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Abstract
We present a statistical account of human random-
ness judgments that uses the idea of algorithmic
complexity. We show that an existing measure of
the randomness of a sequence corresponds to the as-
sumption that non-random sequences are generated
by a particular probabilistic finite state automaton,
and use this as the basis for an account that evalu-
ates randomness in terms of the length of programs
for machines at different levels of the Chomsky hi-
erarchy. This approach results in a model that pre-
dicts human judgments better than the responses
of other participants in the same experiment.

The development of information theory prompted
cognitive scientists to formally examine how humans
encode experience, with a variety of schemes be-
ing used to predict subjective complexity (Leeuwen-
berg, 1969), memorization difficulty (Restle, 1970),
and sequence completion (Simon & Kotovsky, 1963).
This proliferation of similar, seemingly arbitrary
theories was curtailed by Simon’s (1972) observation
that the inevitable high correlation between mea-
sures of information content renders them essentially
equivalent. The development of algorithmic infor-
mation theory (see Li & Vitanyi, 1997, for a detailed
account) has revived some of these ideas, with code
lengths playing a central role in recent accounts of
human concept learning (Feldman, 2000), subjective
randomness (Falk & Konold, 1997), and the role of
simplicity in cognition (Chater, 1999). Algorithmic
information theory avoids the arbitrariness of ear-
lier approaches by using a single universal code: the
complexity of an object (called the Kolmogorov com-
plexity after Kolmogorov, 1965) is the length of the
shortest computer program that can reproduce it.

Chater and Vitanyi (2003) argue that a preference
for simplicity can be seen throughout cognition, from
perception to language learning. Their argument is
based upon the important constraints that simplicity
provides for solving problems of induction, which are
central to cognition. Kolmogorov complexity gives a
formal means of addressing “asymptotic” questions
about induction, such as why anything is learnable
at all, but the constraints it imposes are too weak
to support the rapid inferences that characterize hu-
man cognition. In order to explain how human be-
ings learn so much from so little, we need to consider

accounts that can express the strong prior knowl-
edge that contributes to our inferences. The struc-
tures that people find simple form a strict (and flex-
ible) subset of those easily expressed in a computer
program. For example, the sequence of heads and
tails TTHTTTHHTH appears quite complex to us, even
though, as the parity of the first 10 digits of π, it
is easily generated by a computer. Identifying the
kinds of regularities that contribute to our sense of
simplicity will be an important part of any cognitive
theory, and is in fact necessary since Kolmogorov
complexity is not computable (Kolmogorov, 1965).

There is a crucial middle ground between Kol-
mogorov complexity and the arbitrary encoding
schemes to which Simon (1972) objected. We will
explore this middle ground using an approach that
combines rational statistical inference with algorith-
mic information theory. This approach gives an in-
tuitive transparency to measures of complexity by
expressing them in terms of probabilities, and uses
computability to establish meaningful differences be-
tween them. We will test this approach on judg-
ments of the randomness of binary sequences, since
randomness is one of the key applications of Kol-
mogorov complexity: Kolmogorov (1965) suggested
that random sequences are irreducibly complex, a
notion that has inspired several psychological theo-
ries (eg. Falk & Konold, 1997). We will analyze sub-
jective randomness as an inference about the source
of a sequence X, comparing its probability of being
generated by a random source, P (X|random), with
its probability of generation by a more regular pro-
cess, P (X|regular). Since probabilities map directly
to code lengths, P (X|regular) uniquely identifies a
measure of complexity. This formulation allows us
to identify the properties of an existing complexity
measure (Falk & Konold, 1997), and extend it to
capture more of the statistical structure detected
by people. While Kolmogorov complexity is ex-
pressed in terms of programs for a universal Turing
machine, many of the regularities people detect are
computable by simpler devices. We will use Chom-
sky’s (1956) hierarchy of formal languages to orga-
nize our analysis, testing a set of nested models that
can be interpreted in terms of the length of programs
for automata at different levels of the hierarchy.



Complexity and randomness
The idea of using a code based upon the length of
computer programs was independently proposed by
Solomonoff (1964), Kolmogorov (1965), and Chaitin
(1969), although it has come to be associated with
Kolmogorov. A sequence X has Kolmogorov com-
plexity K(X) equal to the length of the shortest
program p for a (prefix) universal Turing machine
U that produces X and then halts,

K(X) = min
p:U(p)=X

l(p), (1)

where l(p) is the length of p in bits. Kolmogorov
complexity can be used to define algorithmic proba-
bility, with the probability of X being

R(X) = 2−K(X) = max
p:U(p)=X

2−l(p). (2)

There is no requirement that R(X) sum to one over
all sequences; many probability distributions that
correspond to codes are unnormalized, assigning the
missing probability to an undefined sequence.

Kolmogorov complexity can be used to mathemat-
ically define the randomness of sequences, identify-
ing a sequence X as random if l(X)−K(X) is small
(Kolmogorov, 1965). While not necessarily follow-
ing the form of this definition, psychologists have
preserved its spirit in proposing that the perceived
randomness of a sequence increases with its complex-
ity. Falk and Konold (1997) consider a particular
measure of complexity they call the “difficulty pre-
dictor” (DP ), calculated by counting the number of
runs (sub-sequences containing only heads or tails),
and adding twice the number of alternating sub-
sequences. For example, the sequence TTTHHHTHTH
is a run of tails, a run of heads, and an alternating
sub-sequence, DP = 4. If there are several parti-
tions into runs and alternations, DP is calculated
on the partition that results in the lowest score.1

Falk and Konold (1997) showed that DP corre-
lates remarkably well with subjective randomness
judgments. Figure 1 shows the results of Falk and
Konold (1997, Experiment 1), in which 97 partici-
pants each rated the apparent randomness of ten bi-
nary sequences of length 21, with each sequence con-
taining between 2 and 20 alternations (transitions
from heads to tails or vice versa). The mean rat-
ings show the classic preference for overalternating
sequences: the sequences perceived as most random
are those with 14 alternations, while a truly random
process would be most likely to produce sequences

1We modify DP slightly from the definition of Falk
and Konold (1997), who seem to require alternating sub-
sequences to be of even length. The equivalence results
shown below also hold for their original version, but it
makes the counter-intuitive interpretation of HTHTH as
a run of a single head, followed by an alternating sub-
sequence, DP = 3. Under our formulation it would be
parsed as an alternating sequence, DP = 2.
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Figure 1: Mean randomness ratings from Falk and
Konold (1987, Experiment 1), shown with the pre-
dictions of DP and the finite state model.

with 10 alternations. The mean DP has a similar
profile, achieving a maximum at 12 alternations and
giving a correlation of r = 0.93.

Subjective randomness as
a statistical inference

Psychologists have claimed that the way we think
about chance is inconsistent with probability the-
ory (eg. Kahneman & Tversky, 1972). For ex-
ample, people are willing to say that X1=HHTHT
is more random than X2=HHHHH, while they are
equally likely to arise by chance: P (X1|random) =
P (X2|random) = ( 1

2 )5. However, many of the ap-
parently irrational aspects of human judgments can
be understood by considering the possibility that
people are assessing a different kind of probability –
instead of P (X|random), we evaluate P (random|X)
(Griffiths & Tenenbaum, 2001).

The statistical basis of subjective randomness be-
comes clear if we view randomness judgments in
terms of a signal detection task (cf. Lopes, 1982;
Lopes & Oden, 1987). On seeing a stimulus X,
we consider two hypotheses: X was produced by
a random process, or X was produced by a regular
process. Finding regularities is an important part
of identifying predictable processes, a fundamental
component of induction (Lopes, 1982). The deci-
sion about the source of X can be formalized as a
Bayesian inference,

P (random|X)
P (regular|X)

=
P (X|random)
P (X|regular)

P (random)
P (regular)

, (3)

in which the posterior odds in favor of a random gen-
erating process are obtained from the likelihood ratio
and the prior odds. The only part of the right hand
side of the equation affected by X is the likelihood
ratio, which led Griffiths and Tenenbaum (2001) to
define the subjective randomness of X as

random(X) = log
P (X|random)
P (X|regular)

, (4)



being the evidence that X provides towards the con-
clusion that it was produced by a random process.

When evaluating binary sequences, it is natural to
set P (X|random) = ( 1

2 )l(X). Taking the logarithm
in base 2, random(X) is −l(X)− log2 P (X|regular),
depending entirely on P (X|regular). We obtain
random(X) = K(X)− l(X), the difference between
the complexity of a sequence and its length, if we
choose P (X|regular) = R(X), the algorithmic prob-
ability defined in Equation 2. This is identical to the
mathematical definitions of randomness discussed
above. However, the key point of this statistical ap-
proach is that we are not restricted to using R(X):
we have a measure of the randomness of X for
any choice of P (X|regular), reducing the problem of
specifying a measure of complexity to the more intu-
itive task of determining the probability with which
sequences are produced by a regular process.

A statistical model of
randomness perception

DP does a good job of predicting the results of
Falk and Konold (1997), but it has some counter-
intuitive properties, such as independence of length:
HHTHT and HHHHHHHHHHHHHHHHHTHT both have
DP = 3, but the former seems more random. In this
section we will show that using DP is equivalent
to specifying P (X|regular) with a hidden Markov
model (HMM), providing the basis for a statistical
model of randomness perception.

An HMM is a probabilistic finite state automa-
ton, associating each symbol xi in the sequence X =
x1x2 . . . xn with a “hidden” state zi. The probability
of X under this model is obtained by summing over
all possible hidden states, P (X) =

∑
Z P (X,Z),

where Z = z1z2 . . . zn. The model assumes that each
xi is chosen based only on zi and each zi is chosen
based only on zi−1, allowing us to write P (X,Z) =
P (z0)

∏n
i=2 P (zi|zi−1)

∏n
i=1 P (xi|zi). An HMM can

thus be specified by a transition matrix P (zi|zi−1),
a prior P (z0), and an emission matrix P (xi|zi). Hid-
den Markov models are widely used in statistical ap-
proaches to speech recognition and bioinformatics.

Using DP as a measure of randomness is equiva-
lent to specifying P (X|random) with an HMM cor-
responding to the finite state automaton shown in
Figure 2. This HMM has six states, and we can
define a transition matrix

P (zi|zi−1) =


δ Cα Cα2 0 0 Cα2

Cα δ Cα2 0 0 Cα2

Cα Cα 0 δ 0 Cα2

Cα Cα δ 0 0 Cα2

Cα Cα Cα2 0 0 δ
Cα Cα Cα2 0 δ 0

 (5)

where each row is a vector of (unnormalized) transi-
tion probabilities (ie. the first row is P (zi|zi−1 = 1)),
and a prior P (z0) = (Cα Cα Cα2 0 0 Cα2), with
C = 1−δ

2α+2α2 . If we then take P (xi = H|zi) to be

1 for zi = 1, 3, 5 and 0 for zi = 2, 4, 6 we have a
regular generating process based on repeating four
“motifs”: state 1 repeats H, state 2 repeats T, states
3 and 4 repeat HT, and states 5 and 6 repeat TH. δ
is the probability of continuing with a motif, while
α defines a prior over motifs, with the probability of
producing a motif of length k proportional to αk.

Having defined this HMM, the equivalence to
DP is straightforward. For a choice of Z indi-
cating n1 runs and n2 alternating sub-sequences,
P (X,Z) = δn−n1−n2( 1−δ

2α+2α2 )n1+n2αn1+2n2 . Tak-
ing P (X|regular) to be maxZ P (X,Z), it is easy to
show that random(X) = −DP logα when δ = 0.5
and α =

√
3−1
2 . By varying δ and α, we ob-

tain a more general model: as shown in Figure
1, taking δ = 0.525, α = 0.107 gives a better
fit to the data of Falk and Konold (1997), r =
0.99. This also addresses some of the counter-
intuitive predictions of DP : if δ > 0.5, increas-
ing the length of a sequence but not changing
the number of runs or alternating sub-sequences
reduces its randomness, since P (X|regular) grows
faster than P (X|random). With the choices of δ
and α given above, random(HHTHT) = 3.33, while
random(HHHHHHHHHHHHHHHHHTHT) = 2.61. The
effect is greater with larger values of δ.

Just as the algorithmic probability R(X) is a
probability distribution defined by the length of pro-
grams for a universal Turing machine, this choice of
P (X|random) can be seen as specifying the length of
“programs” for a particular finite state automaton.
The output of an automaton is determined by its
state sequence, just as the output of a universal Tur-
ing machine is determined by its program. However,
since the state sequence is the same length as the se-
quence itself, this alone does not provide a meaning-
ful measure of complexity. In our model, probabil-
ity imposes a metric on state sequences, dictating a
greater cost for moves between certain states. Since
we find the state sequence Z most likely to have pro-
duced X, we have ananalogue of Kolmogorov com-
plexity defined on a finite state automaton.
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Figure 2: The finite state automaton corresponding
to the HMM described in the text. Solid lines indi-
cate motif continuation, dotted lines are permitted
state changes, and numbers label the states.
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Figure 3: Results of Lopes and Oden (1987, Experi-
ment 1) together with predictions of finite state and
context-free models, illustrating effects of symmetry.

Ascending the Chomsky hierarchy
Solomonoff’s (1964) contemplation of codes based
upon computer programs was initiated by Noam
Chomsky’s talk at the 1956 Dartmouth Summer
Study Group on Artificial Intelligence (Li & Vi-
tanyi, 1997, p. 308). Chomsky was presenting a
formal hierarchy of languages based upon the kinds
of computing machines required to recognize them
(Chomsky, 1956). Chomsky identified four types of
languages, falling into a strict hierarchy: Type 3,
the simplest, are regular languages, recognizable by
a finite state automaton; Type 2 are context-free
languages, recognizable by a push-down automaton;
Type 1 are context-sensitive languages, recognizable
by a Turing machine with a tape of length linearly
bounded by the length of the input; Type 0 are re-
cursively enumerable languages, recognizable by a
standard Turing machine. Kolmogorov complexity
is defined with respect to a universal Turing ma-
chine, capable of recognizing Type 0 languages.

There are features of regular sequences that can-
not be recognized by a finite state automaton, be-
longing to languages on higher levels of the Chom-
sky hierarchy. One such feature is symmetry: the
set of symmetric sequences is a classic example of a
context-free language, and symmetry is known to
affect subjective randomness judgments (Lopes &
Oden, 1987). Here we will develop “context-free”
(Type 2) and “context-sensitive” (Type 1) models
that incorporate these regularities.

Lopes and Oden (1987, Experiment 1) illustrated
the effects of symmetry on subjective randomness
using a signal detection task, in which participants
classified sequences of length 8 as being either ran-
dom or non-random. Half of the sequences were
generated at random, but the other half were gen-
erated by a process biased towards either repeti-
tion or alternation, depending on condition. The
proportion of sequences correctly classified was ex-

amined as a function of the number of alternations
and whether or not a sequence was symmetric, in-
cluding both mirror symmetry (all sequences for
which x1x2x3x4 = x8x7x6x5) and “cyclic” symme-
try (HTHTHTHT, HHTTHHTT, HHHHTTTT and their
complements). Their results are shown in Figure 3,
together with the theoretical optimal performance
that could be obtained with perfect knowledge of the
processes generating the sequences. Deviations from
optimal performance reflect a difference between the
P (X|regular) implicitly used by participants and the
distribution used to generate the sequences.

Our Bayesian model naturally addresses this deci-
sion problem. By the relationship between log odds
and probabilities, we have

P (random|X) =
1

1 + exp{−λ random(X)− ψ}

where λ scales the effect of random(X), with λ = 1
a correctly weighted Bayesian inference, and ψ =
log P (random)

P (regular)
is the log prior odds. Fitting the fi-

nite state model outlined in the previous section to
this data gives δ = 0.638, α = 0.659, λ = 0.128,
ψ = −2.75, and a correlation of r = 0.90. However,
as shown in Figure 3, the model does not predict the
effect of symmetry.

Accommodating symmetry requires a “context-
free” model for P (X|regular). This model allows
sequences to be generated by three methods: repe-
tition, producing sequences with probabilities deter-
mined by the HMM introduced above; symmetry,
where half of the sequence is produced by the HMM
and the second half is produced by reflection; and
complement symmetry, where the second half is pro-
duced by reflection and exchanging H and T. We then
take P (X|regular) = maxZ,M P (X,Z|M)P (M),
where M is the method of production. Since the
two new methods of producing a sequence go be-
yond the capacities of a finite state automaton, this
can be viewed as imposing a metric on the programs
for a push-down automaton. Applying this model
to the data from Lopes and Oden (1987), we obtain
δ = 0.688, α = 0.756, λ = 0.125, ψ = −2.99, and
probabilities of 0.437, 0.491, 0.072, for repetition,
symmetry, and complement symmetry respectively,
with a fit of r = 0.98. As shown in Figure 3, the
model captures the effect of symmetry.

Duplication is a context-sensitive regularity: the
set of all sequences generated by repeating a sub-
sequence exactly twice forms a context-sensitive lan-
guage. This kind of regularity can be incorporated
into a “context-sensitive” model in the same way
as symmetry, but the results of Lopes and Oden
(1987) are at too coarse a grain to evaluate such
a model. Likewise, these results do not allow us to
identify whether our simple finite state model cap-
tures enough regularities: since only motifs of length
2 are included, random(THHTHHTH) is quite large.



Table 1: Log likelihood (correlation) for models
Model 4 motifs 22 motifs

Finite state -1617.95 (0.65) -1597.47 (0.69)
Context-free -1577.41 (0.74) -1553.59 (0.79)

Context-sensitive -1555.47 (0.79) -1531.05 (0.83)

To evaluate the contribution of these factors, we
conducted an experiment testing two sets of nested
models. The experiment was based on Lopes and
Oden (1987, Experiment 1), asking participants to
classify sequences as regular or random. One set
of models used the HMM equivalent to DP , with 4
motifs and 6 states. The second used an HMM ex-
tended to allow 22 motifs (all motifs up to length 4
that were not repetitions of a smaller motif), with
a total of 72 states. In each set we evaluated three
models, at different levels in the Chomsky hierarchy.
The finite state (Type 3) model was simplest, with
four free parameters: δ, α, λ and ψ. The context-free
(Type 2) model adds two parameters for the proba-
bilities of symmetry and complement symmetry, and
the context-sensitive (Type 1) model adds one more
parameter for the probability of duplication. Be-
cause the three models are nested, the simpler being
a special case of the more complex, we can use likeli-
hood ratio tests to determine whether the additional
parameters significantly improve the fit of the model.

Method

Participants
Participants were 20 MIT undergraduates.

Stimuli
Stimuli were sequences of heads (H) and tails (T)
presented in 130 point fixed width sans-serif font on
a 19” monitor at 1280× 1024 pixel resolution.

Procedure
Participants were instructed that they were about
to see sequences which had either been produced by
a random process (flipping a fair coin) or by other
processes in which the choice of heads and tails was
not random, and had to classify these sequences ac-
cording to their source. After a practice session, each
participant classified all 128 sequences of length 8, in
random order, with each sequence randomly start-
ing with either a head or a tail. Participants took
breaks at intervals of 32 sequences.

Results
We optimized the log-likelihood for all six models,
with the results shown in Table 1. The model with 4
motifs consistently performed worse than the model
with 22 motifs, so we will focus on the results of
the latter. The context-free model gave a significant
improvement over the finite state model, χ2(2) =
87.76, p < 0.0001, and the context-sensitive model
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Figure 4: Scatterplots show the relationship between
model predictions and data, with markers according
to the process the context-sensitive model identified
as generating the sequence. The arrays on the right
show the sequences used in the experiment, ordered
from most to least random by both human responses
and the context-sensitive model.

gave a further significant improvement, χ2(1) =
45.08, p < 0.0001. Scatterplots for these three
models are shown in Figure 4, together with se-
quences ordered by randomness based on the data
and the context-sensitive model. The parameters
of the context-sensitive model were δ = 0.706, α =
0.102, λ = 0.532, ψ = −1.99, with probabilities
of 0.429, 0.497, 0.007, 0.067 for repetition, symmetry,
complement, and duplication. This model also ac-
counted well for the data sets discussed earlier in
the paper, obtaining correlations of r = 0.94 on
Falk and Konold (1997) and r = 0.91 on Lopes
and Oden (1987) using exactly the same parame-
ter values, showing that it can give a good account
of randomness judgments in general and is not just
overfitting this particular data set.

The likelihood ratio tests suggest that the context-
sensitive model gives the best account of human ran-
domness judgments. Since this model has several



free parameters, we evaluated its generalization per-
formance using a split-half procedure. We randomly
split the participants in half ten times, computed
the correlation between halves, and fit the context-
sensitive model to one half, computing its correlation
with both that half and the unseen data. The mean
correlation (obtained via a Fisher z transformation)
between halves was r = 0.73, while the model gave
a mean correlation of r = 0.77 on the fit half and
r = 0.76 on the unseen half. The fact that the cor-
relation with the unseen data is higher than the cor-
relation between halves suggests that the model is
accurately extracting information about the statis-
tical structure underlying subjective randomness.

Discussion
The results of our experiment and model-fitting sug-
gest that the perceived randomness of binary se-
quences is sensitive to motif repetition, symmetry
and symmetry in the complement, and duplication
of a sub-sequence. In fact, these regularities can be
incorporated into a statistical model that predicts
human judgments better than the responses of other
participants in the same experiment. These regular-
ities can be recognized by a Turing machine with
a tape of length linearly bounded by the length of
the sequence, corresponding to Type 1 in the Chom-
sky hierarchy. Our statistical model provides a com-
putable measure of the randomness of a sequence in
the spirit of Kolmogorov complexity, but defined on
a simpler computing machine.

The probabilistic approach presented in this pa-
per provides an intuitive method for developing mea-
sures of complexity. However, we differ from exist-
ing accounts of randomness that make claims about
complexity (Chater, 1999; Falk & Konold, 1997) in
viewing probability as primary, and the relationship
between randomness and complexity as a secondary
consequence of a statistical inference comparing ran-
dom generation with generation by a more regular
process. This approach emphasizes the interpreta-
tion of subjective randomness in terms of a ratio-
nal statistical inference, and explains why complex
sequences should seem more random in terms of
P (X|regular) being biased towards simple outcomes:
random sequences are those that seem too complex
to have been produced by a simple process.

Chater and Vitanyi (2003) argue that simplicity
may provide a unifying principle for cognitive sci-
ence. While simplicity undoubtedly plays an im-
portant role in guiding induction, being able to use
these ideas in cognitive science requires developing a
means of quantifying simplicity that can accommo-
date the kind of strong prior knowledge that human
beings bring to bear on inductive problems. Kol-
mogorov complexity provides a universal, objective
measure, and a firm foundation for this endeavour,
but is very permissive in the kinds of structures it
identifies as simple. We have described an approach

that uses the framework of rational statistical in-
ference to explore measures of complexity that are
more restrictive than Kolmogorov complexity, while
retaining the principles of algorithmic information
theory by organizing these measures in terms of com-
putability. This approach provides us with a good
account of subjective randomness, and suggests that
it may be possible to develop restricted measures of
complexity applicable elsewhere in cognitive science.
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