/**/ Points := [[Rand(9,9)  N In 1..3]  S In 1..25];
/**/ Use P ::= QQ[x,y,z];
/**/ I := IdealOfPoints(P, mat(QQ, Points));
/**/ QuotientBasis(I);
[1, z, z^2, z^3, z^4, y, y*z, y*z^2, y*z^3, y^2, y^2*z, y^2*z^2, y^3, x,
x*z, x*z^2, x*z^3, x*y, x*y*z, x*y*z^2, x*y^2, x^2, x^2*z, x^2*y, x^3]
/**/ Use P ::= QQ[x,y,z], Lex;
/**/ I := IdealOfPoints(P, mat(QQ,Points));
/**/ QuotientBasis(I);  power products underneath the Lex reduced GBasis
[1, z, z^2, z^3, z^4, z^5, z^6, z^7, z^8, z^9, z^10, z^11, z^12, y, y*z,
y*z^2, y*z^3, y*z^4, y*z^5, y*z^6, y^2, y^2*z, y^2*z^2, y^2*z^3, y^3]
