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Using the Kirkwood-Riseman theory we show that the penetration of the hydrodynamic field
for a fractal aggregate (diffusion-limited cluster—cluster aggregate) moving with a constant
translational velocity with respect to a fluid can be described in terms of a fractal measure. The
spectrum of singularities, f(a) of strength o defined by Halsey et al. has been estimated by
scaling the total force distribution and the distribution of force components parallel and
perpendicular to the relative velocity for aggregates of different sizes. The scaling of the
moments of the force and force component distributions with the cluster mass has also been
investigated. Each moment scales with a different exponent which is related to the spectrum

J (a) and the corresponding infinite hierarchy of fractal dimensionalities D,,.

INTRODUCTION

In recent years considerable interest has developed in
nonequilibrium growth and aggregation processes which
frequently lead to the formation of fractal structures.! Much
of this interest has been focused on the Witten—Sander? mod-
el for diffusion-limited aggregation in which particles are
added, one at a time, to a growing cluster or aggregate of
particles via random walk trajectories. This model generates
clusters with a fractal geometry (which is still not yet fully
understood) and has directly or indirectly stimulated much
of the recent work on fractal aggregates. The Witten—Sander
model provides a basis for understanding a wide variety of
important processes but not colloidal aggregation. A more
realistic representation of colloidal aggregation is provided
by the diffusion-limited cluster—cluster aggregation model**
and related cluster—cluster aggregation models.® In particu-
lar, the diffusion-limited cluster—cluster aggregation model
leads to results for both the structure and dynamics of the
aggregation of small metal particles under fast aggregation
conditions which are in good agreement with experimental
results.®” For most models and experimental systems, inter-
est was first focused on characterizing the fractal geometry.
At a later stage considerable effort was devoted to the kinet-
ics of growth or aggregation® and the physical properties of
fractals®!! including their translational friction coeffi-
cients'*'3 (obtained from the total force on a cluster moving
with a constant velocity ).

It has been known for some time that for systems with a
fractal measure an infinite hierarchy of moments and asso-
ciated fractal dimensionalities are needed to describe their
structure.’*'7 The earliest examples were associated with
dynamic systems such as turbulence in fluids'# and strange
attractors.'® More recently, it has been found that fractal
measures can be used to describe a broader range of physical
processes such as the growth of fractal aggregates,'®?* the
penetration of particles and fields into a variety of fractal
structures, and the voltage distribution in conducting perco-
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lation clusters.?*?* Recently, Halsey et al.%° and Kadanoff*’
have proposed a general picture for fractal measures in terms
of a continuous spectrum, f{a) of singularities of type or
strength a. According to this picture the quantity f(a) is
the fractal dimensionality of the subset on which the singu-
larities of strength a lie. The infinite hierarchy of fractal
dimensionalities (D ;°) and exponents ¥2° describing the
scaling properties of the moments of the measure are then
determined by the shape of the function f(a). Halsey et al.?%
show how the quantities D, and f(a) are related and show
how these quantities can be measured. A convenient proce-
dure for obtaining the quantity f(a) by scaling the probabil-
ity distributions defining the fractal measure for systems of
different sizes onto a common curve has been illustrated by
Meakin'® for the growth probability measure (and other
fractal measures®®) on fractal aggregates.

For the case of an aggregate of particles moving through
a fluid, the distribution of forces exerted by the fluid on each
of the particles can be described in terms of a measure
(which we will call the force distribution measure). Since
(relatively) large forces will be exerted on the most exposed
particles in the outer regions of the cluster and small forces
will be exerted from the more deeply buried particles which
are screened from the hydrodynamic field, a very broad dis-
tribution of forces can be anticipated. It is also reasonable to
expect (by analogy with the penetration of a harmonic field
into a fractal structure®®>°) that the measure (force distribu-
tion measure) describing the penetration of a hydrodynamic
field into a fractal structure will be a fractal measure which
can be described in terms of the a, f(a) picture of Halsey et
al.?$ The main purpose of the work described in this paper
was to test this idea. Our main conclusion is that the force
distribution measure obtained for three-dimensional diffu-
sion-limited cluster—cluster aggregates with a fractal dimen-
sionality of 1.75-1.8 is a fractal measure which can be de-
scribed in terms of the a, f(a) picture of Halsey et al.
Consequently, we find that the @, f(a) picture can be used
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to describe the penetration of vector as well as scalar fields
into fractal structures.

SIMULATIONS AND CALCULATIONS

Three-dimensional aggregates were simulated using an
off-lattice version of the diffusion-limited cluster—cluster ag-
gregation model in the zero concentration limit with a con-
stant reaction kernel. This model, which has been described
previously,>!? generates clusters with a fractal dimension-
ality of about 1.78. Clusters containing 50, 100, 200, or 400
identical spherical particles were generated starting with a
list of particles. To calculate the distribution of hydrody-
namic forces we used the same methods which were used
earlier’® to calculate the translational friction coefficient.

Within the framework of the Kirkwood-Riseman®? the-
ory the force had F; exerted by the ith particles on the fluid is
given by

M
F, + & 2 TyF; =50 U.. (1)
i=
Ui
Here S, is the friction coefficient for each of the particles of
radius a given by '

é‘o = 6m10a, (2)
where 7, is the fiuid viscosity. In Eq. (1) U; (U; = V) isthe
unperturbed fluid velocity at the ith particle and T is the
hydrodynamic interaction tensor. In this and -earlier
work!>'* we have used the modified version of the Oseen®*
tensor introduced by Rotne and Prager®® and Yamakawa,*¢

T, = (8"7’70’:‘1)_'{[1"' (ryr;/7)]

2a2
+ 23— (r,.,.r,.,./r%,.)]], 3)
i
where r;; is the vector from the ith to the jth particles and 7,
is the magnitude of this vector. The matrix equation (1) was
solved for the forces F, using the numerical method de-
scribed by McCammon and Deutch.?” The forces F; were
determined for a uniform velocity (U; = V) in three mutu-
ally perpendicular but otherwise arbitrary directions (x, y,
and z) for each cluster. In this manner the distribution of
forces was obtained for 10 000 clusters of 50-particle clus-
ters, 4563 clusters of 100 particles, 749 clusters of 200 parti-
cles, and 232 clusters of 400 particles. For each particle in
every cluster the components of the force F; parallel and
perpendicular to the velocity V and the magnitude of the
force were determined.

RESULTS

Figure 1(a) shows the distribution of the force compo-
nents in a direction parallel to the velocity vector V. Here F,
is the magnitude of the force component in the direction of V
and N[In(F )] is the number of particles per unit interval of
In(F,) with a parallel force component of F, {ie.,
N{In(F)]8 In(F ) is the number of particles with parallel
force components whose natural logarithm lies in the range
In(F) + 8 In(F) )/2}. Inpractice theln(F, ) scaleisdivid-
ed into intervals of width 0.1 and the results shown for
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N[In(F )] in Fig. 1(a) is a “histogram” showing 10X the
average number of particles in each interval [i.e., the num-
ber of particles per unit interval of In(F )].

The first step towards obtaining the function f(«a) is to
obtain a similar histogram for the normalized force distribu-
tion'® defined by

o .
(Fﬁ)i = (F),/z (F|| )j- 4)
j=1

Here (F); is the normalized parallel force component for
the ith particle and (F) ), is the corresponding unnorma-
lized force component. The logarithmic distribution func-
tion for the normalized parallel force components is shown
in Fig. 1(b). The curves shown in Figs. 1(a) and 1(b) seem
to have a skewed Gaussian shape corresponding to a skewed
log-normal distribution of parallel force components. Such
“log-normal” distributions are characteristic of fractal mea-
sures.

Figure 2 shows the dependence of In(N [In(F})]) on
In(Fy). It is the scaling of these curves onto a common
curve'® which provides an estimation of the function f(a) of
Halsey et al.?® Figure 3 shows the dependence of
In(N [In(F})])/In(M) on In(F})/In(M). Plotting the
data in this way results in a crude scaling collapse onto a
single curve and in the asymptotic limit we expect (for a
fractal measure) that

In(N [In(F)]) =In(M)g[In(F})/In(M)],  (5)

where the scaling function g(x) is related to the spectrum of
singularities in the measure [ f(a)] defined by Halsey et
al.?® according to'®

g(x) =D ' f( — Dx) (6a)

or
fla) =Dg(—D~'a),

where D is the fractal dimensionality of the cluster.

" In view of the rather small cluster sizes used in this work
(the hydrodynamic interaction tensor T has dimensions
3M X 3M which limits the maximum cluster size to about
M = 400 particles) the scaling collapse onto a single curve
shown in Fig. 3 is quite good. Since the fractal dimensionali-
ties for the support of the measure seems to be equal to the
fractal dimensionality of the cluster itself, for this problem
we expect that the maximum value for the scaling function
g(x) should be 1.0. (The subset corresponding to some value
of the exponent x or @ must grow as rapidly as the cluster
mass but no part of the measure can grow faster than the
cluster mass.) The maximum value obtained for g(x) (for
clusters containing 400 particles) is 0.87. The deviation of
this value from 1.0 is attributed to finite size corrections to
scaling.

The results shown in Fig. 3 were obtained by normaliz-
ing the parallel force components for each cluster moving in
each of three mutually perpendicular directions [Eq. (4)].
Almost identical results were obtained by normalizing all of
the parallel force components:

(6b)

M N 3
(F|'|' Vimn = (F|| )Imn/ilegl k§=:l (F|| )ijk’ (7
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where (F I )k is the parallel force component associated
with the ith particle in the jth cluster (of size M) moving
with fixed orientation in the & th direction with respect to the
fluid.

Interpretation of the function f(a) as the fractal dimen-
sion of the subset on which singularities of strength o reside

suggests that the fractal measure defined by the force distri-
bution should be scaled by plotting In{N [In(F}')]
In(M)}/In(M) vs In(F})/In(M).” The quantity
N [In(F}) ]In(M) is proportional to the number of parti-
cles per unit interval associated with a small region on the
abscissa in Fig. 3 or a small range in the singularity strength,

—(

T FIG. 2. Dependence of In(N [In(F})])
- on In(F}) for 3d cluster—cluster aggre-
gates. F|f is the normalized force on the

particles in the direction of motion
-1 through the fluid.
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In(N[m(FN])/ ntm)

FIG. 3. Scaling of the (logarithmic) force
distributions for clusters of different sizes
(M =50, 100, 200, and 400 particles)
shown in Fig. 2.

m(FY) 7 In(M)

a. Figure 4 shows the data collapse obtained in this way.
Now the maximum value in the scaling function g'(x), de-
fined by

In(N [ln(Fﬁ)]ln(M)) = lnMg’[ln(Fﬁ)/ln(M)], (8)

has a value greater than 1.0 but this maximum value de-
creases with increasing cluster size.

In the limit M — « we expect that g(x) and g’'(x) will
converge onto the same curve with a maximum value of 1.0.
This idea seems to be consistent with our results. Figures 3
and 4 strongly suggest that the distribution of parallel force
components can be described in terms of a fractal measure.
Data collapse using the scaling forms given in Eqgs. (5) and
(8) and illustrated in Figs. 3 and 4 are based on the fact that
In[Y(x)]/In(x) = C (where Cis a constant) for all values
ofxif Y(x) ~Ax and the factor 4 hasavalueof 1.0.If4 has
a value other than 1.0 In[ Y(x) ] /In(x) will only converge to
a value of C.as x — «o. Figure 5 shows the scaling behavior
obtained by plotting In(aN [In(F})]In(M))/In(M)
against In(F )/In(M) with a = 0.4. This procedure gives a
maximum value for the scaling function close to 1.0 and a
good data collapse for forces larger than those correspond-
ing to the maximum value for the scaling function. The scal-
ing function corresponding to this procedure is given by

In(aN [ln(F|’f ) JIn(M)) = In(M)g" [ln(Fl"‘ )/In(M)].
9)

More elaborate attempts to account for corrections to the
asymptotic scaling behavior could be envisaged but are not
justified by our data.

Very similar results have been obtained for the compo-
nent of the force perpendicular to the direction of motion of
the fluid relative to the cluster. Figure 6 shows the scaling
collapse obtained using the most simple of the scaling proce-
dures discussed above [Eq. (5)] for the magnitude of the
perpendicular component of the force (F, ). As for the par-
allel component, the normalized force distribution (F7) is
used to obtain the scaling function which describes the force
distribution measure. Figure 7 shows very similar results
obtained for the distribution of the magnitudes of the total
forces associated with the particles in cluster—cluster aggre-
gates. Again, the simple scaling form given in Eq. (5) works
very well.

For a small fraction of the particles (about 2%) the
force exerted by the particle on the fluid has a component
which is parallel to but with a direction opposite to the direc-
tion of motion of the cluster with respect to the fluid. The
distribution of these antiparallel force components (F_) is

(N [tn (FN] tn(MY/Ln (M)

FIG. 4. An alternative procedure for scaling the
- parallel component force distribution curves
shown in Fig. 2. This procedure includes an ex-
pected logarithmic correction to scaling which
is not included in the scaling procedure used to
obtain Fig. 3.
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shown in Fig. 8. The antiparallel forces were included with
the parallel forces in Figs. 1-5. Since only a small fraction of
the forces have antiparallel components very similar results
would have been obtained if they had been omitted.

MOMENTS OF THE FORCE DISTRIBUTIONS

An important characteristic of a fractal measure is the
scaling properties of different moments of the measure. For
the force distribution measure we are interested in moments
such as?%!

[ 1 ]Vn
=5 -
L

Here f; is the force (or force component) exerted by the ith
particle on the fluid. For aggregates of different sizes (M) we
expect that the moments y; will scale with the cluster mass
(M) according to

#jNM‘rj, (11)

where the exponents y are all different for different values if
the forces f; constitute a fractal measure. In general, j need
not be an integer but here we have confined ourselves to the
case where J is a small positive integer (j = 1 — 8). The ex-
ponents ¥; are related to the fractal dimensions D, defined
by Hentschel and Procaccia by

Dylyjsr =D". (12)

Both the dimensionalities D, and the exponents y; can (at
least in principle) be obtained from the functions f(a)? or
g(x). However, in practice more reliable results can general-
ly be obtained by a direct measurement of these quantities.
Figures 9(a), 9(b), and 9(c) show the dependence of
the moments u!, u., and u, [Eq. (10)] obtained from the
parallel force components, perpendicular force components,
and the total forces, respectively, for n = 1-6. Despite the
rather small cluster sites the dependence of the natural loga-
rithms of these moments of In (M) is surprisingly linear. Ta-
ble I shows the corresponding exponents (¢!, %%, and 7,)
obtained from least-squares fitting straight lines to the de-
pendence of In( ) or In(M). The standard errors for the
exponents are quite small (less than 0.001) in all cases. The

(10)

dependence of ¢!, %, and ¥, on n is shown in Fig. 10. The
results shown in this figure indicate that the limiting (large
n) exponents for the maximum force or force components
have values of approximately 0.645 for F| ("), 0.77 for
F (%), and 0.655 for F, (¥, ). The values of these limit-
ing exponents are indicated by vertical arrows in Figs. 3-7.

DISCUSSION

The results presented above show that the distribution
of forces exerted by the particles in a fractal aggregate mov-
ing with a constant translational velocity with respect to a
quiescent fluid can be described in terms of a fractal mea-
sure. Although our results have been obtained using aggre-
gates generated using the diffusion limited cluster—cluster
aggregation model assuming a simplified form for the hydro-
dynamic interaction tensor [ Eq. (3) ], our qualitative results
should be generally true for fractal structures moving in a
fluid.

An interesting feature of the scaling functions [g(x) ]
found in Figs. 3-7 is the existence of regions with negative
values for both large and small x. The number of particles
corresponding to these parts of the measure is quite small
and there is some indication that these negative parts of the
effective scaling function do not exist in the limit M- .
The negative parts of g(x) may correspond to particles with
forces smaller than or larger than the ensemble average min-
imum and maximum values, respectively.*®

Another significant feature of the scaling functions
shown in Figs. 3-7 is the apparent existence of a maximum
value for the derivative d{g(x)]/dx. The exponent ¥, is
determined by the value of x for which dg(x)]/
dx= — (n+1)2

BX | 1) (13)
dx x=x(n) .
and the exponent y,, is given by
Yo = — Un{(n+ Dx(n) +glx(n)1}. (14)

If the scaling function g(x) has a constant slope for large
negative values of x,

4.3 1 L ) ! ]
40
3.5
30
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':: 20
[-4
— 15
1.0
05

.0
0—26

FIG. 8. Logarithmic distribution for the anti-
parallel components of the force distribution for
3d cluster—cluster aggregates. This figure
should be compared with Fig. 1.
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FIG. 9. Dependence of the moments
ph, ut, and g on the cluster mass
(M) for clusters containing 50, 100,
200, and 400 particles. Results for
n = 1-6 are shown in this figure. Fig-
ure 9(a) shows the moments ! ob-
tained from the parallel force compo-
nents. Figure 9(b) shows the moments
of the perpendicular force components
Fig. 9(¢) shows the moments of the to-
tal force components. The largest val-
ues of n correspond to the lowest
curves with the smallest slopes.
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TABLE L. Values for the exponents !, 7., and y,, obtained from the corre-
sponding force distribution moments 2!, i, and u,, for n = 1-8. The stan-
dard errors for the linear least-square fits used to obtain the exponents are
less than 0.001 in all cases. Systematic errors are almost certainly larger.
Some selected exponents for higher values of n are also given.

dg(x)
———-<e, 15
ix <c (15)

all moments u, for n < — (c + 1) will diverge. If, on the
other hand, the curves g(x) terminate at the point (x,)
where the effective scaling functions intersect the abscissa
then x(n) = x,for n < — (¢ + 1) and y,, will be given by

Ya= — 1/nl(n+ 1)x,] (16)

for large negative values of n (the large negative moments
will be determined by singularities of strength — Dx, and
there will be a constant “gap” x,, for the exponents y, corre-
sponding to these moments). Similarly, if the scaling func-
tion g(x) terminates with a finite slope at the point x = x; on
the abscissa for the largest values of x then the moment u,,
with large n will scale with the mass with exponents which
also exhibit a constant gap (all of the high moments will be
determined by singularities of strength — Dx},).
Figure 10(b) shows the dependence of (n/n + 1)y (for
l., ¥4, and y, with » in the range 1-80) on 1/n. For the case
of a constant gap and g[x(n)] = 0 for large » we would
expect (n/n + 1)y to be independent of » for large n (small

FIG. 10. Dependence of the exponents ¥, 71,
and ¥, on n for values of n up to 80. Figure
10(a) shows the dependence of ¥ on 1/n and
Fig. 10(b) shows the dependence of (n/
n + 1)y on 1/n. The large solid dots indicate

Exponents
n 7 a Vn
1 0.899 0.940 0.912
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6 0.781 0.844 0.796
7 0.769 0.833 0.785
8 0.759 0.825 0.775
10 0.747 0.816 0.759
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1/n). The results shown in this figure are not conclusive.

The broad distribution of forces which generate the
fractal measures are a result of the strong screening of the
hydrodynamic field from penetration into the cluster. The
total force exerted by the fluid on the cluster is concentrated
into the most peripheral particles. This may have important
implications for the mechanical stability of large aggregates
moving through a fluid.*
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