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Axioms of Probability

Let S be a finite set called the sample space, and let A be any
subset of S , called an event. The probability P(A) is a real-valued
function that satisfies:

◮ P(A) ≥ 0

◮ P(S) = 1

◮ P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅

For infinite sample space, third axiom is that for an infinite
sequence of disjoint subsets A1, A2, . . .,

P
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∞
⋃

i=1
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Some Theorems

◮ P(A) = 1 − P(A)

◮ P(∅) = 0

◮ P(A) ≤ P(B) if A ⊂ B

◮ P(A) ≤ 1

◮ P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

◮ P(A ∪ B) ≤ P(A) + P(B)



Joint & Conditional Probability

◮ If A and B are two events (subsets of S), then call P(A ∩ B)
the joint probability of A and B.

◮ Define the conditional probability of A given B as:

P(A|B) =
P(A ∩ B)

P(B)
.

◮ A and B are said to be independent if P(A∩B) = P(A)P(B).

◮ If A and B are independent, then P(A|B) = P(A).



Bayes’ Rule

We have:

◮ P(A|B) = P(A∩B)
P(B)

◮ P(B|A) = P(A∩B)
P(A)

Therefore:

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

And Bayes’ Rule is:

P(A|B) =
P(B|A)P(A)

P(B)



On the islands of Ste. Frequentiste and Bayesienne...
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On the islands of Ste. Frequentiste and Bayesienne...

The king of Ste. F & B has been poisoned! It’s a conspiracy. An
order goes out to the regional governors of Ste. Frequentiste and
of Isle Bayesienne: find those responsible, and jail them.

Dear Governor: Attached is a blood test for proximity to the
poison that killed the king. It has a 0% rate of false negative
and a 1% rate of false positive. Administer it to everybody on
your island, and if you conclude they’re guilty, jail them.

But remember the nationwide law: We must be 95%
certain of guilt to send a citizen to jail.



On Ste. Frequentiste:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

◮ P(E+|Guilty) = 1

◮ P(E−|Guilty) = 0

◮ P(E+|Innocent) = 0.01

◮ P(E−|Innocent) = 0.99

How to interpret the law?
“We must be 95% certain of guilt” ⇒
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On Ste. Frequentiste:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

◮ P(E+|Guilty) = 1

◮ P(E−|Guilty) = 0

◮ P(E+|Innocent) = 0.01

◮ P(E−|Innocent) = 0.99

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Jail|Innocent) ≤ 5%.

Governor F.: Ok, what if I jail everybody with a positive test
result? Then P(Jail|Innocent) = P(E+|Innocent) = 1%.
That’s less than 5%, so we’re obeying the law.”



On Isle Bayesienne:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

How to interpret the law?
“We must be 95% certain of guilt” ⇒



On Isle Bayesienne:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Innocent|Jail) ≤ 5%.

Governor B.: Can I jail everyone with a positive result? I’ll apply
Bayes’ rule...

P(Innocent|E+) = P(E+|Innocent)
P(Innocent)

P(E+)

We need to know P(Innocent).



On Isle Bayesienne:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Innocent|Jail) ≤ 5%.

Governor B.: Can I jail everyone with a positive result? I’ll apply
Bayes’ rule...

P(Innocent|E+) = P(E+|Innocent)
P(Innocent)

P(E+)

We need to know P(Innocent). Governor B.: Hmm, I will
assume that 10% of my subjects were guilty of the conspiracy.
P(Innocent) = 0.9.



On Isle Bayesienne:

Apply Bayes’ rule

◮ We know the conditional probabilities of the form
P(E+|Guilty).

◮ Governor knows the “overall” probability of each event
Guilty and Innocent. Since this is our estimate of the
chance someone is guilty before a blood test, we call it the
prior probability.

◮ We can combine prior and conditional probabilities to form
the joint probability matrix of the form P(E+ ∩ Guilty).

◮ Then, turn the joint probabilities into conditiononal
probabilities, e.g., P(Guilty|E+).

◮ Result: P(Innocent|E+) ≈ 8%. Too high!



On the islands of Ste. Frequentiste and Bayesienne...

Results:

◮ More than 1% of Ste. Frequentiste goes to jail.

◮ On Isle Bayesienne, 10% are guilty, but nobody goes to jail.

◮ The disagreement isn’t about math. It isn’t necessarily about
philosophy. Here, the frequentist and Bayesian used tests that
met different constraints and got different results.



The Constraints

◮ The frequentist cares about the rate of jailings among
innocent people and wants it to be less than 5%. Concern:
overall rate of false positive.

◮ The Bayesian cares about the rate of innocence among jail
inmates and wants it to be less than 5%. Concern: rate of
error among positives.

◮ The Bayesian had to make assumptions about the overall, or
prior, probabilities.



Why Most Published Research Findings Are False, Ioannidis JPA,
PLoS Medicine Vol. 2, No. 8, e124
doi:10.1371/journal.pmed.0020124



Confidence & Credibility

◮ For similar reasons, frequentists and Bayesians express
uncertainty differently.

◮ Both use intervals: a function that maps each possible
observation to a set of parameters.

◮ Frequentists use confidence intervals. For every value of the
parameter, the coverage is the probability that the interval will
include that value. The confidence parameter is formally the
minimum of the coverage.

◮ Bayesians use credible (or credibility) intervals. For every
outcome, the interval gives a set of parameters whose
conditional probability sums to at least the specified
credibility. Needs a prior.



Confidence & Credibility

◮ Confidence interval: “Even before we start, we can promise
that the probability the experiment will produce a wrong
answer in the end is less than 5% — just like the probability
that Ste. Frequentist will jail an innocent person. Our
confidence interval might sometimes be nonsense, but as long
as that happens less than 5% of the time, it’s ok.”

◮ Credibility interval: “Now that we took data, we can say that
the true value lies within this interval with 95% probability.
This required an assumption of the overall probability of each
parameter value. If God punishes us by choosing an unlikely
value of the parameter, our credible interval could be very
misleading.” (Billion to one example.)



A Pathological Example

Cookie jars A, B, C, D have the following distribution of cookies
with chocolate chips:

P( chips | jar ) A B C D

0 1 17 14 27
1 1 20 22 70
2 70 22 20 1
3 28 20 22 1
4 0 21 22 1

total 100% 100% 100% 100%

Let’s construct a 70% confidence interval.



70% Confidence Intervals

Cookie jars A, B, C, D have the following distribution of cookies
with chocolate chips:

P( chips | jar ) A B C D

0 1 17 14 27
1 1 [20 22 70]
2 [70 22 20] 1
3 28 [20 22] 1
4 0 [21 22] 1

coverage 70% 83% 86% 70%

The 70% confidence interval has at least 70% coverage for every
value of the parameter.
Now assume a uniform prior and calculate P( jar ∩ chips ).



Joint Probabilities

Cookie jars A, B, C, D have equal chance of being selected, and
the following joint distribution of jar and chips:

P( jar ∩ chips ) A B C D total

0 1/4 17/4 14/4 27/4 14.75%
1 1/4 20/4 22/4 70/4 28.25%
2 70/4 22/4 20/4 1/4 28.25%
3 28/4 20/4 22/4 1/4 17.75%
4 0/4 21/4 22/4 1/4 11.00%

total 25% 25% 25% 25%

Now calculate P( jar | chips ).



P( outcome |θ)

Cookie jars A, B, C, D have the following conditional probability
of each jar given the number of chips:

P( jar | chips ) A B C D total

0 1.7 28.8 23.7 45.8 100%

1 0.9 17.7 19.5 61.9 100%

2 61.9 19.5 17.7 0.9 100%

3 39.4 28.2 31.0 1.4 100%

4 0.0 47.7 50.0 2.3 100%

Now let’s make 70% credibility intervals.



70% Credibility Intervals

Cookie jars A, B, C, D have the following conditional probability
of each jar given the number of chips:

P( jar | chips ) A B C D credibility

0 1.7 [28.8] 23.7 [45.8] 75%

1 0.9 17.7 [19.5 61.9] 81%

2 [61.9 19.5] 17.7 0.9 81%

3 [39.4] 28.2 [31.0] 1.4 70%

4 0.0 [47.7 50.0] 2.3 98%



Confidence & Credible Intervals

4P( jar ∩ chips ) A B C D credibility

0 1 17 14 27 0%
1 1 [20 22 70] 99%
2 [70 22 20] 1 99%
3 28 [20 22] 1 59%
4 0 [21 22] 1 98%

coverage 70% 83% 86% 70%

4P( jar ∩ chips ) A B C D credibility

0 1 [17] 14 [27] 75%
1 1 20 [22 70] 81%
2 [70 22] 20 1 81%
3 [28] 20 [22] 1 70%
4 0 [21 22] 1 98%

coverage 98% 60% 66% 97%



The TAXUS ATLAS Experiment

◮ Data: 1,811 people in one of two groups.

◮ 956 people are assigned to Control and 855 people to
Treatment.

◮ We’re counting bad events in each group.

◮ We want to know: comparing proportions of patients who get
an event, is Treatment non-inferior to Control, with a
three-percentage-point margin, at the p < 0.05 level?

◮ Control 7% vs. Treatment 10.5% would be “inferior.”
◮ Control 7% vs. Treatment 9.5% would be “non-inferior.”

◮ We assume each population has a certain true rate of events,
πt and πc .

◮ We record the number of patients who get an event in our
experiment, nt and nc .

◮ Is there 95% confidence that πt − πc < 0.03 ?



ATLAS Trial Solution

◮ Use a one-sided 95% confidence interval for πt − πc . If its
upper limit is less than 0.03, accept. Otherwise reject.

◮ Confidence interval: approximate each binomial separately
with a normal distribution. Known as Wald interval.

◮ If we sample a Bernoulli trial N times and get i successes, we
can approximate source distribution as a Gaussian with mean
i/N and variance i(N−i)

N3 .

◮ Calculate the distribution of the difference of these two
binomials, and see if 95% of the area is less than 0.03.

◮

p ≈ area =

∫

∞

0.03
N

(

i

m
−

j

n
,
i(m − i)

m3
+

j(n − j)

n3

)

where N (µ, σ2) is the probability density function of a normal
distribution with mean µ and variance σ2.



ATLAS Results

◮ We measure 68/855 events in Treatment (7.95%), and
67/956 events in Control (7.01%).

◮ Procedure: if area < 5%, we accept. Area is serving the
function of a p-value: an upper bound on the rate of false
positives we’re willing to accept. If our tolerance were 1%,
cutoff would be 0.01.

◮ p ≈
∫

∞

0.03 N
(

i
m
− j

n
, i(m−i)

m3 + j(n−j)
n3

)

= 0.0487395 . . ..

◮ Accept.



ATLAS Results (May 2006)

TAXUS ATLAS Trial Supports Superior Deliverability and Proven
Outcomes of TAXUS(R) Liberte(TM) Stent System; Boston
Scientific’s second generation stent compares favorably to market
leading TAXUS Express2(TM) stent system, even with more
complex lesions

May 16, 2006 — NATICK, Mass. and PARIS, May 16
/PRNewswire-FirstCall/ — Boston Scientific Corporation today
announced nine-month data from its TAXUS ATLAS clinical trial.
The results confirmed safety and efficacy and demonstrated the
superior deliverability of the TAXUS(R) Liberte(TM)
paclitaxel-eluting stent system compared to the TAXUS
Express2(TM) paclitaxel-eluting stent system. [. . . ] The trial met
its primary endpoint of nine-month target vessel revascularization
(TVR), a measure of the effectiveness of a coronary stent in
reducing the need for a repeat procedure.



ATLAS Results (April 2007)

Turco et al., Polymer-Based, Paclitaxel-Eluting TAXUS Liberté
Stent in De Novo Lesions, Journal of the American College of
Cardiology, Vol. 49, No. 16, 2007.

Results: The primary non-inferiority end point was met with the
1-sided 95% confidence bound of 2.98% less than the pre-specified
non-inferiority margin of 3% (p = 0.0487).

Statistical methodology. P values are 2-sided unless specified
otherwise. Student t test was used to compare independent
continuous variables, while chi-square or Fisher exact test was used
to compare proportions.



Bayesian Results

◮ Bayesian says, “Let’s assume I know nothing about πt and πc

a priori. I assume God chose them randomly on [0,1],
independently and with uniform probability.”

◮ Then we sample each binomial: in Treatment, we do 855
samples and get 68 heads. In Control, we do 956 samples
and get 67 heads.

◮ For a particular πt and 855 samples, probability of k heads is
Bin(x ; 855, πt).

◮

Bin(k ; N, π) =

(

N

k

)

πk(1 − π)N−k

◮ Apply Bayes’ rule.



Bayesian Results

◮ Likelihood: LNk(π) =
(

N
k

)

πk(1 − π)N−k

◮ Probability: Apply Bayes’ rule. With a uniform prior, just
normalize. Result is called a Beta distribution.

◮

f (x ; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

where α = heads observed plus one, and β = tails observed
plus one.
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Bayesian Results

◮ We got 68 heads and 787 tails in Treatment, and 67 heads
and 889 tails in Control. With a uniform prior, we calculate
the a posteriori probability of each π.

◮ πc ∼ β(x ; 68, 890)

◮ πt ∼ β(x ; 69, 788)

◮ What’s the a posteriori probability that πt − πc < 0.03?

◮

∫ 1

0

∫ 1

min(x+0.03,1)
β(x ; 68, 890)β(y ; 69, 788) dy dx ≈ 0.050737979 . . .

◮ We think the probability is more than 5%.



The Ultimate Close Call

Wald’s area (≈ p) with (m, n) = (855, 956)
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The Wald Interval Undercovers

Is this a disagreement between frequentist and Bayesian methods?
In this case, no. Our confidence interval doesn’t have 95%
coverage, so the test didn’t bound the rate of false positives by
0.05. The approximation is lousy in this context.
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One solution: constrained variance
The Wald interval approximated each binomial separately as a
Gaussian, with variance of i(N−i)

N3 . (E.g., 7% and 8%.) But this is
not consistent with H0, which says πt > πc + 0.03.

One improvement is to approximate the variances by finding the
most likely pair consistent with H0 (i.e., separated by 3 percentage
points). E.g., 6% and 9%.
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Every other published interval fails to exclude inferiority.

Method p-value or confidence bound Result
Wald interval p = 0.04874 Pass
z-test, constrained max likelihood standard error p = 0.05151 Fail
z-test with Yates continuity correction c = 0.03095 Fail
Agresti-Caffo I4 interval p = 0.05021 Fail
Wilson score c = 0.03015 Fail
Wilson score with continuity correction c = 0.03094 Fail
Farrington & Manning score p = 0.05151 Fail
Miettinen & Nurminen score p = 0.05156 Fail
Gart & Nam score p = 0.05096 Fail
NCSS’s bootstrap method c = 0.03006 Fail
NCSS’s quasi-exact Chen c = 0.03016 Fail
NCSS’s exact double-binomial test p = 0.05470 Fail
StatXact’s approximate unconditional test of non-inferiority p = 0.05151 Fail
StatXact’s exact unconditional test of non-inferiority p = 0.05138 Fail
StatXact’s exact CI based on difference of observed rates c = 0.03737 Fail
StatXact’s approximate CI from inverted 2-sided test c = 0.03019 Fail
StatXact’s exact CI from inverted 2-sided test c = 0.03032 Fail



Nerdiest chart contender?





World’s most advanced non-inferiority test
The StatXAct 8 software package sells for $1,000 and takes 15
minutes to calculate a single p-value. (Mention very nice lunch.)
“Other statistical applications often rely on large-scale assumptions for
inferences, risking incorrect conclusions from data sets not normally
distributed. StatXact utilizes Cytel’s own powerful algorithms to make
exact inferences by permuting the actually observed data, eliminating the
need for distributional assumptions.”



World’s most advanced non-inferiority test
The StatXAct 8 software package sells for $1,000 and takes 15
minutes to calculate a single p-value. (Mention very nice lunch.)
“Other statistical applications often rely on large-scale assumptions for
inferences, risking incorrect conclusions from data sets not normally
distributed. StatXact utilizes Cytel’s own powerful algorithms to make
exact inferences by permuting the actually observed data, eliminating the
need for distributional assumptions.”
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Both tests, together
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Pre-specification

◮ To meet the frequentist’s constraint, every detail of the
experiment and testing procedure has to be pre-specified.

◮ Two different tests may each have a false positive rate less
than 5%. But if you can pick which test to use after the fact,
you’ll get a false positive rate more than 5%. The reason: the
union of the two tests, although each would be valid by itself,
doesn’t have a false positive rate less than 5%.

◮ Not so for the Bayesian. Posterior probability is determined by
the prior and the design of experiment. Bayesian constraint
isn’t violated by switching priors after the fact.

◮ Blinding through the analysis is still a good idea.



Final Thoughts

◮ What’s important: say what your criteria are, and make sure
the test or interval meets them.

◮ Don’t be surprised if frequentist and Bayesian approaches
differ in their results.

◮ Sometimes they will agree numerically but not on what the
numbers mean!

◮ If they disagree starkly, you have bigger problems than your
interpretation of probability.

◮ Same goes if the Bayesian answer depends heavily on the
prior. If two reasonable priors give starkly disagreeing results,
you don’t have a good answer.










