II. Acidity of Organic Molecules

- A. Bronsted-Lowry Acids and Bases
 - 1. Brønsted-Lowry Definition
 - 2. pK_a Definition
 - 3. Predicting pK_a Values
 - a. idenity of conjugate base
 - b. hybridization
 - c. inductive effects
 - d. resonance stabilization
- B. Lewis Acids and Bases

Reading: McMurray 2.7 - 2.11 Additional Problems: 2.20-2.23, 2.25-2.26, 2.32-2.41, 2.43-2.47, 2.54-2.56

Stability and Reactivity

Strong acid

- relatively unstable acid
- relatively stable conjugate base

Weak acid

- relatively stable acid
- relatively unstable conjugate base

Strong base

- relatively unstable base
- relatively stable conjugate acid

Weak base

- relatively stable base
- relatively unstable conjugate acid

Effect of Structure on pK_a

1. Charged vs. noncharged species

a charged molecule is more acidic than a neutral molecule

$$NH_4^+ \longrightarrow NH_3 + H^+ \qquad NH_3 \longrightarrow NH_2^- + H^+$$

$$pK_a = 9.4 \qquad pK_a = 36$$

2. Electronegativity of the atom attached to H

the more EN the attached atom, the more acidic the molecule

Effect of Structure on pKa

3. Size of attached atom

the larger the attached atom, the more acidic (down column)

> Br > Cl > F	I ⁻ > Br ⁻ > CI ⁻ > F ⁻	HI > HBr > HCl > HF
relative size	relative stability of conjugate bases	relative acidity

4. Inductive electron withdrawal

- a. Magnitude of electronegativity (the more EN, the more acidic)
- b. Distance away from (-) charged conjugate base (closer = more acidic)

Example: N vs O vs S

Nitrogen is most effective at stabilizing a positive charge and least effective at stabilizing a negative charge

Sulfur is most effective at stabilizing a negative charge and least effective at stabilizing a positive charge

Effect of Structure on pKa

5. Hybridization (*sp*, *sp*², *sp*³)

Conjugate base has negative charge, which is stabilized by orbitals with greater *s* character

Effect of Structure on pK_a

6. Resonance

resonance stabilizes the negative charge of the conjugate base the more resonance contributors, the more stable the molecule

Summary

- 1. Series of Neutral Acids
 - a. Deprotonate to find the conjugate bases
 - b. Compare the stability of the conjugate bases
 - c. The more stable the conjugate base, the stronger the acid
- 2. Series of Charged Acids (+1)
 - a. Compare the stability of the charged acids
 - b. The more stable the charged acid, the weaker it is
- 3. Series of Neutral Bases
 - a. Protonate to find the conjugate acids
 - b. Compare the stability of the conjugate acids
 - c. The more stable the conjugate acid, the stronger the base
- 4. Series of Charged Bases (-1)
 - a. Compare the stability of the charged bases
 - b. The more stable the charged base, the weaker it is