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ABSTRACT—Human perception and memory are often ex-

plained as optimal statistical inferences that are informed

by accurate prior probabilities. In contrast, cognitive judg-

ments are usually viewed as following error-prone heuris-

tics that are insensitive to priors. We examined the optimality

of human cognition in a more realistic context than typical

laboratory studies, asking people to make predictions

about the duration or extent of everyday phenomena such

as human life spans and the box-office take of movies. Our

results suggest that everyday cognitive judgments follow

the same optimal statistical principles as perception and

memory, and reveal a close correspondence between peo-

ple’s implicit probabilistic models and the statistics of the

world.

If you were assessing the prospects of a 60-year-old man, how

much longer would you expect him to live? If you were an ex-

ecutive evaluating the performance of a movie that had made

$40 million at the box office so far, what would you estimate for

its total gross? Everyday life routinely poses such challenges of

prediction, situations in which the true answer cannot be de-

termined on the basis of the limited data available, yet common

sense suggests at least a reasonable guess. Analogous inductive

problems—for example, identifying the three-dimensional

structure underlying a two-dimensional image (Freeman, 1994;

Knill & Richards, 1996) or judging when a particular fact is

likely to be needed in the future (Anderson, 1990; Anderson &

Milson, 1989)—arise in many domains of human psychology.

Accounts of human perception and memory suggest that these

systems effectively approximate optimal statistical inference,

correctly combining new data with an accurate probabilistic

model of the environment (Anderson, 1990; Anderson & Milson,

1989; Anderson & Schooler, 1991; Freeman, 1994; Geisler,

Perry, Super, & Gallogly, 2001; Huber, Shiffrin, Lyle, & Ruys,

2001; Knill & Richards, 1996; Körding & Wolpert, 2004;

Shiffrin & Steyvers, 1997; Simoncelli & Olshausen, 2001;

Weiss, Simoncelli, & Adelson, 2002). In contrast—perhaps as a

result of the great attention garnered by the work of Kahneman,

Tversky, and their colleagues (e.g., Kahneman, Slovic, &

Tversky, 1982; Tversky & Kahneman, 1974)—cognitive judg-

ments under uncertainty are often characterized as the result of

error-prone heuristics that are insensitive to prior probabilities.

This view of cognition, based on laboratory studies, appears

starkly at odds with the near-optimality of other human capac-

ities, and with people’s ability to make smart predictions from

sparse data in the real world.

To evaluate how cognitive judgments compare with optimal

statistical inferences in real-world settings, we asked people to

predict the duration or extent of everyday phenomena such as

human life spans and the gross of movies. We varied the phe-

nomena that were described and the amount of data available,

and we compared the predictions of human participants with

those of an optimal Bayesian model, described in detail in the

appendix. Here, we illustrate the principles behind this Bayes-

ian analysis by taking the example of trying to predict the total

life span of a man we have just met, on the basis of the man’s

current age. If ttotal indicates the total amount of time the man

will live and t indicates his current age, the task is to estimate

ttotal from t. The Bayesian predictor computes a probability

distribution over ttotal given t, by applying Bayes’s rule:

pðttotaljtÞ / pðtjttotalÞpðttotalÞ ð1Þ

The probability assigned to a particular value of ttotal given t is

proportional to the product of two factors: the likelihood p(t|ttotal)

and the prior probability p(ttotal).

The likelihood is the probability of first encountering a man at

age t given that his total life span is ttotal. Assuming for simplicity

that we are equally likely to meet a man at any point in his life,

this probability is uniform, p(t|ttotal) 5 1/ttotal, for all possible

values of t between 0 and ttotal (and 0 for values outside that

range). This assumption of uniform random sampling is analo-
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gous to the Copernican anthropic principle in Bayesian cos-

mology (Buch, 1994; Caves, 2000; Garrett & Coles, 1993; Gott,

1993, 1994; Ledford, Marriott, & Crowder, 2001) and the ge-

neric-view principle in Bayesian models of visual perception

(Freeman, 1994; Knill & Richards, 1996). The prior probability

p(ttotal) reflects our general expectations about the relevant class

of events—in this case, about how likely it is that a man’s life

span will be ttotal. Analysis of actuarial data shows that the

distribution of life spans in our society is (ignoring infant mor-

tality) approximately Gaussian—normally distributed—with a

mean, m, of about 75 years and a standard deviation, s, of about

16 years.

Combining the prior with the likelihood according to Equation

1 yields a probability distribution p(ttotal|t) over all possible total

life spans ttotal for a man encountered at age t. A good guess for

ttotal is the median of this distribution—that is, the point at which

it is equally likely that the true life span is longer or shorter.

Taking the median of p(ttotal|t) defines a Bayesian prediction

function, specifying a predicted value of ttotal for each observed

value of t. Prediction functions for events with Gaussian priors

are nonlinear: For values of t much less than the mean of the

prior, the predicted value of ttotal is approximately the mean;

once t approaches the mean, the predicted value of ttotal in-

creases slowly, converging to t as t increases but always re-

maining slightly higher, as shown in Figure 1. Although its

mathematical form is complex, this prediction function makes

intuitive sense for human life spans: A predicted life span of

about 75 years would be reasonable for a man encountered at age

18, 39, or 51; if we met a man at age 75, we might be inclined to

give him several more years at least; but if we met someone at age

96, we probably would not expect him to live much longer.

This approach to prediction is quite general, applicable to any

problem that requires estimating the upper limit of a duration,

extent, or other numerical quantity given a sample drawn from

that interval (Buch, 1994; Caves, 2000; Garrett & Coles, 1993;

Gott, 1993, 1994; Jaynes, 2003; Jeffreys, 1961; Ledford et al.,

2001; Leslie, 1996; Maddox, 1994; Shepard, 1987; Tenenbaum

& Griffiths, 2001). However, different priors will be appropriate

for different kinds of phenomena, and the prediction function

will vary substantially as a result. For example, imagine trying to

predict the total box-office gross of a movie given its take so far.

The total gross of movies follows a power-law distribution, with

p(ttotal) / ttotal
�g for some g> 0.1 This distribution has a highly

non-Gaussian shape (see Fig. 1), with most movies taking in only

modest amounts, but occasional blockbusters making huge

amounts of money. In the appendix, we show that for power-law

priors, the Bayesian prediction function picks a value for ttotal

that is a multiple of the observed sample t. The exact multiple

depends on the parameter g. For the particular power law that

best fits the actual distribution of movie grosses, an optimal

Bayesian observer would estimate the total gross to be approx-

imately 50% greater than the current gross: Thus, if we observe a

movie has made $40 million to date, we should guess a total

gross of around $60 million; if we observe a current gross of only

$6 million, we should guess about $9 million for the total.

Although such constant-multiple prediction rules are optimal

for event classes that follow power-law priors, they are clearly

inappropriate for predicting life spans or other kinds of events

with Gaussian priors. For instance, upon meeting a 10-year-old

girl and her 75-year-old grandfather, we would never predict

that the girl will live a total of 15 years (1.5 � 10) and the

grandfather will live to be 112 (1.5� 75). Other classes of priors,

such as the exponential-tailed Erlang distribution, p(ttotal) /
ttotalexp(�ttotal/b) for b> 0,2 are also associated with distinctive

optimal prediction functions. For the Erlang distribution, the

Fig. 1. Bayesian prediction functions and their associated prior distri-
butions. The three columns represent qualitatively different statistical
models appropriate for different kinds of events. The top row of plots
shows three parametric families of prior distributions for the total dura-
tion or extent, ttotal, that could describe events in a particular class. Lines
of different styles represent different parameter values (e.g., different
mean durations) within each family. The bottom row of plots shows the
optimal predictions for ttotal as a function of t, the observed duration or
extent of an event so far, assuming the prior distributions shown in the top
panel. For Gaussian priors (left column), the prediction function always
has a slope less than 1 and an intercept near the mean m: Predictions are
never much smaller than the mean of the prior distribution, nor much
larger than the observed duration. Power-law priors (middle column)
result in linear prediction functions with variable slope and a zero inter-
cept. Erlang priors (right column) yield a linear prediction function that
always has a slope equal to 1 and a nonzero intercept.

1When g > 1, a power-law distribution is often referred to in statistics and
economics as a Pareto distribution.

2The Erlang distribution is a special case of the gamma distribution. The
gamma distribution is p(ttotal) / ttotal

k�1exp(�ttotal/b), where k > 0 and b > 0
are real numbers. The Erlang distribution assumes that k is an integer. Following
Shepard (1987), we use a one-parameter Erlang distribution, fixing k at 2.
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best guess of ttotal is simply t plus a constant determined by

the parameter b, as shown in the appendix and illustrated in

Figure 1.

Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-

butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-

tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human

life spans and the run time of movies are approximately

Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the

number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well

people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure

Participants were tested in two groups, with each group making

predictions about five different phenomena. One group of 208

undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.

A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for

cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)

Poem lengths http://www.emule.com/ (1,000)

Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)

Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)

U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)

Cake baking times http://www.allrecipes.com/ (619)

Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2. People’s predictions for various everyday phenomena. The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximately Erlang. The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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included in a booklet that participants completed for a set of

unrelated experiments.

Materials

Each participant made a prediction about one instance from

each of the five different classes seen by his or her group. Each

prediction was based on one of five possible values of t, varied

randomly between subjects. These values were $1, $6, $10, $40,

and $100 million for movie grosses; 2, 5, 12, 32, and 67 lines for

poem lengths; 18, 39, 61, 83, and 96 years for life spans; 1, 3, 7,

11, and 23 years for reigns of pharaohs; 1, 3, 7, 11, and 23 years

for lengths of marriages; 30, 60, 80, 95, and 110 min for movie

run times; 1, 3, 7, 15, and 31 years for terms of U.S. repre-

sentatives; 10, 20, 35, 50, and 70 min for baking times for cakes;

and 1, 3, 7, 11, and 23 min for waiting times. In each case,

participants read several sentences establishing context and

then were asked to predict ttotal given t.

The questions were presented in survey format. Each survey

began as follows:

Each of the questions below asks you to predict something—either

a duration or a quantity—based on a single piece of information.

Please read each question and write your prediction on the line

below it. We’re interested in your intuitions, so please don’t make

complicated calculations—just tell us what you think!

Each question was then introduced with a couple of sentences

to provide a context. Following are sample questions:

Movie grosses: Imagine you hear about a movie that has taken in 10

million dollars at the box office, but don’t know how long it has

been running. What would you predict for the total amount of box

office intake for that movie?

Poem lengths: If your friend read you her favorite line of poetry,

and told you it was line 5 of a poem, what would you predict for the

total length of the poem?

Life spans: Insurance agencies employ actuaries to make predic-

tions about people’s life spans—the age at which they will die—

based upon demographic information. If you were assessing an

insurance case for an 18-year-old man, what would you predict for

his life span?

Reigns of pharaohs: If you opened a book about the history of

ancient Egypt to a page listing the reigns of the pharaohs, and

noticed that at 4000 BC a particular pharaoh had been ruling for

11 years, what would you predict for the total duration of his reign?

Lengths of marriages: A friend is telling you about an acquaintance

whom you do not know. In passing, he happens to mention that this

person has been married for 23 years. How long do you think this

person’s marriage will last?

Movie run times: If you made a surprise visit to a friend, and found

that they had been watching a movie for 30 minutes, what would

you predict for the length of the movie?

Terms of U.S. representatives: If you heard a member of the House

of Representatives had served for 15 years, what would you predict

his total term in the House would be?

Baking times for cakes: Imagine you are in somebody’s kitchen and

notice that a cake is in the oven. The timer shows that it has been

baking for 35 minutes. What would you predict for the total amount

of time the cake needs to bake?

Waiting times: If you were calling a telephone box office to book

tickets and had been on hold for 3 minutes, what would you predict

for the total time you would be on hold?

RESULTS

We first filtered out responses that could not be analyzed or that

indicated a misunderstanding of the task, removing predictions

that did not correspond to numerical values or were less than

ttotal. Only a small minority of responses failed to meet these

criteria, except in the case of the marriage predictions. The total

number of responses analyzed was 174 for movie grosses, 197 for

poem lengths, 197 for life spans, 191 for reigns of pharaohs, 136

for movie run times, 130 for terms of U.S. representatives, 126

for baking times for cakes, and 158 for waiting times. The re-

sponses for the marriage stimuli were problematic because the

majority of participants (52%) indicated that marriages last

‘‘forever.’’ This accurately reflects the proportion of marriages

that do not end in divorce (Kreider & Fields, 2002), but pre-

vented us from analyzing the data using methods based on

median values. We therefore did not analyze responses for the

marriage stimuli further.

People’s judgments for life spans, movie run times, movie

grosses, poem lengths, and terms of U.S. representatives were

indistinguishable from optimal Bayesian predictions based on

the empirical prior distributions, as shown in Figure 2. People’s

prediction functions took on very different shapes in domains

characterized by Gaussian, power-law, and Erlang priors, just as

expected under the ideal Bayesian analysis. Notably, the model

predictions shown in Figure 2 have no free parameters tuned

specifically to fit the human data, but are simply the optimal

functions prescribed by Bayesian inference given the relevant

world statistics. These results are inconsistent with claims that

cognitive judgments are based on non-Bayesian heuristics that

are insensitive to priors (Kahneman et al., 1982; Tversky &

Kahneman, 1974). The results are also inconsistent with simpler

Bayesian prediction models that adopt a single uninformative

prior, p(ttotal) / 1/ttotal, regardless of the phenomenon to be

predicted (Gott, 1993, 1994; Jaynes, 2003; Jeffreys, 1961;

Ledford et al., 2001).

Examining the results for the remaining stimuli—reigns of

pharaohs, baking times for cakes, and waiting times—provides

an opportunity to learn about the limits of people’s capacity for

prediction. As shown in Figure 2, people’s predictions about the
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reigns of pharaohs had a form consistent with the appropriate

prior (an Erlang distribution), but were slightly too high. We

established people’s subjective priors for the reigns of pharaohs

in a follow-up experiment, asking 35 undergraduates to state the

typical duration of a pharaoh’s reign. The median response was

30 years, which corresponds to an Erlang prior on ttotal with

parameter b equal to 17.9, as opposed to the true value of ap-

proximately 9.34. Using this subjective Erlang prior produces a

close correspondence to the human judgments.

The pharaohs stimuli provide an instance of a situation in

which people make inaccurate predictions: when they know the

appropriate form for the prior, but not the details of its param-

eters. In contrast, responses to the cakes stimuli reveal that

people can make accurate predictions even in contexts in which

priors lack a simple form. The duration a cake should spend in

the oven is a quantity that follows a rather irregular distribution,

as shown in Figure 2. However, people’s judgments were still

close to the ideal Bayesian predictions, despite the complex

form of the empirical prior distribution.

These results suggest that people’s predictions can also be

used to identify the prior beliefs that inform them. The waiting-

times stimuli provide an opportunity to explore this possibility.

The true distribution of waiting times in queues is currently a

controversial question in operations research. Traditional

models, based on the Poisson process, assume that waiting times

follow a distribution with exponential tails (e.g., Hillier & Lie-

berman, 2001). However, several recent analyses suggest that in

many cases, waiting times may be better approximated by a

power-law distribution (Barabási, 2005, provides a summary

and explanation of these findings). Hence, it is not clear what the

objective distribution of durations should be for these stimuli.

Rather than using objective statistics on real-world durations to

assess the optimality of people’s judgments, as we did for the

other stimulus classes, we used people’s judgments for these

stimuli to assess which distributional form they assumed the

phenomenon would follow. We fit prediction functions for

Gaussian, power-law, and Erlang distributions to the behavioral

data, attempting to minimize the sum of the squared differences

between the median human judgments and the predicted values

of ttotal. The power-law prior with g5 2.43 provided the best fit to

the human judgments, producing the predictions shown in

Figure 2. Assuming that people’s predictions are near-optimal

with respect to the true distribution of durations, these results

are qualitatively consistent with recent power-law models for

waiting-time distributions (Barabási, 2005).

DISCUSSION

The results of our experiment reveal a far closer correspondence

between optimal statistical inference and everyday cognition

than suggested by previous research. People’s judgments were

close to the optimal predictions produced by our Bayesian model

across a wide range of settings. These judgments also served as a

guide to people’s implicit beliefs about the distributions of

everyday quantities, and revealed that these beliefs are sur-

prisingly consistent with the statistics of the world. This finding

parallels formal analyses of perception and memory, in which

accurate probabilistic models of the environment play a key role

in the solution of inductive problems (Anderson, 1990; Ander-

son & Milson, 1989; Anderson & Schooler, 1991; Freeman,

1994; Geisler et al., 2001; Huber et al., 2001; Knill & Richards,

1996; Körding & Wolpert, 2004; Shiffrin & Steyvers, 1997;

Simoncelli & Olshausen, 2001; Weiss et al., 2002).

Although people’s predictions about everyday events were on

the whole extremely accurate, the cases in which their predic-

tions deviated from optimality may help to shed light on the

implicit assumptions and strategies that make these intuitive

judgments so successful most of the time in the real world. One

interesting hypothesis concerning such strategies is suggested

by the pattern of people’s errors in predicting the reigns of

pharaohs. Both the magnitude of errors and the variance in

judgments across participants were substantially greater for this

question than for our other questions. This should not be sur-

prising, as most participants probably had far less direct expe-

rience with the reigns of pharaohs than with the other kinds of

scenarios we presented. Despite this lack of direct experience,

people’s predictions were not completely off the mark: Their

judgments were consistent with having implicit knowledge of

the correct form of the underlying distribution but making in-

correct assumptions about how this form should be parame-

terized (i.e., its mean value).

The predictions for the reigns of pharaohs suggest a general

strategy people might employ to make predictions about unfa-

miliar kinds of events, which is surely an important prediction

problem faced in everyday life. Given an unfamiliar prediction

task, people might be able to identify the appropriate form of the

distribution by making an analogy to more familiar phenomena

in the same broad class, even if they do not have sufficient direct

experience to set the parameters of that distribution accurately.

For instance, participants might have been familiar with the

length of time that various modern monarchs have spent in their

positions, as well as with the causes (e.g., succession, death)

responsible for curtailing those times, and it is not unreasonable

to think that analogous mechanisms could have governed the

durations of pharaohs’ reigns in ancient Egypt. Yet most people

might not be aware of (or might not remember) just how short life

spans typically were in ancient Egypt compared with modern

expectations, even if they know life spans were somewhat

shorter. If participants predicted the reign of the pharaoh by

drawing an analogy to modern monarchs and adjusting the mean

reign duration downward by some uncertain but insufficient

factor, that would be entirely consistent with the pattern of errors

we observed. Such a strategy of prediction by analogy could be

an adaptive way of making judgments that would otherwise lie

beyond people’s limited base of knowledge and experience.
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The finding of optimal statistical inference in an important

class of cognitive judgments resonates with a number of recent

suggestions that Bayesian statistics may provide a general

framework for analyzing human inductive inferences. Bayesian

models require making the assumptions of a learner explicit. By

exploring the implications of different assumptions, it becomes

possible to explain many of the interesting and apparently in-

explicable aspects of human reasoning (e.g., McKenzie, 2003).

The ability to combine accurate background knowledge about

the world with rational statistical updating is critical in many

aspects of higher-level cognition. Bayesian models have been

proposed for learning words and concepts (Tenenbaum, 1999),

forming generalizations about the properties of objects (An-

derson, 1990; Shepard, 1987; Tenenbaum & Griffiths, 2001),

and discovering logical or causal relations (Anderson, 1990;

Griffiths & Tenenbaum, 2006; Oaksford & Chater, 1994). How-

ever, these modeling efforts have not typically attempted to

establish optimality in real-world environments. Our results

demonstrate that, at least for a range of everyday prediction

tasks, people effectively adopt prior distributions that are ac-

curately calibrated to the statistics of relevant events in the

world. Assessing the scope and depth of the correspondence

between probabilities in the mind and those in the world pre-

sents a fundamental challenge for future work.
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APPENDIX

The Prediction Problem

Assume that a point t is sampled uniformly at random from the

interval [0, ttotal]. What should we guess for the value of ttotal? A

772 Volume 17—Number 9

Everyday Predictions



Bayesian solution to this problem involves computing the pos-

terior distribution over ttotal given t. Applying Bayes’s rule, this

posterior distribution is

pðttotaljtÞ ¼
pðtjttotalÞpðttotalÞ

pðtÞ ðA1Þ

where

pðtÞ ¼
Z 1

0

pðtjttotalÞpðttotalÞdttotal: ðA2Þ

By the assumption that t is sampled uniformly at random,

p(t|ttotal) 5 1/ttotal for ttotal� t and 0 otherwise. Equation A2 thus

simplifies to

pðtÞ ¼
Z 1

t

pðttotalÞ
ttotal

dttotal ðA3Þ

The form of the posterior distribution for any given value of t is

thus determined entirely by the prior, p(ttotal).

We can derive an analytic form for the posterior distribution

obtained with power-law and Erlang priors. The posterior dis-

tribution resulting from the Gaussian prior has no simple ana-

lytic form. With the power-law prior, p(ttotal) / ttotal
�g for g> 0.

This prior is improper if g � 1, because the integral over ttotal

diverges, but the posterior remains a proper probability distri-

bution regardless. Applying Equation A3, we have

pðtÞ /
Z 1

t

t
�ðgþ1Þ
total dttotal

¼ � 1

g
t�gtotal

����
1

t

¼ 1

g
t�g;

where the constant of proportionality remains the same as in the

original prior. We can substitute this result into Bayes’s rule

(Equation A1) to obtain

pðttotaljtÞ ¼
t
�ðgþ1Þ
total
1
g t�g

¼ gtg

tgþ1
total

;
ðA4Þ

for all values of ttotal � t.

Under the Erlang prior, p(ttotal) / ttotalexp(�ttotal/b), we have

pðtÞ /
Z1

0

expf�ttotal=bg dttotal

¼ �b expf�ttotal=bgÞj1t
¼ b expf�t=bg

where the constant of proportionality remains the same as in the

original prior. Again, we can substitute this result into Bayes’s

rule (Equation A1) to obtain

pðttotaljtÞ ¼
expf�ttotal=bg
b expf�t=bg

¼ 1

b
expf�ðttotal � tÞ=bg; ðA5Þ

for all values of ttotal � t.

Predicting ttotal

We take the predicted value of ttotal, which we denote tn, to be the

posterior median. This is the point tn such that P(ttotal > tn|t) 5

.5: A Bayesian predictor believes that there is a 50% chance that

the true value of ttotal is greater than tn and a 50% chance that the

true value of ttotal is less than tn. This point can be computed from

the posterior, using the fact that

Pðttotal > t�jtÞ ¼
Z 1

t�
pðttotaljtÞdttotal: ðA6Þ

We can derive tn analytically in the case of a power-law or Erlang

prior. For the power-law prior, we can use Equation A4 to rewrite

Equation A6 as

Pðttotal > t�jtÞ ¼
Z 1

t�

gtg

tgþ1
total

dttotal

¼ � t

ttotal

� �g�����
1

t�

¼ t

t�

� �g
: ðA7Þ

We can now solve for tn such that P(ttotal> tn|t) 5 .5, obtaining tn

5 21/gt. For the Erlang prior, we can use Equation A5 to rewrite

Equation A6 as

Pðttotal > t�jtÞ ¼
Z1

t�

1

b
expf�ðttotal � tÞ=bgdttotal

¼ �expf�ðttotal � tÞ=bgÞj1t�
¼ expf�ðt� � tÞ=bg: ðA8Þ

Again, we can solve for tn such that P(ttotal> tn|t) 5 .5, obtaining

tn 5 t 1blog2. For the Gaussian prior, we can find values of tn by

numerical integration and optimization.
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