How Athena Works

Marc Horowitz

Student Information Processing Board

“Clue Dump” Series
Fall 2006
Overview

- History
- Network Services
- Workstation Services
Where did Athena come from?

- Project Athena was a five year project started in 1983.
- The goal was to make a distributed, scalable workstation environment based on 4.3 BSD Unix.
- Nothing like this had ever been attempted before.
- Timesharing was the ubiquitous model.
What did Athena invent?

- Kerberos network authentication
- Location-independent user accounts
- Location-independent instant messaging
- Unattended network installation
- Automatic system updates
- The X Window System
What did Athena look like then?

- VAX 11/750 servers
- DEC VAXstation & IBM RT workstations
 - 1 MIPS CPU
 - 4 megabytes of memory
 - 1 megapixel monochrome display
 - 40mb local hard drive
- Services very similar to today
 - Kerberos, Hesiod, Lockers, Moira, Update
How has Athena changed?

- AFS has replaced NFS and RVD
- Kerberos 5 has replaced Kerberos 4
- Solaris and Linux have replaced 4.3 BSD
 - Athena no longer builds the OS from scratch
- Machines are *much* faster
- Quotas are no longer 600 kilobytes
- The Internet has grown past 60,000 hosts
Network Services

- Kerberos
- AFS
- Hesiod
- Lockers
- Email

- Printing
- Moira
- Zephyr
- Lert
- Larvnet
Workstation Services

• Install
• mkserv
• Update
• Workstation self-maintenance
• User logins
• Display Manager
Kerberos

- Secure Network Authentication Service
 - KDC
 - Users and passwords
 - Services and keytabs
AFS

AFS is the network filesystem used on Athena

- Secured using Kerberos
 - tokens
 - PAGs
- Organized into “cells” and “volumes”
- Volumes can be replicated and moved
- Performance is improved by caching
- Distinctive permissions model
AFS: Pitfalls

- Permissions behavior is unexpected by experienced Unix users
- No hard links across directories
- Software can behave badly when tokens expire
- `close()` can fail
- Non-cached performance is slower than local access
Hesiod is a distributed naming service based on DNS

- Many types of data
 - User account data
 - Post office data
 - Workstation cluster data
 - Printer data
 - Many more

- Uses standard BIND DNS implementation
 - distributed
 - replicated
Hesiod: examples (1)

- All at once

```
% athrun consult hes sipbtest
  PASSWD: sipbtest:*:20922:101:Fred Sipb,,,,,:/mit/sipbtest:/bin/athena/tcsh
  FILSYS: AFS /afs/athena.mit.edu/user/s/i/sipbtest w /mit/sipbtest
  POBOX: POP PO12.MIT.EDU sipbtest
  GRPLIST: sipbtest:7329
  GROUP: sipbtest:*:7329:
```

- One record at a time (good for scripts)

```
% hes sipb filsys
AFS /afs/sipb.mit.edu/project/sipb n /mit/sipb 1
AFS /afs/athena.mit.edu/contrib/sipb n /mit/sipb 2
```
Hesiod: examples (2)

- Using DNS tools directly

```bash
% host -t txt -v ceres.pcap.ns.athena.mit.edu
Trying "ceres.pcap.ns.athena.mit.edu"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1142
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 0

;; QUESTION SECTION:
;ceres.pcap.ns.athena.mit.edu. IN TXT

;; ANSWER SECTION:
ceres.pcap.ns.athena.mit.edu. 7139 IN TXT "ceres:rp=ceres:rm=HUSQVARNA.MIT.EDU:ka#1:mc#0:auth=kerberos5:xn:"

;; AUTHORITY SECTION:
ns.athena.mit.edu. 20742 IN NS CLIO.mit.edu.
ns.athena.mit.edu. 20742 IN NS SUOMI.mit.edu.
ns.athena.mit.edu. 20742 IN NS APOLLO.mit.edu.

Received 183 bytes from 127.0.0.1#53 in 71 ms
%```
**Lockers**

Filesystem and location independent access to file storage

- Used mostly by attach and add tools
- Simple case: a locker is a location in `/afs`, with symlink from `/mit`
- Also provides mechanisms for failover and management of PATH and MANPATH environment variables
- `lockers(7)` man page documents conventions for software locker layout
Email

- Sendmail-based infrastructure
- Mail from workstations may be queued locally before being forwarded to “outgoing” servers
- Outgoing servers deliver mail to MIT mailhubs and third party recipients
- Mailhubs perform spam checks, expand mailing lists, forward to PO servers
- PO servers store email, which is accessed with KPOP or IMAP
Email

External Sender

Spam Appliance

milter

Mailhub

Post Office

External Recipient

User Agent

User Agent

User Agent

outgoing

Inside MIT
Printing

- LPRng-based infrastructure
- Hesiod to locate printers
- Kerberos for authentication
- Print servers
  - access control
  - queue management
  - forward jobs to printers
Moira

Primary repository and administration service for all system and user data

- Kerberos and certificate authenticated
- Rich client set
  - moira, blanche, stanley, listmaint
  - web-listmaint <http://web.mit.edu/moira>
  - mrtest
- DCM (Data Control Manager) Model
  - Data pushed periodically to services (mail aliases, hesiod data, etc)
  - “Incremental” services updated dynamically (afs quotas, afs group membership)
  - Applications do not query Moira directly
Moira: What it manages

- Workstation cluster information
- Locker hesiod and quota data
- Mailing lists and filesystem groups
- Host and network configuration
- Printer configuration
- User account data
- Access control lists: zephyr, discuss, etc.
- Almost everything else (except passwords)
Zephyr

Zephyr is a location-independent instant messaging system

- Secured using Kerberos
  - One of the last parts of Athena which still requires version 4
- System status notification
  - This was its original purpose
- Location management
- One-to-one user communications
- Many-to-Many user communications
Larvnet

- Gathers data used by cvview
  - User login information
    - Sent proactively by login/logout process
    - Polled via “busyd” inetd udp service
  - Print queue information
    - Polled using lpq
Workstation Services

- Install
- mkserv
- Update
- Workstation self-maintenance
- User logins
- Display Manager
Install

Athena workstation installation is a fully automated process

- Installs are started or network boot or cd/floppy
- An install kernel and filesystem is mounted over the network
- The local disk is formatted
- Files are copied onto the disk
- On non-Linux platforms, much of the OS is executed from AFS and not local at all
**mkserv**

mkserv is a system for customizing a newly installed workstation

- server installations
- common private workstation customizations
- local private customization script
- executed at install time and update time
Workstation Self-maintenance

Regular tasks are performed by each client to keep them current and healthy.

- Frequent execution
  - Boot time
  - Every few minutes when nobody is logged in (“reactivate”)
  - From cron
- System software is verified
- Kicks off workstation update if necessary
Boot and reactivate tasks

- passwd, shadow, group files are reset to known good copies
- AFS CellServDB is updated from AFS
- Lockers are detached
- Hesiod cluster information is retrieved
  - System software location
  - Default printer
- srvd attached (not on Linux)
- Verification of OS software (boot only)
- Verification of Athena software (only at boot on Linux)
- System configuration files are reset to known good copies from AFS
- Check for software update
- Time synchronization
**Cron tasks**

- Temporary directories are cleaned
  - This can happen even if a user is logged in
- Queued mail is pushed
- System time is reset if it has drifted more than 60 seconds
- Locker software is copied locally from AFS to improve performance
  - Acrobat reader
  - OpenOffice
  - Private workstations can extend this list
Update

Athena workstations are automatically updated remotely

- A flag file on a file server indicates if an update is available
- Most services are shut down
- The OS is updated
- Configuration files and Athena software is copied locally
- mkserv is run
Update (srvd)

- Hesiod clusterinfo adds new RVD (new release)
- /srvd/.rvdinfo compared to /etc/athena/version (patch)
- Checks performed to see if the update should occur (auto-update, disk space, desynchronization, etc)
- Services shut down
- Update scripts executed
- Configuration files updated from srvd
- rc.conf updated
- miniroot may be created if major OS updates are necessary
- OS software updated
  - pkgadd and patchadd on Solaris
- Athena software updated with track
- Reboot if OS updated
- mkserv runs
Update (Linux)

- Hesiod clusterinfo adds new syscontrol file (new release)
- control file compared to /etc/athena/version
- Checks performed to see if the update should occur (auto-update, disk space, etc)
- Services shut down
- RPMs are added, updated, and removed
- mkserv is run
**User logins**

Athena's user login process is different from most Unix environments.

- **User authentication**
  - Local password
  - Kerberos password
  - Kerberos-authenticated remote login
    - To avoid confusing users, non-root authenticated logins without forwarded credentials are generally not permitted
- passwd, shadow, group files updated from Hesiod
- User's locker is attached
Display Manager

• Run out of inittab
• Manages console lifecycle
  - X server
    • Restarted on logout or death
  - login window
    • Run on each new X server
  - console window
    • Run on each new X server
  - user X session
    • started if login succeeds
    • cleaned up afterwards
  - reactivate
  - periodically when no user is logged in
Acknowledgements

- Greg Hudson, whose document inspired the organization and content of this talk
- Mitch Berger and Tim Abbott, for organizing the series and trusting me to give the first impression
- Mitch Berger, John Hawkinson, and Jonathon Weiss, for commenting on the slides