' 2.7)
We can now find an equation for R, . Roughly one out of

every SN~P 2! particles stick to the end of the cylinder.
This particle will increase R, by R =a/(R, /a)?~ 1 or
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FIG. 6. (a) Cluster “r” of Table I. § = 3.0, (7o/7, ) = 1600, N = 12 662.
Compare with cluster ¢ which has the same value of 8. This is at a much
earlier stage of growth. The initial rotation has only slowed down to the
extent that we are in the crossover regime (N, =224,326, N,~40 conse-
quently N,»N>N,) between an initially linear structure and final Witten—
Sander cluster. Here the remnant of the initial linear structure can be seen at
the cluster center. (b) A log-log plot of the density correlation function
C(r) vs (r/a) for cluster r.

dR,/dN=aP,,/(R,/a)*~". Using Eq. (2.2) we find
dIn(R,/a)/d In N=P,,,. However, from Eqgs. (2.3)-(2.7)
we can estimate P, and consequently

TABLEI. Conditions of growth and data for the 18 clusters analyzed in this
paper.

Cluster é (To/Tear) N  _(Ryfa) (R/a) (R./a)
a 0.0 0.001 12230 830 57 37
b 0.0 0004 11107 1030 35 14
¢ 0.5 0.0002 13072 360 219 110
d 0.5 0.0006 12286 740 68 43
e 0.5 0.0025 12701 1020 44 30
f 1.0 0.0025 14053 510 145 99
g 1.0 0.01 12 461 700 75 55
h 1.5 0.09 12732 610 95 122
i 1.5 0.25 12 333 890 52 33
J 1.5 1.0 12 320 1080 39 25
k 2.0 1.0 12 811 600 99 110
! 2.0 4.0 12 456 850 56 49
m 2.0 16.0 12 390 1030 42 25
n 2.5 9.0 13 545 630 100 110
0 2.5 25.0 12 558 740 70 60
P 2.5 100.0 12 434 1000 440 37
q 3.0 100.0 13 962 650 100 81
r 3.0 1600.00 12 662 960 48 37
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FIG. 7. A log-log plot of (R,/a) vs (R, /a) estimated from the data in
Table I. The lines R, = R, and R, = 1.4 R, have also been drawn.

dIn(R/a)
dinN
1+ k(1o/Teor) (R /@)*~°

T 1+ k(ro/7e) (R /@)~ + (D— ) (R, /R,)
(2.8)

where k is some constant of order unity, and the factor
(D — 1) in front of (R, /R, ) was found from the condition
that when (7/7.,) = 0 we expect DLA growth N~R °.

Equation (2.8) can be solved subject to the initial condi-
tions (R, /a) = 1 for N = 1 for a variety of (7/7,, ) and 8.
However, the major features of the solutions can be seen by a
qualitative analysis of Eq. (2.8).

A. (to/ Tror) <1

For these cases the initial rotation is always very slow
and initially an isotropic Witten—Sander cluster is created; as
(7o/Teot ) (R /@)*7%¢1, and (R /R;)=1 we have
dIn(R,/a)/dIn N = 1/D. What happens asymptotically
depends on 6.

1.6>2
Here the rotation 1is always irrelevant as

(To/Teo ) (R /@)*~ %<1, (Ry/R,) =1 remains valid for all
N. Witten-Sander clusters are created.

26=2

This is the marginal case. Actually when § =2, Eq.
(2.8) can be solved exactly with the result
(R,/a) = N'’f [ N,k(7o/T, )] Where fis the implicit so-
lution of the equation

S [ p/ (1 +y—flx,p)P/ P~ )P = x(P=1/D,

(2.9)
Though Eq. (2.9) is complex, it simplifies greatly as x— oo
with the result f2/®~ VY =1 4 y or using Eq. (2.2);

(Ry/R) =1+ k(10/Tye1)- (2.10)

For 6 < 2 the rotation becomes relevant and the isotrop-
ic growth stage must break down. This will occur when the
radius of gyration R =£,, given by (74/7, ) (£,/a2)* %=1
when N, ~ (£,/a)” particles have been added to the growing
cluster, or

(gl/a) = (TO/Trot ) B 1/(2_5)’

(2.11)
le(TO/frot ) —D/(2—8)'

What happens now? Both (74/7,,)(R;/a)*~° and
(Ry/R,) increase. First let us assume that as
N—> (To/Teo ) (R /@)>~°» (R /R, ). Thus essentially all
particles are added to the caps, Eq. (2.8) gives
dIn(R;/a)/dIn Nx1 and consequently a linear structure
(R,/a) ~N is created asymptotically. Substitution of this
result into our initial assumption gives N>~ %» N. Thus our
assumption is only self-consistent for 8 < 1. Therefore we
have to distinguish the regimes 1<6 <2 and 6 < 1.

3 1<6<2

For these values of & the only alternative to
(To/Te ) (R /@)~ °» (R /R, ) asymptotically is to assume
that a dynamic equilibrium is set up between the probability
of a particle being captured at the cap ends due to increasing
rotation and the probability of being captured on the sides
due to its increasing surface area. Thus we can expect
(To/Teot ) (R /@)>~°~ (R /R,), OF

(R /@) ~ [ (To/Tpo )P~ !N ] VEP - D+ =D, (2.12)

where we have used Eq. (2.2). This result is valid for R,
RE,.

4.6<1

For & < 1 the asymptotic behavior cannot be given by
Eq. (2.12)as 1/[6(D—1) + (2+ D)] > 1 for 6 < 1. Rath-
er, we have to assume asymptotically (7o/7,o ) (R /a)*~°
> (R /R,) and consequently as the rotation is so dominant
(Ry/a) ~ (7o/7, )N. To find the exponent @ we fit this
functional form to (Ry/a)~N""? at
N=N,~(1o/Teer) ~ 2~ %/P with the result

(R“/a)~(1'0/7'm)w‘”"2“5’N. (2.13)

Note that our two estimates of (R, /a) given by Eq. (2.12)
for 1<6 <2 and Eq. (2.13) for § < 1 are self-consistent as at
& = 1both give (R /a) ~ (7o/T, ) P~ VN.

B. (to/ 701 )>1

For these cases the initial rotation is very fast and to
begin with a linear aggregate appears with (R,/a)~N.
Clearly, if the rotation slows down fast enough as (R, /a)
increases we would expect a breakdown in this initial linear
behavior to occur as diffusing particles are absorbed on the
sides of the cylinder. To estimate the length scale £, at which
this breakdown occurs and the number of particles N, in the
aggregate at this stage, we mnote that initially
(7o/Teor) (R /8)* %> (R /R,)~(R/a). The linear
structure breaks down when this inequality becomes and
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equality or at R ~¢&, given by
Ny~ (§/a) ~ (1o/Tro )07 1. (2.14)

Clearly, the linear structure only breaks down for § < 1. The
asymptotic behavior also depends on § and therefore we con-
sider the several possible cases separately.

1.8<1

Here the rotation becomes even more relevant and a
linear aggregate is created asymptotically.

2 1<6<2

For these cases the rotation is relevant in that a Witten—
Sander cluster does not appear asymptotically, but not so
relevant that the initial linear structure can survive. In fact,
breakdown occurs for R ~£, and for R »£, we expect the

asymptotic behavior given by Eq. (2.12).

3.6=2

The marginal case § = 2 has already been considered for
all (7o/7,, ) with the asymptotic result given by Eq. (2.10):

Hentschel, Deutch, and Meakin: Rotational Brownian motion

4.6>2

Finally for § > 2 the asymptotic rotation is so weak that
a Witten—Sander cluster results. Thus the growth process
occurs in three states—an initial linear regime for R ) <€2
givenby Eq. (2.14) where (R, /a) ~N; then an intermediate
regime £, <R, <&, where £, is given by Eq. (2.10) where the
probability of sticking to the sides of the cylinder is of the
same order of magnitude as at the cap ends with the result
that (Ry/a) is given by Eq. (2.12); and finally a regime
R, >¢,, where DLA growth Ry ~R, ~N'"? a is to be ex-
pected.

To test these arguments rigorously would require much
more data than we have at our disposal. Instead, in Table II
we give the data of 18 clusters generated on the computer
together with the theoretical growth stage of each cluster
and an estimate of the expected longitudinal length scale
(R /@) neor - Even if our arguments are correct, we could
only estimate (R /@) .., Within factors of the order of uni-
ty. However, the qualitative correlation in Table II of
(R} /@) eor and (R /a)., is very strong. Especially since
(7o/T.o ) changes by seven orders of magnitude between

(R /a) = k" NP, (R,/a) =~k NP, (R, /R,) cluster ¢ and cluster . Any deviations in the correct depen-
=1+ k(ro/Toy). dence on (7¢/7,, ) of (R} /@) e, should be noticeable im-
TABLE II. Growth regimes for the 18 clusters.
Cluster 6 (1o/Te) N N, N, Regime (R} /@) peee (R/@)cnp
a 0.0 0.001 12 230 315 Eq. (2.13) 1223 830
NN,
b 0.0 0.004 11 107 100 Eq. (2.13) 1763 1030
N»N,
¢ 0.5 0.0002 13072 12 760 Witten-Sander 295 360
N=N,
d 0.5 0.0006 12286 3769 Eq. (2.13) 454 740
N> N,
e 0.5 0.0025 12 701 773 Eq. (2.13) 886 1020
N3N,
f 1.0 0.0025 14 053 22 153 Witten—-Sander 308 510
N> N,
g 1.0 0.01 12 461 2188 Eq. (2.13) 570 700
N> N,
h 1.5 0.09 12732 3059 Eq. (2.12) 360 610
N> N,
i 1.5 0.25 12 333 102 Eq. (2.12) 585 890
NN,
J 1.5 1.0 12 320 1 Eq. (2.12) 1169 1080
NN,
k 2.0 1.0 12 811 1 Eq. (2.9) 380 600
N3N,
! 20 4.0 12 456 4 Eq. (2.9) 499 850
N> N,
m 20 16.0 12 390 16 Eq. (2.9) 865 1030
N3N,
n 25 9.0 13 545 1516 4 Witten—Sander 301 630
N>N, >N,
] 2.5 25.0 12 558 45 682 8.6 Eq. (2.12) 328 740
N>N,>N,
P 2.5 100.0 12434 4.6X10° 22 Eq. (2.12) 516 1000
N>N»N,
q 3.0 100.0 13 962 2188 10 Witten-Sander 307 650
NsN>N,
r 3.0 1600.0 12 662 224326 40 Eg. (2.12) 472 960

N>N,>N,
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FIG. 8. A log-log plot of (R} /8) peor V8 (R} /@) cxp estimated from the data
in Table II.

mediately. In Fig. 8 we have made a log-log plot of the data
in the last two columns of Table II [the straight line in Fig. 8
represents (R} /a)geor = (R /@)exp-] The correlation is
evident.

lll. DISCUSSION

In this paper we have considered the effect of rotational
diffusion on diffusion-limited aggregation. Several impor-
tant points have emerged from the computer simulations
and our analysis.

First, the aggregates are anisotropic despite the isotrop-
ic nature of the model. Such dynamical symmetry breaking
has been observed before in cluster—cluster aggregation: the
model is isotropic but the resulting aggregates are “stringy”
and statistically anisotropic.'"'* But in general, situations
where the global structure of the aggregate is not isotropic
are due to the fact that the growth process itself has been
anisotropic. Thus the structure of depositions grown on sur-
faces rather than from an initial seed particle have been in-
vestigated,'>'> and these are naturally anisotropic. Similar-
ly for a cluster grown by anisotropically diffusing particles
with diffusion constants D, in direction a on a catalyzing

seed, we would expect'” R, ~+/D,, . And, even the diamond
shaped fractals recently observed'®'? are due to lattice an-
isotropy. Here, on the other hand, the anisotropy is due to
the growth of unstable fluctuations when the rotation rate is
fast enough.

Second, the asymptotic behavior depends only on §, and
as & decreases the rotation becomes ever more relevant. For
& > 2 Witten—Sander clusters are grown; while for § < 1 lin-
ear behavior is to be  expected—in fact
(R /@) ~(To/Tro )P~ /@~ PN, In between 1<5 <2 a dy-
namic equilibrium is set up between the probability of irre-
versible aggregation at the ends and sides of the aggregate
resulting in an intermediate growth rate where (R,/a)

~ [ (7_0/7:-0t )(D— l)N ] 1/(6(D—1) + (Z—D)'

Third, the initial behavior depends strongly on (7o/7,, )
and two important crossover regimes can be defined by ¥,
and N,—the number of particles in the aggregate at cross-
over. If (74/7,, ) €1, then the initial growth is always iso-
tropic, but if § < 2 then when N, ~ (74/7.,, ) ~2/?~® parti-
cles have been added DLA behavior breaks down. For
(70/Twor ) > 1 On the other hand the initial growth is always
linear and this will continue unless 8 > 1 when after there are
about N, ~ (7o/T; )/~ ¥ particles in the aggregate linear
behavior breaks down. :

Finally, the computer simulations have been carried out
over seven orders of magnitude in (7,/7,,, ) and several val-
ues of & (see Table IT). These results suggest that our argu-
ments are correct because significant deviations would be
observable over this experimental range. However, for ag-
gregates rotating due to thermal fluctuations we would ex-
pect from mode coupling (7¢/7,,, ) ~1, and § =d. There-
fore, for d = 3, the rotational diffusion is expected to be
asymptotically irrelevant while, if d =2, the situation is
marginal.
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