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The standard coagulation process is generalized to include the effects of fragmentation and a scal-
ing description for the cluster size distribution is developed. The Smoluchowski rate equation is
used to calculate the critical exponents describing the steady-state size distribution. Predictions of
the scaling and the rate equation are tested by numerical simulations. The mean-field rate-equation
results are found to be valid in d = 1 implying that the upper critical dimension d, is less than 1.
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The phenomenon of coagulation is central to a wide
range of physical, chemical, and biological processes
and the understanding of it is of considerable impor-
tance in many basic and applied problems from col-
loidal and polymer science! to antigen-antibody aggre-
gation? and cluster formation in galaxies.>

Coagulation processes can be schematically rep-
resented by the following reaction mechanism:

K (i)
A,-+A,F~(——,_"J_)A,+j, 1)
where A4; denotes a cluster containing / elementary
units (monomers, particles, etc.), and K (i,j) and
F(i,j) are the forward and the reverse rate coefficients
representing the coagulation and the fragmentation
rates, respectively. Recently, much effort has been
devoted to the scaling description of the cluster-size
distribution for irreversible aggregation* which is
described by the Smoluchowski rate equation® with
F(ij)=0. These studies have led to general scaling
descriptions* of irreversible aggregation processes
which have been verified by experiments.® In addi-
tion, numerical simulations”?® have shown that there
exists a critical dimension d. =2 at and above which
the mean-field Smoluchowski rate equations provide
an accurate description of irreversible aggregation, but
below d., spatial fluctuations give rise to new Kkinetic
behavior.

There exist a variety of situations in which the re-
verse reactions are important.>-!* For example, as
clusters grow in size, the possibility of breakup in-
creases. An important characteristic of the reversible
process is the formation of a steady-state cluster-size
distribution after a long time. This is in contrast to ir-

© 1986 The American Physical Society

reversible aggregation where there is a permanent evo-
lution in time as the number of clusters in the system
is always decreasing.

In this Letter we generalize the standard coagulation
process to include the effects of fragmentation, and we
develop a scaling approach for the cluster-size distribu-
tion and its moments. We show that under general
conditions, the critical exponents describing the
steady-state cluster-size distribution and its moments
can be determined from a generalized Smoluchowski
rate equation® for reversible coagulation.®!* The pre-
dictions of the scaling theory and the Smoluchowski
equation are tested by numerical simulations of a sim-
plified model of coagulation. We find that the mean-
field rate-equation results are valid in 4 = 1, implying
that for reversible aggregation d, < 1.

In reversible coagulation two competing processes
affect the temporal evolution of the cluster-size distri-
bution and its moments. The coagulation rate K (i,j)
decreases the number of clusters, while the breakup
rate F (i,j) increases it. There exists a crossover time
7, such that after a sufficiently long time, t >> 7, a
balance is established between the two processes lead-
ing to an equilibrium state in which the cluster-size
distribution and its moments become independent of
time.

The quantity F(ij), which is the rate at which a
cluster of size i +j breaks up into a cluster of size / and

a cluster of size j, is assumed to be of the form
FGij)=k®(ij), 2)

where k is the breakup constant, ®(i,j) is a function
that describes the dependence of the fragmentation
rate on the cluster sizes / and j, and ¢(1,1)=1. The
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main assumption in the scaling approach to ag-
gregtaion processes*® is the existence of one charac-
teristic cluster size in the system. Let S(k,t) be the
mean cluster size which is defined by

S (k) = 252N, (k,1), 3)

where N;(k,t) is the number of clusters of size s in
the system at time ¢ We generalize the scaling as-
sumption for the cluster-size distribution* to reversible
aggregation and write

Ny(kt)=s"2f(S(kt)/s). 4)

As in irreversible aggregation,* the form of the scaling
function f(x) depends on the details of the process.
The scaling behavior of the steady-state cluster-size
distribution, N,(k, ), and its moments, therefore,
depends on the dependence of the mean cluster size
S (k, ) on the breakup constant k. Since the average
size of the clusters decreases with increasing k, we ex-
pect S (k, o) to decrease with k as well. Therefore, if
S (k, o) does scale with k, we assume that in the limit

i+j=s j=1

where N;= N,(k,t). The above equation describes a
mean-field situation because both the geometry and
the spatial fluctuations in the density of the clusters
are neglected. In the steady-state limit N;(k, o) is in-
dependent of time and the left-hand side of (8) van-
ishes.

In order to determine the exponent y we make two
assumptions. First, we assume that K (i,j) and F(i,j)
satisfy respectively the scaling forms

KX =A2K (ij), FGinjN)=AF(ij). (9)

These scaling forms are satisfied by most of the physi-
cally relevant forms of K (i,j) and F(i,j). Second, we
assume that the rate equation (8) is invariant under a
scaling transformation k — Ak and s — \’s. Using the
scaling forms (6), (2), and (9) in the steady-state limit
of (8) we find

y=(atw+2)"" (10)

This expression gives an explicit form for y which can
be tested numerically. It is interesting to note that in
analogy with the dynamic scaling exponent z,*% the
dependence of y on the spatial dimension d enters
from the homogeneity index of K (i,j).

To test the scaling prediction and the mean-field
result for the exponent y we have studied several
coagulation processes with a number of different frag-
mentation constants k. In order to avoid the complex-
ities arising from the geometrical structure of the clus-
ters we employed the particle coalescence model’
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t >> 7 it will be of the form

S(k,oo) — k™7, ()

where, in general, the exponent y depends on the de-
tails of the functions K (i,j) and F(i,j). An exponent
describing the divergence of r as kK — 0 can also be de-
fined, but this exponent is related to y and does not in-
troduce a new scaling behavior.® Assuming that in the
steady state S (k, o) has the scaling form (5), we find
from (4) the scaling form of the cluster-size distribu-
tion in the steady state,

N, (k,00) =5"2f(sk”). (6)
This implies the scaling form
N(k,o00) ~ k¥ @)

for the total number of clusters N (k,t) = 3 N, (k,1).

We now proceed to calculate the exponent y within a
mean-field approximation using the Smoluchowski
rate-equation approach.® In the presence of a breakup
rate the generalized Smoluchowski equation can be
written as® 14

(8

which is an idealized version of the cluster-cluster ag-
gregation model.!3 In this particle coalescence model,’
clusters are defined to be single lattice sites. When
two clusters of masses / and j meet, they coalesce into
a heavier single-site cluster of mass / +j at a rate pro-
portional to the reaction kernel K (i,j). Since there is
no cluster geometry, the functional form of the reac-
tion matrix can be specified exactly. In the simula-
tions reported here we have assumed a mass-
independent sticking probability of unity, i.e., a con-
stant coagulation rate and w =0. We have assumed
that the breakup probability for any of the s — 1 bonds,
chosen randomly, in a cluster of size s is given by
k (s —1)=~ ', This implies that the breakup probability
for a particular bond that breaks the cluster of size i +
into a cluster of size / and a cluster of size j is
F(ij)=k(i+j)e 1
Therefore, the constants o and k are the adjustable
parameters in the model. Implicit in this formulation
is the fact that the clusters are treelike; i.e., the break-
ing of one bond is sufficient to split the cluster. This
geometrical picture of the aggregates is in agreement
with what is observed in experiments® and in simula-
tions.!% 16
The three-dimensional simulation results for the
time dependence of the total number of clusters
N (k,t) and the mean cluster size S (k,t) are shown in
Fig. 1 for a= —-;—. As expected, after a sufficiently
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FIG. 1. Approach to the steady-state values for the

number of particles (N) and the mean cluster size (S) ob-
tained from a 3D simulation of particle coalescence model
with a breakup constant (k) of 2x 107> and an exponent
(a) of — {— Most of our 3D simulations were carried out
starting with 50000 particles on 80° lattices and the results
from 10-100 such simulations were averaged to obtain these
results.

long time, both quantities become time independent
and reach their saturation values of N (k,o0) and
S (k, 00 ), respectively. To test the scaling relations (5)
and (7), we have plotted the logarithms of N (k, o)
and S (k, oo ) against the logarithm of the breakup con-
stant k in Fig. 2 for our three-dimensional simulations
with a= — % The straight lines through the data
points indicate a power-law dependence of both quan-
tities on k, in agreement with (5) and (7). The slope
of the line that describes the decay of S (k, ) with k
is —0.66 and the slope of the line indicating the diver-
gence of N (k, o) with k is 0.66. These results show
that y = 0.66, in agreement with the mean-field predic-
tion of y = % from (10).

As a result of the widespread!~>°-'* use of the Smo-
luchowski rate equation,’ it has been important to
determine the range of validity of this equation by the
study of the effects of spatial fluctuations on the kinet-
ics of aggregation.”® In irreversible aggregation’® the
available data indicate that there exists a critical
dimension d. = 2 at and above which the effects of spa-
tial fluctuations are unimportant and the rate equation
gives an accurate description of the kinetics of irrever-
sible aggregation. In order to assess the range of vali-
dity of the Smoluchowski approach for reversible
coagulation, we have carried out simulations in d =1,
2, and 3. We have found that the values of the ex-
ponent yin d =1, 2, and 3, for various values of «, are
in exact agreement with the mean-field prediction
(10). This indicates that in contrast to irreversible ag-
gregation, the spatial fluctuations in the density of the
particles are compensated by the fragmentation effect
and the mean-field scaling persists down to at least one
dimension. Therefore, the upper critical dimension (d_)
is less than one (d.< 1).

The steady-state cluster-size distribution is expected
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FIG. 2. Dependence of the steady-state values of N (k,t)
and S (k,t) on the breakup rate constant (k) obtained from
simulations similar to that shown in Fig. 1.

to scale with the breakup constant k according to (6).
Excellent agreement with this scaling prediction is
demonstrated in Fig. 3, where the one-dimensional
results for N,(k, o )s? for various values of k scale
into a single universal function when plotted against
sk?, for a=1. We have found similar agreements with
the scaling relation (6) in d =2 and 3 and for other
values of the parameters o and k.

The actual shape of the scaling function f(x) in (6)
depends on «. In particular, for small x, the scaling
function f(x) appears to decay as x2~ 7 indicating that
N (k, o) ~ s~ 7. The value of r depends on « and de-
creases from 0.7 for a= —1 to zero at «=0. For all
the values of « > 0 that we have investigated, v ap-
pears to be zero. In order to investigate the asymptotic
form of the cluster-size distribution we have also
scaled these distributions by plotting k ~ N, (k, o)
against k”s. This scaling is equivalent to (4), because
of the scaling relation (5). The results in Fig. 4 show
that for x >> 1 the scaling function decays as a simple
exponential of the form exp(—cx), where c is a con-
stant. In particular, for « =0 it is a pure exponential
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FIG. 3. Scaling of the steady-state cluster-size distribution
[N;(k, o0)] obtained from 1D simulations carried out with
use of a breakup exponent («) of 1 with rate constants (k)
of 1074, 107%, 107¢, and 10~". These simulations were car-
ried out starting with 50000 monomers on a lattice of 2'
sites with periodic boundary conditions.
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FIG. 4. Scaling of the steady-state cluster-size distribution
[Ns(k, 0o)] obtained from 3D simulations carried out with a
breakup exponent (a) of —+ and rate constants (k) of
2x1073, 2% 1074 and 2% 1075.

for all x, in agreement with the Smoluchowski equa-
tion result®'* for a constant K (ij) and F(ij).
Therefore, the simulation results are consistent with a
scaling function of the form f(x)=x2""exp(—cx)
for all x.

In conclusion, we studied the generalized version of
the standard coagulation process which included the
effects of fragmentation. A scaling description for the
cluster-size distribution and its moments was de-
veloped and the Smoluchowski rate equation was ex-
tended to reversible coagulation. Under general as-
sumptions of scaling, the rate equations determine the
critical exponent describing the steady-state size distri-
bution and its moments. We have tested the scaling
and the rate equation predictions by numerical simula-
tions of a simplified model of reversible coagulation.
The simulations show that the spatial fluctuations,
which lead to new scaling behavior in irreversible ag-
gregation below the critical dimension,”® are compen-
sated by cluster breakups. Consequently, for reversi-
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ble aggregation, mean-field rate equation approxima-
tion is valid in d = 1, implying that the critical dimen-
sion d,. is less than 1.
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