up previous next
 MinPolyQuotDef, MinPolyQuotElim, MinPolyQuotMat

compute a minimal polynomial

 Syntax
 ```MinPolyQuot(f: RINGELEM, I: IDEAL, z: RINGELEM): RINGELEM MinPolyQuotDef(f: RINGELEM, I: IDEAL, z: RINGELEM): RINGELEM MinPolyQuotElim(f: RINGELEM, I: IDEAL, z: RINGELEM): RINGELEM MinPolyQuotMat(f: RINGELEM, I: IDEAL, z: RINGELEM): RINGELEM```

 Description
This functions return the minimal polynomial (in the indeterminate z ) of the element f modulo the 0-dimensional ideal I .

See article Abbott, Bigatti, Palezzato, Robbiano Minimal polynomial (coming soon)

 Example
 ```/**/ use P ::= QQ[x,y]; /**/ I := IdealOfPoints(P, mat([[1,2], [3,4], [5,6]])); /**/ MinPolyQuotDef(x,I,x); -- the smallest x-univariate poly in I x^3 -9*x^2 +23*x -15 /**/ indent(factor(It)); record[ RemainingFactor := 1, factors := [x -1, x -3, x -5], multiplicities := [1, 1, 1] ] /**/ f := x+y; /**/ I := ideal(x^2, y^2); /**/ MinPolyQuotDef(f,I,x); x^3 /**/ subst(It, x, f) isin I; true ---- this is how to use an indet in another ring: /**/ QQt := RingQQt(1); /**/ MinPolyQuotDef(f, I, indet(RingQQt(1),1)); t^3 ```