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Abstract

Most voting methods can only deal with a finite number of candidates. In practice, there are
important voting applications where the candidate space is continuous. We describe a new
voting method by extending the Majority Judgment voting and ranking method to handle a
continuous candidate space which is modeled as a convex set. We characterize the structure of
the winner determination problem and present a practical iterative voting procedure for finding
a (or the) winner when voter preferences are unknown.
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1. Introduction

Voting is concerned with aggregating evaluations over a multitude of voters, in ways that
the final outcome has appeal to a large cross-section of the decision-makers. Over centuries,
investigators seeking a fool-proof voting system have been riddled by a challenge characterized in
Arrow’s Impossibility Theorem (Arrow, 1951). Majority Judgment (MJ) (Balinski and Laraki,
2010, 2014) involves grading — instead of preference ranking — of each candidate. With this
richer preference elicitation, MJ, in a sense, bypasses Arrow’s Impossibility Theorem. The
method also enjoys enhanced strategy-proofness due to its median-seeking criterion.

MJ has already been practiced in many contests and juries around the world, as well as in
a few political elections (Balinski and Laraki, 2011, 2010). It takes as input the “grades” given
by the voters, and produces a majority grade for each candidate as an output. The majority
grade can be used to select a winner (called a majority winner) and/or compute rank-orderings
(called majority ranking). If voters have equal weights, then the majority grade of a candidate
is the highest grade such that an absolute majority of the voters grade that candidate at least
as highly as that grade. If we order voters’ grades in a descending order, in the case of an odd
number of voters, it is the median of the grades; if there are even number of voters, then it is the
lower of the two middlemost grades. On the other hand, if voters have unequal weights, then
the majority grade is the highest grade such that a subset of voters with an absolute majority
of the total weight (i.e., the sum of their weights being strictly greater than half of the total
weight) grade that candidate at least as highly as that grade.

We illustrate MJ using the example in Table 1. Suppose there are six voters with equal
weights, voting on three candidates: C1, C2, C3. Each voter assigns to each candidate one of
these five grades: 5 (Excellent), 4 (Very Good), 3 (Good), 2 (Passable), 1 (Reject). The grades
thus obtained for each candidate by voting are then sorted from best to worst, as given in
Table 1. The majority grade for each candidate (marked “Majority Grade”) is the fourth grade
from the top, because an absolute majority of (four out of six) voters would give at least that
grade to the candidate. The majority ranking for the example is: C1 � C3 � C2, according to
the order of the majority grades. C1 is the majority winner. The method involves additional
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Candidates: C1 C2 C3

Best Grade: 5 (Excellent) 3 (Good) 4 (Very Good)
. 4 (Very Good) 3 (Good) 4 (Very Good)
. 4 (Very Good) 3 (Good) 4 (Very Good)

Majority Grade: 4 (Very Good) 1 (Reject) 3 (Good)

. 2 (Passable) 1 (Reject) 1 (Reject)
Worst Grade: 2 (Passable) 1 (Reject) 1 (Reject)

Table 1: MJ Example

procedures for breaking ties when ranking candidates and when deciding majority winner. We
refer interested readers to Balinski and Laraki (2010) for more details. MJ requires a common
language accepted by all voters for grading the candidates. Grades may be either discrete (as
in Table 1) or continuous. A continuous grading language could be from 0 to 1, where 0 is
commonly understood as “unacceptable”, and 1 as the “most favorable”.

The computation and ranking of majority grades require a complete evaluation of all can-
didates from all voters. We study important social choice problems where such evaluation is
impossible to execute due to the continuous candidate space. One motivation for our work is
a problem in air traffic flow management (ATFM) where a consensus input is required from a
set of airlines in order to design and implement certain ATFM programs (see Ball et al. (2014,
2017); Evans et al. (2014); Swaroop and Ball (2012) for a description of this application and
some preliminary ideas on the approach discussed in this paper). The required input is a nu-
merical vector from a convex feasible region that specifies to an air navigation service provider
how important tradeoffs among performance criteria should be made. A second, more widely
known application requires the use of group decision-making mechanisms to find a capital bud-
get allocation. There are many capital budgeting application contexts, particularly in the public
sector, where a consensus must be reached among multiple decision-makers. In a basic prob-
lem statement of this type, there are n projects and a total available budget, C. The desired
outcome is a feasible budget allocation: mi for each project i ∈ {1, · · · , n}. The set of feasible
allocations is then defined by P = {(m1, · · · ,mn) :

∑n
i=1mi ≤ C, mi ≥ 0, ∀i ∈ {1, · · · , n}}.

Viewing each feasible solution as an MJ candidate, the number of candidates is uncountably
infinite, making the direct application of MJ impossible. In this paper, we develop models and
computational approaches to apply MJ to this context.

1.1. Relevant Research

Extensive research has been conducted on the subjects of voting and elections. The most
widely used methods include Approval Voting, Point Summing, Borda Count, among others.
For the reasons discussed above we prefer MJ for our target applications. Therefore, although
these other methods also have the potential to be extended to handle candidate spaces with
infinite size, we do not explore them in this paper. Instead, our singular focus is extension of
MJ method to continuous candidate spaces.

Aside from voting systems which only determine a single winner, there are group-ranking
approaches that take ranking input from voters and output the group preference rankings of all
candidates. Kemeny and Snell (1962) define the group-ranking problem when each voter’s input
is an ordinal preference ranking, and the group ranking is the one that minimizes the devia-
tion from individual voters’ rankings based on some distance measure. The analytic hierarchy
process (AHP) developed by Saaty (1977) for multicriteria decision making has also been used
in group-ranking problems. It requires intensity ranking (a pairwise comparison that provides
the magnitude of the degree of preference) input from voters. AHP turns an intensity ranking
matrix into a vector of weights for all candidates. Since its invention, it has been successfully
applied to numerous areas to evaluate, rank or select candidates. However, like most of the
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group-ranking methods including the one by Kemeny and Snell (1962), AHP builds upon the
assumption that a full-ranking list for all candidates is provided by each voter. This prevents
its direct application in our problem context. There is perhaps also a philosophical difference
between our approach using MJ and the approaches using AHP. The AHP literature typically
assumes that participants do not have precise knowledge of their own preferences, and prefer-
ences are quantified through an iterative process using pairwise comparisons. In our MJ-based
approach, we address applications where voters can precisely estimate their grade functions,
which map all candidates into numerical grades. For example, in our capital budgeting applica-
tion, it is possible to relate every feasible capital allocation to a numerical grade that measures
voter’s preference, such as expected returns on investment. Similarly, in our ATFM applica-
tion, it is possible (at least conceptually) to relate an airline’s grade function to that airline’s
expected financial performance under every candidate vector in question.

Hochbaum and Levin (2006) propose generalized optimization approaches to produce group
rankings where voters’ inputs are also intensity rankings. Different from previous approaches,
their approaches are amenable to partial preference lists: each voter provides a partial list that
evaluates and compares only a subset of all the candidates. The partial preference lists are
motivated by the fact that different voters may have different areas of expertise in reviewing
candidates, and voters may not have the capability to review all the candidates in time, the
latter of which is also the case in our problem. Note here that although the feature in Hochbaum
and Levin (2006) of allowing partial lists is relevant to our problem context, it is difficult to
apply this approach to our context where the candidate space is modeled as a convex set.
Especially when the dimension of the candidate space is high, identifying good candidates for
voting in this approach seems non-trivial.

Finally, our work is related to the computational social choice literature. In particular, Xia
(2011) investigates “combinatorial voting” where the candidates have a multi-attribute struc-
ture. There is a set of attributes and a candidate is identified by the values these attributes take.
Combinatorial voting faces somewhat similar challenges as our problem – the number of candi-
dates is exponentially large. Xia (2011) thus develops new preference elicitation and aggregation
methods to solicit preferences and compute winner efficiently. However, these methods cannot
be directly applied to our context because they rely on the requirement that each attribute
takes a value from a finite set, while in our problem context, it could take any continuous value
from an interval. There is also similar literature in the field of combinatorial auctions (Conen
and Sandholm, 2001) where efficient preference elicitation methods need to be developed for
bundle evaluations.

1.2. Summary of Paper

The contribution of this paper is a practical approach to applying MJ where the set of
candidates is of infinite size and represented by a convex set. Section 2 defines a mixed integer
program that solves our problem assuming “perfect information”, namely an explicit knowledge
of all voter grade functions. Section 3 employs the results from Section 2 in creating a practical,
iterative mechanism that generates an approximate solution while only requiring that the voters
grade a limited number of candidates. Section 4 gives experimental results using our approach
to address a capital budgeting application.

2. Winner Determination Problem

In this section, we discuss the winner determination problem of finding the majority winner
over a convex candidate space given perfect information on voter preferences. The general
context for the problem involves a group of voters, N , and a central planner who seek to select
a candidate. These voters are not necessarily cooperative nor do they necessarily have common
goals. The form of the candidate that we seek is a numerical vector m ∈ Rn that is within
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a candidate space P , which is modeled as a convex set. The dimension of space P is n. We
assume that each voter i ∈ N has a grade function gi(·) that maps each candidate m ∈ P to
a real number (common language across all voters) that represents the value of m to voter i.
Each voter i ∈ N also has a weight wi ∈ R+. We apply MJ in this setting, i.e., we aim to
ensure that the final selected candidate m has the highest majority grade among all candidates
in P . We now describe some assumptions regarding the structure of the candidate space and
the grade functions:

Assumption 1. The candidate space P is a bounded convex set.

We require convexity of the candidate space to enable proper definitions of grade functions
over P in Assumption 2. We require P to be bounded to model the context where the range of
candidates is in general limited.

Assumption 2. Each voter’s grade function gi(m) is continuous, concave and component-wise
non-decreasing in m, the last one implying that all partial derivatives of gi(m) are non-negative.
Without loss of generality, we assume grades are continuous in [0, 1], where a higher grade
implies better acceptability by a voter.

Continuity would be a reasonable assumption for many applications: very small changes
in a candidate’s component values should not induce jumps in grades. The non-decreasing
assumption implies that higher values of the individual components of a candidate m are as
good as or better than lower values. The concavity assumption expresses the diminishing returns
property.

Under these assumptions, we describe an optimization model whose solution is the majority
winner (i.e., the candidate in P that has the highest majority grade), given complete information
of voters’ preferences gi(·) and weights wi. First, we define majority set as the following,

Definition 1 (Majority Set). A majority set B is a subset of voters which satisfies the following
property: ∑

i∈B
wi >

∑
i∈N wi

2
,

i.e. the sum of weights of all the voters in B is strictly greater than one half of the total weight.
We further define the set of all possible majority sets as B.

Voter Weight Grade

1 23 1.00
2 46 0.90
3 31 0.85

(a) Voters’ grades on one candidate

Majority Set Voter with Minimal Grade Minimum Grade

{1,2} 2 0.90
{1,3} 3 0.85
{2,3} 3 0.85
{1,2,3} 3 0.85

(b) All possible majority sets and their minimum grades

Table 2: MJ Illustration

We start the analysis with an example of three voters grading one single candidate (Table
2a). The total weight of the three voters sums up to 100. In this example, we can easily see
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that the set of all possible majority sets B is {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. In Table 2b, we list
all possible majority sets in the first column. For each majority set, we specify the voter which
gives the minimum grade in the majority set (column 2) and the corresponding minimum grade
(column 3). We would like to show that the maximum value of column 3, 0.90 in this case, is
indeed the majority grade of this candidate. We formalize this result in the following lemma.

Lemma 1. The majority grade gMJ(m) of a candidate m can be equivalently calculated as
follows:

gMJ(m) = max
B∈B

{
min
i∈B

gi(m)

}
(1)

Proof. This result follows directly from the definition of the majority grade: it is the highest
grade such that there exists a majority set where all voters in the majority set grade that
candidate at least as highly as that grade. The inner minimization in Eq. (1) is based on the
fact that mini∈B gi(m) is the highest grade such that every voter in majority set B will give a
grade greater than or equal to it. The outer maximization in Eq. (1) then aims to maximize
that grade by searching over all possible majority sets. �

Lemma 1 inspires us to develop a mathematical program to search over all possible majority
sets B in order to find the majority winner. As before, we use m to define a vector of continuous
variables representing an MJ candidate vector. Also, we define binary variables xi = 1,∀i ∈ N
if voter i is chosen to be in the corresponding majority set. Similarly, we define binary variables
yi = 1, ∀i ∈ N if voter i assigns the lowest grade to m among all voters in the majority set
indicated by x. Continuous variable vi, ∀i ∈ N represents the grade given by voter i to candidate
m. Finally, auxiliary continuous variable z is equal to the majority grade of candidate m as we
will prove next in Theorem 1. Theorem 1 introduces a mathematical program that computes
the majority winner over the entire candidate space P .

Theorem 1. Given each voter’s grade function gi(·), and weight wi, and feasible candidate
space P , the candidate with the highest majority grade g∗MJ is the optimal solution m∗ of the
following mathematical program:

g∗MJ = max
x,y,v,m,z

z (2)

s.t.
∑
i∈N

wixi ≥
∑

i∈N wi

2
+ ε0 (3)∑

i∈N
yi = 1 (4)

xi ≥ yi, ∀i ∈ N (5)

m ∈ P (6)

vi = gi(m), ∀i ∈ N (7)

vj ≤ Gmax(1− xi) +Gmax(1− yj) + vi, ∀i ∈ N, j ∈ N : i 6= j (8)

z ≤ vi +Gmax(1− yi), ∀i ∈ N (9)

xi, yi ∈ {0, 1}, ∀i ∈ N (10)

where Gmax is the maximum possible grade (under our assumptions Gmax = 1) and ε0 can be any

positive number smaller than min{
x∈{0,1}|N|:

∑
i∈N wixi>

∑
i∈N wi

2

} (∑
i∈N wixi −

∑
i∈N wi

2

)
which

is the smallest positive difference between
∑

i∈N wixi and
∑

i∈N wi

2 for all x ∈ {0, 1}|N |.

Proof. Constraint (3) indicates that the sum of weights in the selected majority set should
exceed one half of the total weight. Constraint (4) ensures that we select one voter as the one
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who assigns the minimum grade to m among all voters in the selected majority set. There
could be multiple voters who give a grade equal to this minimum grade, in which case any one
of them can be chosen. Constraints (5) make sure that if voter i is selected to be the one to give
the minimum grade, then voter i is included in the majority set. Constraint (6) restricts m to
be selected from the feasible candidate space P . Constraints (7) state that vi is the grade that
voter i gives to candidate m according to its grade function gi(·). Constraints (8) ensure that
if voter j is selected to be the one to give the minimum grade to candidate m (i.e., if yj = 1),
then its grade vj should indeed be less than or equal to other grades in the selected majority
set. To see this, note that if yj = 1 and xi = 1, which means voter i is included in the majority
set and voter j is selected to be the one who gives the minimum grade, then constraints (8)
become vj ≤ vi; otherwise, constraints (8) are redundant. Finally, constraints (9) along with
objective (2) ensure that auxiliary variable z equals the minimum grade of m in the selected
majority set. To see that, note that if yi = 1, then constraints (9) are reduced to z ≤ vi; and
if yi = 0, then constraints (9) are redundant. Now we can see that the mathematical program
described above is the same as maxm∈P,B∈B {mini∈B gi(m)}. Finally, from Lemma 1, we know
that this is equivalent to maxm∈P gMJ(m). �

Note that in theory multiple candidates in P could have the same highest majority grade.
In this situation certain tie-breaking rules, as developed by Balinski and Laraki (2010) in the
original MJ theory, need to be imposed. However, we don’t explicitly model tie-breaking rules
in the formulation (2) - (10) because ties rarely happen in the contexts of interest since we allow
voters to grade continuously between 0 and 1, which is an uncountably infinite space.

Although Theorem 1 allows us to formulate the problem of finding a majority winner over a
continuous convex candidate space, the resultant formulation is not computationally approach-
able because of the non-convexity introduced by constraints (7). Since the grade functions
gi(·),∀i ∈ N are concave, these equality constraints make the formulation a mixed-integer non-
convex program. Fortunately, Corollary 1 below shows that constraints (7) can be relaxed
without loss of optimality so that the resultant formulation becomes a mixed-integer convex
program. Corollary 1 also exhibits a simplification of the formulation. Proof of Corollary 1 can
be found in Appendix C.

Corollary 1. Constraints (5) are redundant and constraints (7) can be relaxed to vi ≤ gi(m),∀i ∈
N . Thus the following mixed-integer convex programming formulation MJ-OPT is equivalent to
the formulation described in (2)-(10).

(MJ-OPT) max z

s.t. (3)− (4), (6)

vi ≤ gi(m), ∀i ∈ N (11)

(8)− (10)

3. An Iterative Voting Approach

The mathematical development in Section 2 enables the computation of a majority winner
over a continuous convex candidate space if we have perfect knowledge of every voter’s grade
function. However, this information is typically private, known only to the voters themselves.
In this section, we develop an iterative voting approach which employs Theorem 1 but does not
require explicit knowledge of grade functions. Note that we assume that voters submit their
inputs truthfully according to their grade functions, i.e., there’s no strategic behavior.

To start, the voters are provided an initial set of candidates and are asked to grade these
candidates. The central planner then statistically estimates each voter’s grade function based
on that voter’s submitted grades. We denote the estimated grade functions as ĝi(m), ∀i ∈ N .
We don’t make any assumptions on the central planner’s knowledge of the functional form of
voters’ true grade functions, apart from knowing that they are concave and component-wise
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non-decreasing functions. So the central planner cannot directly estimate the grade functions’
parameters. Instead, we use a non-parametric regression method called “convex regression”
(Kuosmanen, 2008) to fit the best concave and component-wise non-decreasing function to
estimate each voter’s true grade function. This best-fit function turns out to be a piecewise-
linear function with the number of pieces equal to the number of graded candidates. It also has
desirable consistency property (Lim and Glynn, 2012). Suppose the central planner provides k
candidates to the voters to grade. For each voter i, the estimation problem takes two types of
inputs: (1) the set of candidates, and (2) voter i’s grade associated with each of these candidates.
The estimation problem outputs the best-fit piecewise-linear function’s coefficients (cji , d

j
i ) for

each piece j ∈ {1, · · · , k}. Thus, the form of the best-fit piecewise-linear concave function

for voter i is ĝi(m) = minj∈{1,··· ,k}

{
(cji )

Tm + dji

}
. The detailed formulation is presented in

Appendix A.
The central planner then generates new candidates based on the estimated grade functions

ĝi(m), ∀i ∈ N . It is desirable that the generated candidates are of good quality, in the sense that

they have relatively high majority grades. Thus we propose model M̂J-OPT as a building block
for this iterative approach. Model M̂J-OPT, which is presented next, produces the majority
winner with the estimated grade functions. The only difference between this formulation and
formulation MJ-OPT is that we replace vi ≤ gi(m), ∀i ∈ N in constraints (11) with vi ≤
ĝi(m), ∀i ∈ N . Note that vi ≤ ĝi(m), ∀i ∈ N is equivalent to constraints (12) since ĝi(m) =

minj∈{1,··· ,k}

{
(cji )

Tm + dji

}
.

(M̂J-OPT) max z

s.t. (3)− (4), (6)

vi ≤ (cji )
Tm + dji , ∀i ∈ N, j ∈ {1, · · · , k} (12)

(8)− (10)

Based on the discussion above, we develop an algorithm to iteratively generate new candi-
dates, refine the estimation of voter grade functions and thus approach the true majority winner
over the entire candidate space. The overall flow of this process is summarized in Algorithm 1.

Algorithm 1 An Iterative Approach

initialize
Select a set of initial candidates, S.
num iter = 1

while num iter ≤ nmax do
Obtain each voter’s grade for all newly added candidates in set S.
Estimate each voter’s grade function by running the estimation problem using the
obtained grades of all candidates in set S.
Generate a new candidate mnew by solving M̂J-OPT .
if ||mnew −m||2 ≥ ε, ∀m ∈ S then

Add mnew to set S.
else

Break
end if
num iter = num iter + 1

end while
return the candidate with the highest majority grade in set S.

Algorithm 1 starts with a set of initial candidates. The algorithm then enters into a loop
to (1) first obtain the grades (from the voters) of the candidates that haven’t been graded yet,
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then (2) estimate each voter’s grade function by running the convex regression model, then (3)

generate a new candidate mnew by solving M̂J-OPT, and finally (4) add the new candidate
mnew to the set S. The algorithm terminates either after certain pre-specified number (nmax)

of iterations or if the newly generated candidate after solving M̂J-OPT is sufficiently similar to
any of the existing candidates in S. The similarity here is measured in terms of their euclidean
distance being less than or equal to a certain threshold ε. Upon termination, the algorithm
returns the candidate with the highest majority grade among the candidates in set S.

4. A Capital Budgeting Example

In this section, we introduce a case study that considers a simple capital budgeting problem,
i.e., the one involving allocation of a fixed amount of money (C) to n projects. Let m1, · · · ,mn

denote, respectively, the amounts of money allocated to projects 1 through n. Then the feasible
candidate space P of all possible allocations is:{

(m1, · · · ,mn) :
n∑
i=1

mi ≤ C,mi ≥ 0,∀i ∈ {1, · · · , n}

}
.

Consistent with previous discussion, the type of capital budgeting problems that we are inter-
ested in are group decision-making problems, i.e., the ones where the final budget allocation
scheme is not determined by a single decision-maker but rather by a group. Suppose that the
final allocation outcome m∗ = (m∗1, · · · ,m∗n) is to be determined by N voters. Each voter has
a grade function and a weight. Consistent with Assumption 2, the grade functions are concave.
Concavity reflects a decreasing rate of return on investment in each project.

To demonstrate the effectiveness of our approach, we compare the performances of the
following three methods. We define the efficient frontier P̄ of the feasible candidate space P as
the subset of the candidate space such that no candidate in P dominates any candidates in P̄
in terms of the component values. In other words, there does not exist a candidate m ∈ P such
that the following holds: mi ≥ m′i, ∀i ∈ {1, · · · , n} and ∃i′ ∈ {1, · · · , n} such that mi′ > m′i′ ,
for some m′ ∈ P̄ . We can restrict ourselves to the candidates on the efficient frontier because
for any candidates not on the efficient frontier, we can always find one on the frontier that has
higher or equal majority grade.

1. Random Generation:
This is a baseline approach to find the majority winner. We randomly generate k can-
didates along the efficient frontier of the candidate space (detailed method is described
in Appendix B), and perform one round of candidate grading by all the voters. The
candidate with the highest majority grade among these k candidates is selected as the
winner.

2. Iterative Approach Starting with Voters’ Best Candidates:
This is the iterative approach discussed in Algorithm 1. We initialize Algorithm 1 with a
set of candidates which is made up of each voter’s most preferred candidate. We report the
performance of the majority winner among the candidates in the set S at each iteration.

3. Iterative Approach Starting with Evenly Distributed Candidates:
The only difference between this approach and the previous one is that we initialize this
approach with a set of evenly distributed candidates along the efficient frontier. The
number of initial candidates is set to be equal to the number of voters so that we can have
a fair comparison with the iterative approach starting with voters’ best candidates.

We benchmark all solutions to mexact, which is the true majority winner (the candidate
that has the highest majority grade based on voters’ true grade functions) over the entire
feasible space. It is obtained by solving formulation MJ-OPT. Denote its majority grade as
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vexact. We then use vexact to report the optimality gap of all solutions which is calculated as(
(vexact − v) /vexact

)
∗ 100%, where v is the true majority grade of the solution we want to

evaluate. The lower the value of optimality gap the better is the performance.
Without loss of generality, we set the total budget C equal to 1. We set the number of voters

to 10. We test two weighting schemes: (1) equal weights, where each voter has the same weight;
(2) random weights, where each voter’s weight is generated from a discrete uniform distribution
between 1 and 10. We set to 10 the number of projects to be potentially funded. To compare
the performances of the three approaches, we run 100 rounds of simulation in total. For each
simulation, we randomly generate one set of all voters’ true grade functions. Under random
weighting scheme, we also randomly generate one set of voter weights for each simulation run.

For the random generation approach, we report the optimality gap under 10, 20, 30, 40 can-
didates (denoted as Rand10, Rand20, Rand30 and Rand40, respectively). For each of the two
iterative approaches we start with 10 candidates, and report the optimality gap upon termi-
nation and total number of candidates graded until termination. For the iterative approach
starting with evenly distributed candidates (denoted as IterEven), we start with 10 unit vectors
e1, · · · , e10 where ei is the vector with all components equal to zero except for the ith com-
ponent which is equal to one. For the iterative approach starting with voters’ best candidates
(denoted as IterBest), we start with all 10 voters’ most preferred candidates, one most preferred
candidate per voter. In the iterative approach, we set nmax = 30 so that at most 40 candidates
will be evaluated. We also set ε = 0.01 as another termination criteria. All the mathematical
programs were written in Julia using JuMP as the algebraic modeling language (Dunning et al.,
2015). All linear programming and mixed-integer linear programming problems were solved us-
ing Gurobi 7.5 (Gurobi Optimization Inc., 2018) and all nonlinear optimization problems were
solved using Ipopt (Wächter and Biegler, 2006) and Bonmin (Bonami et al., 2008).
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Figure 1: Optimality gap upon termination under all tested approaches

Figure 1 uses standard boxplots to depict the distributions of optimality gaps upon termina-
tion of the iterative approaches and benchmarks them against the random generation baselines
with different number of candidates. Under both weighting schemes, iterative approach starting
with voters’ best candidates produces the best results, with an average optimality gap of 1.67%
under random weights and 1.79% under equal weights. Iterative approach starting with evenly
distributed candidates reaches an average optimality gap of 7.98% under random weights and
7.04% under equal weights. In comparison, for the random generation baselines, even with 40
candidates, the average optimality gap is as large as 12.58% under random weights and 8.48%
under equal weights.

Figure 2 shows, using standard boxplots, the distributions of the number of candidates eval-
uated until termination for the two iterative approaches. The iterative approach starting with
voters’ best candidates evaluates on average 20.2 and 22.7 candidates under random and equal
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Figure 2: Number of candidates graded until termination under the iterative approaches

weighting schemes. In contrast, iterative approach starting with evenly distributed candidates
evaluates on average only 15.8 candidates under random weights and 16.8 candidates under
equal weights. Both iterative approaches save a significant amount of grading effort compared
to the random generation approach (which requires at least 30 to 40 candidates to be graded
to obtain somewhat reasonable results).

In summary, these computational results demonstrate the superior performance of our iter-
ative approaches compared to the baselines in terms of the optimality gaps and also in terms
of the required grading effort.
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Appendix A. Grade Function Estimation

In this appendix, we suppress the voter index i for simplicity. Suppose m1,m2, · · · ,mk are
k candidates that we ask the voters to grade, and y = {y1, y2, · · · , yk} are the corresponding
grades submitted by a specific voter.

We utilize a nonparametric regression method called “convex regression” (concave in our
setting) to estimate voters’ grade functions. The idea of this estimation method is to find
an estimator ĝ(·) which minimizes of the sum of squares:

∑k
i=1(ĝ(mi) − yi)2 over functions

ĝ that are concave and component-wise non-decreasing in m. Let f = {f1 = ĝ(m1), f2 =
ĝ(m2), · · · , fk = ĝ(mk)}, respectively, be the grades estimated through this best-fit function
for candidates m1,m2, · · · ,mk respectively. The formulation for solving the convex regression
is presented below (Lim and Glynn, 2012; Mazumder et al., 2015):

min
f ,ξ

‖f − y‖22 (A.1)

s.t. fj ≤ fi + ξTi (mj −mi), ∀i, j ∈ {1, · · · , k}, i 6= j (A.2)

‖ξi‖22 ≤ C, ∀i ∈ {1, · · · , k} (A.3)

ξi ≥ 0, ∀i ∈ {1, · · · , k} (A.4)

Note that ξ1, · · · , ξk are the supergradients of the best estimated convex function ĝ(·) at
points m1, · · · ,mk respectively. Constraints (A.2) represent the concavity requirement regard-
ing the supergradient of a concave function. Constraints (A.3) represent the Lipschitz constraint
to bound the L2 norm of the supergradients ξ from above. These constraints are imposed to
prevent overfitting and to ensure certain convergence rate properties (Mazumder et al., 2015).
We refer interested readers to Mazumder et al. (2015) for details. In our implementation, we
chose C = 10 which is an upper bound that we empirically found for all the grade functions
generated using the method described in Appendix D. Finally, constraints (A.4) ensure that the
best-fit function is component-wise non-decreasing. After obtaining the optimal solution f∗, ξ∗

of the quadratic program (A.1)-(A.4), the estimated grade function ĝ(·) is specified as follows:

ĝ(m) = min
i∈{1,··· ,k}

{
yi + ξTi

(
m−mi

)}
= min

i∈{1,··· ,k}

{
ξTi m +

(
yi − ξTi mi

)}
Appendix B. Procedure for Random Generation of Candidates on the Efficient

Frontier

We first generate a vector c ∈ [0, 1]n where each component ci is uniformly distributed
between 0 and 1. We then solve the following linear program and denote the optimal solutions
of this linear program as m∗.

max

n∑
i=1

mi (B.1)

s.t. cjmi = cimj , ∀i, j ∈ {1, · · · , n} (B.2)

m ∈ P (B.3)

The linear program (B.1) - (B.3) essentially finds a candidate m∗ by moving along the
direction (c1, c2, · · · , cn) as far as possible while staying within the feasible candidate space P .
However, the resultant candidate might not be on the efficient frontier. The next linear program
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further projects m∗ onto the efficient frontier:

max
n∑
i=1

mi (B.4)

s.t. mi ≥ m∗i , ∀i ∈ {1, · · · , n} (B.5)

m ∈ P (B.6)

One can easily check that the optimal solution of this second linear program (B.4) - (B.6)
is on the efficient frontier of P .

Appendix C. Proof of Corollary 1

To prove that constraints (5) are redundant, we are going to prove that for any optimal solu-
tion {x∗,y∗,v∗,m∗, z∗} to the formulation described by (2)-(4) and (6)-(10), which violates con-
straints (5), we can always modify the values of y and transform it into another optimal solution
{x∗,y∗∗,v∗,m∗, z∗} which satisfies constraints (5). That is, for any such {x∗,y∗,v∗,m∗, z∗}, we
can always find an optimal solution to the formulation described by (2)-(10) by only changing
the y values. For any such {x∗,y∗,v∗,m∗, z∗} that doesn’t satisfy constraints (5), there is some
voter i0 with y∗i0 = 1 and x∗i0 = 0. Let j0 = argmini∈N :x∗i=1v

∗
i . We construct a new solution

with y∗∗ such that y∗∗j0 = 1 and y∗∗j = 0, ∀j ∈ N \{j0}. We claim that {x∗,y∗∗,v∗,m∗, z∗} is also
an optimal solution to formulation (2)-(4) and (6)-(10) and satisfies y∗∗j0 = 1, x∗j0 = 1. To see
that, we only need to prove that {x∗,y∗∗,v∗,m∗, z∗} is feasible because they have the same ob-
jective function values z∗. We can verify that constraints (3),(4),(6),(7), and (10) are satisfied.
Constraints (8) are satisfied because the way we select j0 ensures that v∗j0 ≤ v

∗
i , ∀i ∈ N : x∗i = 1.

Constraints (9) are also satisfied because of the fact z∗ ≤ v∗i0 ≤ v∗j0 . The first inequality holds
because {x∗,y∗,v∗,m∗, z∗} satisfies constraints (9) and y∗i0 = 1. The second inequality holds
because {x∗,y∗,v∗,m∗, z∗} satisfies constraints (8) and x∗j0 = 1, y∗i0 = 1. We can repeat this
process for all such i0 with y∗i0 = 1 and x∗i0 = 0 one by one, to arrive at a solution that satisfies
constraints (5). This proves that constraints (5) are redundant.

To prove that equality constraints (7) can be relaxed to less-than-or-equal-to constraints,
we follow the same proof technique as the one used in the first part of this proof. So we
are going to show that for any optimal solution {x∗,y∗,v∗,m∗, z∗} of MJ-OPT which violates
constraints (7), we can always modify the values of v and/or y to transform it into another
optimal solution {x∗,y∗∗,v∗∗,m∗, z∗} of MJ-OPT which satisfies constraints (7). We start
with an optimal solution of MJ-OPT which doesn’t satisfy constraints (7), i.e., there exists
some i ∈ N such that v∗i < gi(m

∗). We next divide our discussion into two different cases:

1. If y∗i = 0: Replace v∗i with v∗∗i = gi(m
∗). The new solution is still feasible and thus

optimal for MJ-OPT. This is because constraints (8) are redundant at index i, and thus
they have no restriction on increasing the value of vi. Note that constraints (9) can never
be violated by increasing the value of any v∗i .

2. If y∗i = 1: Let j0 = argminj∈N\{i}:x∗j=1v
∗
j . Then replace v∗i with v∗∗i = gi(m

∗) and

replace y∗ with y∗∗ such that y∗∗j0 = 1 and y∗∗j = 0,∀j ∈ N \ {j0}. Now, we only
need to prove that this new solution is still feasible, and thus optimal, for MJ-OPT.
We first claim that v∗j0 = v∗i . To see that, suppose v∗j0 > v∗i instead (note that v∗i ≤
v∗j0 because of constraints (8) and knowing that y∗i = 1, and x∗j0 = 1). Replacing v∗i
with v

′
i = min{gi(m∗), v∗j0}, and adjusting the y∗ variables accordingly, the resultant

solution is still feasible but with a higher objective value equal to z∗ + (v
′
i − v∗i ) because

v
′
i = min{gi(m∗), v∗j0} > v∗i . This reaches a contradiction with the assumption that
{x∗,y∗,v∗,m∗, z∗} is an optimal solution. So we have proved that v∗j0 = v∗i . Now consider
the new solution {x∗,y∗∗,v∗∗,m∗, z∗} constructed. We can easily verify that it satisfies
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constraints (3), (4), (5), (6), and (10). Constraints (8) are satisfied because v∗∗j0 = v∗j0 =
v∗i ≤ v∗j ,∀j ∈ N : x∗j = 1. Constraints (9) are also satisfied because z∗ = v∗i = v∗j0 = v∗∗j0 ,
where the first equality holds because of the optimality of {x∗,y∗,v∗,m∗, z∗}.

In summary, for any optimal solution {x∗,y∗,v∗,m∗, z∗} of MJ-OPT, we can transform it
to another optimal solution {x∗,y∗∗,v∗∗,m∗, z∗} for MJ-OPT, which satisfies constraints (5)
and (7). This finishes the proof of equivalence between MJ-OPT and formulation described by
(2)-(10). �

Appendix D. Specifications and Generation of True Grade Functions

In this appendix, we present the specifications and the process of generation of the underlying
true grade functions that we use in the computational experiments in Section 4. We will suppress
the voter index i in this appendix for simplicity. Without loss of generality, the individual
components of the candidate vectors, mj , ∀j ∈ {1, · · · , n} are normalized to have allowable
values between 0 and 1. Recall that n here is the dimension of the feasible space. In the capital
budgeting example (Section 4), n = 10.

The grade function g(m) for a specific voter is composed of component-wise value functions
vj(mj) of each component mj . We define the overall value function V (m), which combines the
component-wise value functions as a multiplicative-multilinear function of vj(mj)’s, and allows
modeling complementarities and substitutions among the different components. This functional
form is based on well-accepted theories developed by economists and marketing researchers in
the fields of choice modeling and multi-attribute valuation (Meyer and Johnson, 1995):

V (m) =
n∑
j=1

rjvj(mj) +
∑

1≤j<k≤n
rjkvj(mj)vk(mk), (D.1)

Coefficients rj here are non-negative. For pairwise interaction coefficients rjk, if rjk > 0, then
it means that components j and k are complements; on the other hand, if rjk < 0, then it
means that components j and k are substitutes. Finally, the normalization step converts the
overall value into a grade, using a simple linear scaling based on the maximum value V max =
maxm∈P V (m). Thus the grade function for the voter evaluated at candidate m is specified as:

g(m) =
V (m)

V max
(D.2)

A quadratic form without an intercept is specified for each component-wise value function,
vj(mj) = ajm

2
j + bjmj , which was also used by Evans et al. (2014) in the collaborative air

traffic flow management context. We require each vj(mj) to be concave and non-decreasing;
and without loss of generality, we also require vj(mj) ∈ [0, 1], ∀mj ∈ [0, 1]. Therefore, the values
of aj and bj need to be constrained such that −1 ≤ aj ≤ 0 and −2aj ≤ bj ≤ 1− aj . Moreover,
to ensure global concavity of the overall grade function g(m), further constraints need to be
imposed on the coefficients. We first expand the grade function g(m) according to (D.1) and
(D.2) as follows, where Ka

j ,K
b
j ,K

aa
jk ,K

ab
jk ,K

ba
jk ,K

bb
jk are some constants that can be derived from

aj , bj , rj , rjk.

g(m) =

n∑
j=1

Kb
jmj +

n∑
j=1

Ka
jm

2
j +

∑
1≤j<k≤n

(
Kbb
jkmjmk +Kab

jkm
2
jmk +Kba

jkmjm
2
k +Kaa

jkm
2
jm

2
k

)
,
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where

Ka
j =

rjaj
V max

,Kb
j =

rjbj
V max

,Kaa
jk =

rjkajak
V max

,Kab
jk =

rjkajbk
V max

,Kba
jk =

rjkbjak
V max

,Kbb
jk =

rjkbjbk
V max

(D.3)

Note that the component-wise non-decreasing condition on g(m) is equivalent to∇g(m) ≥ 0.
Also, the Hessian matrix of a function being negative semi-definite in a given region is a necessary
and sufficient condition for the concavity of the function within that region. Let the Hessian
matrix of the grade function be:

Hg =


g11 g12 · · · g1n
g12 g22 · · · g2n
...

...
...

...
g1n g2n · · · gnn


where gjk is the second-order partial derivative of g(m) with respect to mj and mk. The
first-order partial derivatives, gj , j ∈ (1, 2, · · · , n) are:

gj =
∂g(m)

∂mj
=Kb

j + 2Ka
jmj +

∑
k:k<j

(
Kbb
kjmk +Kab

kjm
2
k + 2Kba

kjmkmj + 2Kaa
kjm

2
kmj

)
+
∑
k:j<k

(
Kbb
jkmk + 2Kab

jkmkmj +Kba
jkm

2
k + 2Kaa

jkm
2
kmj

)
The second-order partial derivatives (∀j = 1, · · · , n; 1 ≤ j < k ≤ n) are:

gjj =
∂gj
∂mj

=2

Ka
j +

∑
k:k<j

(
Kba
kjmk +Kaa

kjm
2
k

)
+
∑
k:j<k

(
Kab
jkmk +Kaa

jkm
2
k

)
gjk =

∂gj
∂mk

=Kbb
jk + 2Kab

jkmj + 2Kba
jkmk + 4Kaa

jkmkmj

We then have,

mTHgm =
[
m1 m2 · · · mn

]

g11 g12 · · · g1n
g12 g22 · · · g2n
...

...
...

...
g1n g2n · · · gnn



m1

m2
...
mn


=

n∑
j=1

m2
jgjj + 2

 ∑
1≤j<k≤n

mjmkgjk


If ∀m ∈ P such that m 6= 0, mTHgm ≤ 0, i.e., if Hg is negative semi-definite over the entire
feasible candidate space, then the grade function gi(m) is concave over P . Now we discuss in
detail the process of generating parameters aj , bj , rj , and rjk to ensure that the overall grade
function is concave and component-wise non-decreasing.

We summarize the overall algorithm for generating one set of voters’ grade functions in
Algorithm 2. As described before, the coefficients aj and bj in vj(mj) = ajm

2
j + bjmj should

satisfy aj ∈ [−1, 0] and bj ∈ [−2aj , 1 − aj ]. For sampling, we assume that all parameters,
namely aj , bj , rj , and rjk, are uniformly distributed within their specified ranges. For the
purposes of Algorithm 2, we assume that rj ∼ unif(lj , uj), ∀j ∈ {1, · · · , n}, with lj = 2 and
uj = 6,∀j ∈ {1, · · · , n}. Similarly, we assume that rjk ∼ unif(ljk, ujk) ∀j, k ∈ {1, · · · , n}, j < k
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with ljk = −2 and ujk = 2, ∀j, k ∈ {1, · · · , n}, j < k. Note that rj > |rjk| to constrain the
interaction effects to be smaller than the major effects. We check a discrete grid of points
(denoted by P ′ ⊂ P ), which are evenly spaced in P , for the component-wise non-decreasing
condition and the concavity condition. Specifically, in the capital budgeting case study, we
check at all points in P ′ = {0, 0.25, 0.5, 0.75, 1}10 ∩ P .

Algorithm 2 Generating Voters’ True Grade Functions

repeat
for j = 1 : n do

aj ∼ unif(−1, 0)
bj ∼ unif(−2aj , 1− aj)
rj ∼ unif(lj , uj)
for k = (j + 1) : n do

rjk ∼ unif(ljk, ujk)
end for

end for
concavity condition = true
non-decreasing condition = true
for all m ∈ P ′ do

if ∇g(m) ≥ 0 then
do nothing

else
non-decreasing condition = false
break the for loop

end if
if mTHgm > 0 then

concavity condition = false
break the for loop

end if
end for

until concavity condition and non-decreasing condition are satisfied
calculate Ka

j ,K
b
j ,K

aa
jk ,K

ab
jk ,K

ba
jk ,K

bb
jk according to (D.3)

return Ka
j ,K

b
j ,K

aa
jk ,K

ab
jk ,K

ba
jk ,K

bb
jk
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