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Influence of feedback on the stochastic
evolution of simple climate systems

BY L. MAHADEVAN1,* AND J. M. DEUTCH2,*
1School of Engineering and Applied Sciences, Harvard University,

Cambridge, MA 02138, USA
2Department of Chemistry, Massachusetts Institute of Technology,
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We consider the dynamical evolution of a simple climate system that describes the
average temperature of the Earth’s atmosphere owing to radiative forcing and coupling
to a positive feedback variable such as the concentration of greenhouse gases in the
presence of fluctuations. Analysing the resulting stochastic dynamical system shows that,
if the temperature relaxes rapidly relative to the concentration, the time-dependent and
stationary probability density functions (pdfs) for the temperature rise possess a fat tail.
In contrast, if the feedback variable relaxes rapidly relative to the temperature, the pdf
has no fat tail, and, instead, the system shows critical slowing down as the singular
limit of positive feedback is approached. However, if there is uncertainty in the feedback
variable itself, a fat tail can reappear. Our analysis may be generalized to more complex
models with similar qualitative results. Our results have policy implications: although fat
tails imply that the expectation of plausible damage functions is infinite, the pdfs permit
an examination of the trade-off between reducing emissions and reducing the positive
feedback gain.

Keywords: stochastic climate system; feedback; fat tails

1. Introduction and model

Global warming couples a variety of effects on multiple space and time scales,
from fast atmospheric circulation on a daily or weekly time scale to slow, large-
scale ocean circulation that varies on time scales of centuries to millennia. It is
also greatly influenced by feedback mechanisms that include variations in polar
ice-cap extent, desertification, water vapour concentration and cloud feedback,
to name just a few causes (Graves et al. 1993; Scheffer et al. 2006; Torn & Hart
2006). The combination of these multi-scale effects and feedback leads to large
uncertainties in the outcome of climate models, so that the natural language for
climate variables, such as the global mean temperature, is its probability density
function (pdf), rather than its deterministic value.
Understanding the effects of uncertainty from the properties of the pdf

and its temporal evolution is thus of crucial importance. One approach to
obtaining the pdf is via global climate models (GCMs) that are capable of
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2 L. Mahadevan and J. M. Deutch

simulating some of the highly complex radiative, chemical, thermodynamic and
hydrodynamic processes. However, sheer practicality means that GCMs leave
out effects associated with fluctuations that occur on fast time scales. Here, we
analyse the effect of a single feedback mechanism on the dynamical evolution of
the temperature, in a simple stochastic climate model, in order to sharpen the
understanding of the role that these fluctuating effects play.
The simple model we adopt consists of a pair of coupled stochastic dynamical

equations for the time evolution of the temperature T (t) (Tung 2007) and the
concentration of greenhouse gases (GHGs), c(t):

ρCpH
dT (t)
dt

=R(c) − σ (1− g(c))T (t)4 + f̂T (t), (1.1)

and
τc
dc(t)
dt

= −c(t) + q̂(t) + f̂ c(t). (1.2)

Here, equation (1.1) is the radiative energy balance equation averaged over the
entire Earth with an atmosphere that has density ρ, specific heat Cp and depth
H . σ is the Stefan–Boltzmann constant and g(c) is a feedback parameter that
modifies the Stefan–Boltzmann law in a concentration-dependent manner. The
atmosphere heats or cools because of an imbalance between (i) the net solar influx
R(c), which accounts for the incoming solar radiation and the effects of albedo
and atmosphere in a composition-dependent manner, characterized in terms of
the average concentration c(t) of GHGs, and (ii) the radiation from Earth,
accounted for by a modification of the Stefan–Boltzmann law that introduces
feedback in the presence of GHGs. Equation (1.2) is the scaled equation for the
evolution of the concentration of GHGs, with q̂(t) being the addition rate of GHG
per unit volume to the atmosphere. The terms f̂T (t) and fc(t) are independent
random forcing terms, assumed to be Gaussian, that represent fast, uncorrelated,
changes in temperature and GHG emission rate, respectively. These coupled
stochastic dynamical equations are ubiquitous in modelling physical phenomena,
and it may be pertinent to point to a formal resemblance of the current system
to intermittency in single-molecule spectroscopy (Wang & Wolynes 1995, 1999;
Cao & Silbey 2008).
To understand the effects of climate change driven by changes in concentration

of GHGs, we consider small deviations from the equilibrium temperature
T0 consistent with a pre-industrial equilibrium concentration of GHGs, c0.
Expanding about this state, i.e. substituting $T (t) =T (t) − T0 and $c(t) =
c(t) − c0, and keeping only leading order terms leads to a scaled form of the
coupled climate model, equations (1.1) and (1.2) (see appendix A),

d$T (t)
dt

= λ0$Rp(c(t))
τT

− [1− γ$c]
τT

$T (t) + fT (t) (1.3)

and
d$c(t)
dt

= − 1
τc

$c(t) + q(t) + fc(t), (1.4)

where g = g0 + g ′0$c, γ = g ′0/(1− g0) with g0 = g(c0), g ′0 = dg/dc|c=c0 and the
incremental radiative forcing, λ0$Rp, to the lowest order in the concentration
deviation, is λ0$Rp = λ0R′

p(c)$c, with λ0 a constant. Equation (1.3) couples
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Stochastic climate with feedback 3

the change in the equilibrium temperature via feedback to the change in GHG
concentration only, although, in general, feedback may also depend on water
vapour concentration, clouds, soil conditions, etc., each of which may evolve
separately. Here, we focus on the influence of GHG concentration on the feedback
and so assume g0 < 1. Then, the feedback parameter γ couples the GHG
concentration to the temperature, with γ > 0 (γ < 0) corresponding to positive
(negative) feedback.

2. Analysis of model

There are two time scales in the problem defined by equations (1.3) and (1.4),
set by the relaxation times, τT and τc, for the equilibration of temperature
and concentration. Both relaxation times are determined by loss factors, such
as transfer of heat or mass to the ocean, and by dissipation arising from the
fluctuations. The potential for vastly different time scales for the relaxation of
temperature and GHG concentration, both of which can themselves vary over
many orders of magnitude, suggests that the dynamics of the simple climate
system, equations (1.3) and (1.4), is best treated via an analysis of various
limiting cases.
We first consider the case of fast temperature relaxation, i.e. τT/τc # 1. On the

time scale τc ∼ t% τT , radiative equilibrium is established. Incremental radiative
forcing, $Rp(c), causes a temperature change $T = λ0$Rp(c)/(1− γ$c). For
simplicity, we consider the case of linear forcing, $Rp(c) = α$c, so that

$T
$T0

= |γ |$c
(1− γ$c)

, with $T0 = λ0α|γ |−1. (2.1)

It is useful to rewrite the above relations in terms of the equilibrium
climate sensitivity parameter using the logarithmic derivative or elasticity,
S0 = d lnT0(c)/d ln c, following Torn & Hart (2006), and the sensitivity of the
fluctuations, S$ = d ln$T ($c)/d ln$c.1 When the radiative forcing is linear,
S0 = (1+ γ )/4, indicating greater sensitivity for larger positive feedback values,
but the sensitivity to fluctuations is still greater, since S$ = γ$c(1− γ$c)−1.
In the absence of feedback, S0 = 1/4, consistent with the Stefan–Boltzmann law,
whereas S$ = 0 since there is no incremental change in the temperature in the
absence of GHG fluctuations.
For positive feedback, γ > 0, we may write the above relation in two equivalent

forms: $T/$T0 = γ$c/(1− γ$c) or γ$c = $T/($T0 + $T ). It is evident that
these relations are valid only for $c < γ −1 = $cmax; as this point is approached,
the average atmospheric temperature diverges since heat loss vanishes so that
0≤ $T ≤ ∞ as 0≤ $c ≤ $cmax.
The concentration, c(t), evolves on the slow time scale, i.e. t ∼ τc % τT ,

according to equation (1.4). If the fluctuation fc(t) is Gaussian, then the
1This abuse of notation making the temperature a function of the GHG concentration corresponds
only to the case when the temperature is slaved to the concentration, as given by equation (2.1).
Our definition of the equilibrium sensitivity is different from that of the Intergovernmental Panel
on Climate Change (IPCC) and is given by the change in steady-state temperature that occurs
with a doubling of atmospheric CO2, $T (c) = (Seq/ln 2) ln[c/c0], so $T (2c0) = Seq.
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4 L. Mahadevan and J. M. Deutch

associated Ornstein–Uhlenbeck process can be described using the Ito procedure
by a Fokker–Planck (FP) equation,

∂p($c, t)
∂t

= ∂

∂$c

[(
$c
τc

− q(t)
)
p($c, t) + Γ

2
∂p($c, t)

∂$c

]
,

for the time-dependent pdf, p($c, t) (Cao & Silbey 2008), where 〈fc(t1)fc(t2)〉 =
Γ δ(t1 − t2). For the case of constant emission rate, q(t) = const., the solution of
the above FP equation is (Gardiner 2004)

pc($c, t|$c(0)) = 1√
πΓβ(t)

exp
{
− 1

Γβ(t)
[
($c − qτc) − ($c(0) − qτc)e−t/τc

]2
}
,

(2.2)

following the initial increment in the concentration of GHGs and β(t) =
2τc(1− e−2t/τc ). The appropriate boundary conditions for this FP equation are
p($c(0), t) = p(∞, t) = 0. The above expression is of the form f ($c − c̄) and
vanishes when $c = ±∞ and may thus be used to write the correctly normalized
anti-symmetric combination (1/2)f ($c − c̄) − f ($c + c̄) valid over the allowed
range.
The time-dependent pdf for the temperature is found by the change of variables

γ$c = $T/($T0 + $T ), with γ += 0, which is restricted to the range, 0≤ $c ≤
γ −1 (or equivalently, 0≤ $T ≤ ∞), and transforms pc($c, t|$c(0)) according to
p($T , t|$T (0)) = pc($c, t|$c(0))(d$c/d$T ) so that

p($T , t|$T (0)) = 1√
πΓβ(t)

exp
{
− 1

Γβ(t)γ 2
[
Q($T ) −Q($T (0))e−t/τc

]2
}

× ($T0 + $T )−2$T0|γ |−1, (2.3)

where
Q($T ) =

(
$T

$T0 + $T

)
+ $c(0) − γ qτc.

In figure 1, we show the temporal evolution associated with this function for
parameters chosen to be consistent with current global warming scenarios. At
very long times, the stationary pdf for the temperature difference,

ps($T ) = p($T ,∞ |$T (0)) = 1√
2πΓ τc

exp
{
− 1
2Γ γ 2τc

[Q($T )]2
}

× ($T0 + $T )−2$T0 |γ |−1 ,
exhibits a fat tail in agreement with the results of Roe & Baker (2007) and
implies that the expected value 〈$T (t)〉 =∞ for all times. We note that, here
the fat tail in the pdf does not reflect a mechanism giving rise to Levy flights,
but is simply the consequence of the nonlinear change of variables in the pdf
from concentration to temperature, with an underlying conventional Gaussian
random process. For the parameters based on IPCC data and projections
(Intergovernmental Panel on Climate Change 2007) (see figure 1 caption for
details), the maximum in the pdf in 100 years occurs at $T = 2.66◦C as the
concentration increases from 350 to 550 ppm. However, the probability is 0.24
that $T ≥ 4◦C and 0.10 that $T ≥ 5◦C.
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Figure 1. Evolution of the normalized pdf for the case of positive feedback and fast temperature
relaxation for p($T , t|$T (0)), equation (2.3). For illustrative purposes, parameters have been
chosen to match conventional global warming scenarios (http://www.ipcc.ch/). The initial CO2
concentration is c(0) = 350 ppm, c0 = 275 is the pre-industrial value, the concentration relaxation
time is τc = 200 years, the value qτ/$c(0) = 2.45 is chosen so that, after 100 years, t/τc = 0.5
in dimensionless units of time, the concentration reaches the value c(1) = 550 ppm, twice the
pre-industrial level. The feedback parameter γ = 0.34 and the equilibrium temperature difference
$T0 = 8.84= 3/γ are chosen so that the most probable temperature increase is $T (0.5) = 4.54K
after 100 years. With these choices, the steady-state concentration c(∞) = qτc is 858 ppm, which
gives a most probable temperature increase of $T (∞) = 22.1K with $T (0) = 0.91K. In all figures,
the strength of the random concentration fluctuations is arbitrarily chosen so that Γ = 0.1 to display
a credible temperature evolution. (a) A three-dimensional view of p($T , t|$T (0));$T (0) = 2.22K.
(b) Cross-sectional views of the surface shown in (a) at dimensionless times t = 0.1 (blue), 0.5
(green), 1 (purple), 2 (yellow) and (4) red. The inset shows the scaled deterministic change in the
equilibrium temperature as a function of the concentration in the limit when temperature is the
fast variable, according to equation (2.1) showing how the temperature (in blue) increases with
positive feedback in the presence of GHGs; the red line is the linear approximation valid for small
changes in GHG concentration. (c) The stationary distribution ps($T ) = p($T ,∞|$T (0)) for the
parameter values given above.

For negative feedback, γ < 0,2 the steady-state condition now covers the entire
concentration range, 0≤ c ≤ ∞, but the temperature is restricted to the range 0≤
$T ≤ $T0. The expression for the time-dependent pdf, equation (2.3), remains
valid with the modifications $T/$T0 = |γ |$c/(1+ |γ |$c) and Q($T ) =
[$T/($T0 − $T ) − 1− |γ |qτc]. Beyond the range $T > $T0, p($T , t|$T0) is
zero and there is no fat-tailed distribution.
2In the IPCC Synthesis Report 2007, fig. 5.1 implies that climate action arises with negative
feedback (Intergovernmental Panel on Climate Change 2007).
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6 L. Mahadevan and J. M. Deutch

We next consider the case of slow temperature relaxation, i.e. τT/τc % 1.
This situation arises, for example, when considering the long time scale for
energy transfer from the atmosphere to the ocean (Baker & Roe 2009). On the
fast time scale, the concentration will adopt its steady-state value according to
equation (1.4) and cs(t) = q(t)τc. On this time scale, there is no dynamic feedback
and the linearized stochastic equation for the temperature, equation (1.3), is

d$T (t)
dt

= λ0$Rp(cs(t))
τT

− [1− γ$cs(t)]$T (t)
τeff

+ fT (t). (2.4)

For the case of linear radiative forcing and constant cs, the stationary
temperature, $Te, is shifted higher, according to the relation $Te =
$T0γ$cs/(1− γ$cs). This stochastic equation can again be expressed as an FP
equation with a solution given in terms of the temperature difference δT (t) =
$T (t) − $Te as

p(δT , t|δT (0)) = 1
√

πΓT β̂(t)
exp

{
− 1

ΓT β̂(t)
[δT − δT (0) exp(−t/τ̂ )]2

}
, (2.5)

with β̂(t) = 2τ̂ [1− exp(−2t/τ̂ )] and τ̂ = τ/(1− γ$cs).
Although this pdf does not show a fat tail, the system now exhibits critical

slowing down since 〈$T (t)〉 − $Te = [$T (0) − $Te] exp(−t/τ̂ ) and τ̂ → ∞ as
(γ$cs) → 1. This corresponds to either a relatively large value of the feedback
factor γ or a large concentration of GHG in the atmosphere.
For the case of slow temperature relaxation, it is possible for p(δT , t|δT (0))

to exhibit a fat tail if there is a subsidiary pdf for the feedback parameter γ
or equivalently g0. For example, if the gain g = (1− g0)(1− γ$cs) is distributed
according to a pdf h(g), which is finite at h(1), then, as shown in appendix B,
p(δT , t|δT (0)) → h(1)δT−2 as δT→ ∞.

3. Discussion

In summary, we find that, if the temperature relaxes on a fast time scale
compared with that for concentration equilibration, the temperature is slaved to
the variability in the concentration. For positive feedback, γ > 0, both stationary
and time-dependent pdfs for the temperature change have fat tails owing to the
stochastic dynamics of the concentration field. In contrast, if the temperature
relaxes on a slow time scale compared with the time scale for concentration
equilibration, the stationary and time-dependent pdfs do not possess fat tails,
and the stochastic dynamics of the temperature determines the form of the time-
dependent pdf. In particular, the characteristic relaxation time exhibits critical
slowing down, as the singular point of the positive feedback is approached.
However, if uncertainty is introduced in the feedback variable, γ , a fat tail
may reappear.
We conclude with an application of our results to a policy issue. Modellers of

global climate know that feedback effects are crucial. They observe simulation
outcomes that are skewed to high temperatures (Webster et al. 2001, 2003;
Forest et al. 2002). The existence of a fat tail is not an artefact of computational

Proc. R. Soc. A

 on December 24, 2009rspa.royalsocietypublishing.orgDownloaded from 



Stochastic climate with feedback 7

2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.20

0.25

0.30

0.35

0.40

0.45

0.50

qtc/c0

g c
0

0.2

0.6

0.4

0.8

Figure 2. Policy plot. Covariation of the reduced emission rate qτc/c0 and the reduced feedback
parameter γc0 at dimensionless time t/τc to keep the cumulative probability of realizing a
most probable temperature increase less than some prescribed value $Tmax. The figure shows
contours of the surface S(q, γ ) corresponding to the cumulative probability distribution S(q, γ ) =∫$Tmax
0 p($T , t|$T (0))d$T ≤Pmax given the temperature pdf in equation (2.3) for four values
of Pmax, with $Tmax = 5 and the reduced time t/τc = 1. Other parameter values are as follows:
τc = 200 years, Γ = 0.1, c0 = 275 ppm and $T0 = 3/γ ◦C.

GCM simulation that will disappear with repeated Monte-Carlo trials, but rather
an inherent consequence of the presence of positive feedback, as our analysis of
the simple model examined here shows. pdfs with fat tails present formidable
problems for conventional expected value cost–benefit analysis because of the
relatively higher probability of high cost outcomes (in this case elevated global
temperature) (Roe 2009; Weitzman 2009); for example, a simple consequence is
that damage functions of the form D(δT ) ∝ (δT )α with α ≥ 1 will have unbounded
expected value at all times. Any practical policy designed to reduce the likelihood
or consequence of loss probability outcomes must address not only the shape of
the stationary pdf, but also its time evolution. Our model analysis offers an
insight into the relaxation times that may be encountered, and the explicit form
for the pdf permits an examination of the trade-offs between parameters that
might be achieved by policy action. For example, it is possible to determine all
combinations of effluent flux, q, and positive feedback, γ , that give the probability,
Pmax, of a temperature increase below a set amount, $Tmax. If the cost is known
of policy options that are available to lower the emission rate q or reduce the
feedback parameter γ (by geo-engineering), then an optimal economic policy can
be determined. Figure 2 presents an example of such a trade-off that exhibits a
striking and somewhat unexpected linear relation between the combinations of q
and γ that results in a given Pmax.
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8 L. Mahadevan and J. M. Deutch

Our analysis of the simple climate model can be easily extended to the case in
which there are several feedback mechanisms, both positive and negative, acting
simultaneously (Roe 2009; Weitzman 2009). This approach can also be applied
to a climate that shifts between positive and negative feedbacks by matching
solutions for the time-dependent pdfs. In the case of fast temperature relaxation,
if the flux q varies with time on the slow time scale, the resulting FP equations can
be solved numerically. Extending the treatment to include the spatial variation of
the concentration c(r , t) and temperature T (r , t) requires including the effects of
convection and/or diffusion in the transport equations. As the resulting equations
are nonlinear, mode coupling will almost certainly result in a variety of new
behaviours. However, the zero-mode behaviour reported here should persist.

Appendix A. Derivation of stochastic dynamical system for climate

We begin with the deterministic energy balance equation for the atmosphere,
obtained by integrating across its depth and over all latitudes, equation (1.1),

ρCpH
dT (t)
dt

=R(c) − σ (1− g(c))T (t)4.

In the context of climate change driven by changes in the concentration of
GHGs, we are interested in small deviations from the equilibrium temperature
T0 consistent with a (pre-industrial) equilibrium concentration of GHGs, c0,
defined by

R(c0) = σ (1− g(c0))T 40 . (A 1)

Small deviations from this state, $T (t) =T (t) − T0, lead to

ρCpH
d$T (t)
dt

=Rp(c) − 4σT 30 (1− g(c))$T (t),

where Rp(c) = [R(c) − R(c0) − σ$g(c)T 40 ], with $g = g(c) − g0 and g0 = g(c0).
We now expand with respect to $c(t) = c(t) − c0 in two steps. First, expand g(c)
to first order and keep the leading coupling term $T$c,

ρCpH
d$T (t)
dt

= $Rp(c) − σ (1− g0)(4T 30 )[1− γ$c]$T (t), (A 2)

where $Rp(c) = [R(c) − R(c0) + σg ′0T
4
0$c] and γ = g ′0/(1− g0), with (·)′ ≡

d(·)/dc. The radiative forcing term $Rp(c) can be nonlinear in c. Dividing
both sides of equation (A 2) by (1− g0)(σ4T 30 ) and defining λ−1

0 = (1− g0)(σ4T 30 )
and τT = λ0ρCpH yields the deterministic form of the incremental energy
balance equation,

d$T (t)
dt

= λ0$Rp(c(t))
τT

− [1− γ$c]
τT

$T (t). (A 3)

If we now expand the radiative forcing to the lowest order in $c, this yields
$Rp(c) = [R′(c0) − σg ′0T

4
0 ]$c.
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Stochastic climate with feedback 9

This derivation is consistent with the traditional approach that starts with a
linearized energy balance equation given by (Tung 2007)

ρCpH
d$T
dt

=R(c) −A− B$T , (A 4)

where the right-hand side is the difference between the incoming solar flux
Q on Earth with albedo a, R(c) = (1− a)Q, and the outgoing radiation is
given by approximating the Stefan–Boltzmann black-body radiation law via a
linearized approximation determined by fitting the form of infrared emission
from the Earth to observational data on outgoing long-wave radiation (Torn &
Hart 2006), with A= (σT 4)0 and B = (d(σT 4)/dT ), where the subscript 0
corresponds to the steady state. To make the connection, we again consider
small perturbations in the temperature and the GHG concentration from the
pre-industrial equilibrium, introducing $T (t) =T (t) − T0 and $c(t) = c(t) − c0,
in equation (A 4), and obtain

ρCpH
d$T (t)
dt

= [R′(c0) − B ′(c0)T0]$c − [B(c0) + B ′(c0)$c]$T (t), (A 5)

which is of the same form as equation (A 2). Dividing both sides
by B(c0) and letting the scaled incremental radiative forcing λ0$Rp =
(R′(c0) − B ′(c0)T0)/B(c0), the characteristic relaxation time scale for temperature
variations τT = ρCpH /B(c0) and γ = −B ′(c0)/B(c0) yields exactly the same
deterministic version of the energy balance equation (A 3). Adding the scaled
form of a fluctuating term fT (t) = f̂T (t)/(1− g0)(σ4T 30 ) that characterizes rapid
uncorrelated fluctuations in the radiative forcing yields equation (1.3). The
equation for the evolution of GHGs, equation (1.2), is a first-order process in
the presence of source and fluctuations.

Appendix B. The role of feedback uncertainty in the case of fast
relaxation of GHGs

For fast concentration relaxation, the general form for the average temperature
change as a function of time is

τT

〈
d$T (t)
dt

〉
= λ0$Rp(cs(t)) − [1− g(cs(t))]〈$T (t)〉, (B 1)

where λ−1
0 = (4σT 30 ). This can be formally integrated to yield

〈$T (t)〉 = exp
[
− 1

τT

∫ t

0
ds [1− g(cs(t))]

]
$T (0) + exp

[
− 1

τT

∫ t

0
ds [1− g(cs(t))]

]

×
∫ t

0
ds

{
exp

[
1
τT

∫ s

0
du [1− g(cs(t))]

]
λ0$Rp(cs(t))

}
. (B 2)
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The relaxation of 〈$T (t)〉 slows down as g(cs(t)) → 1. If we assume cs(t) is a
constant, equation (B 2) simplifies to

〈$T (t)〉 = exp
[
− t

τT
[1− g(cs)]

]
$T (0) + λ0$Rp(cs)

[1− g(cs)]

×
{
1− exp

[
− t

τT
[1− g(cs)]

]}
. (B 3)

We recall that, to first order [1− g(cs)] = (1− g0)[1− γ$cs], so that the slowing
down can occur either for g0→ 1 or for γ → 1. Different values of the gain, g =
g(cs), will lead to different average temperature changes; thus in equations (B 2)
or (B 3), the temperature increase should be denoted by 〈$T (t)〉(g), indicating
that the average temperature change is a function of g. Different values of {gi}
will also produce different trajectories for 〈$T (t)〉(g). If one assumes that the
different values for g come from a pdf h(g) supported on 0≤ g ≤ 1, this produces
a pdf for $T̂ (t) of the form

p($T̂ (t)) = h(g−1($T̂ (t)))
dg

d$T̂ (t)
, $T̂min(t) ≤ $T̂ (t) ≤ ∞, (B 4)

with $T̂min(t) = exp(−t/τT )$T (0) + λ0$Rp(cs){1− exp(−t/τT )}. As long as
h(g) is finite at g = 1, the pdf p($T̂ (t)) will be asymmetric and exhibit a fat
tail. As an example, consider equation (B 3), in the limit t→ ∞, g(cs) → 1, with
t̄ = t(1− g(cs)) fixed. In this limit,

〈$T (t)〉 → $Ts
[1− g(cs)]

{
1− exp

(
− t̄

τT

)}
,

with $Ts = λ0$Rp(cs). This gives

d〈$T (t)〉
dg(cs)

= 〈$T (t)〉2
$Ts

{
1− exp

(
− t̄

τT

)}−1

and the pdf for the temperature increase,

p($T̂ (t)) = h
[

1− $Ts
[
1− exp(−t̄/τT )

]

$T̂ (t̄)

]
$Ts

[
1− exp(−t̄/τT )

]

$T̂ (t̄)

over the range $Ts[1− exp(−t̄/τT )] ≤ $T̂ (t̄) ≤ ∞, which shows a fat tail.
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