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Abstract 

Numerous studies of how people reason with statistical data 
suggest that human judgment often fails to approximate 
rational probabilistic (Bayesian) inference. We argue that a 
major source of error in these experiments may be 
misunderstanding causal structure. Most laboratory studies 
demonstrating probabilistic reasoning deficits fail to explain 
the causal relationships behind the statistics presented, or they 
suggest causal mechanisms that are not compatible with 
people’s prior theories. We propose that human reasoning 
under uncertainty naturally operates over causal mental 
models, rather than pure statistical representations, and that 
statistical data typically support correct Bayesian inference 
only when they can be incorporated into a causal model 
consistent with people’s theory of the relevant domain. We 
show that presenting people with questions that clearly 
explain an intuitively natural causal structure responsible for a 
set of statistical data significantly improves their performance. 
In particular, we describe two modifications to the standard 
medical diagnosis scenario that each eliminates the 
phenomenon of base-rate neglect, merely by clarifying the 
causal structure behind false-positive test results. 

Introduction 
Can people arrive at correct probability judgments after 
reading sufficient statistical data? Decades of experimental 
inquiry into intuitive statistical inference have documented 
the ways in which human judgment deviates from rational 
Bayesian norms. Examples include the phenomena of base-
rate neglect (Kahneman & Tversky, 1982), the conjunction 
fallacy (Tversky & Kahneman, 1983), and deviations from 
the additivity principle (Villejoubert & Mandel, 2002). Yet 
in the real world, an environment that is saturated with 
useful statistical information and that continually poses 
challenges for reasoning under uncertainty, people function 
quite well, and far better than any artificial systems built on 
the norms of probability theory (Russell & Norvig, 2002). 

One possible explanation for this discrepancy is that 
laboratory studies typically present participants with 
unnatural forms of information – single-event or epistemic 
probabilities instead of naturally sampled frequencies – and 
that human minds are only designed to operate on 
information in the latter, more natural format (Gigerenzer & 
Hoffrage, 1995). While we do not dispute the benefits of 
presenting people with statistical data in frequency formats, 
we doubt that the simple frequency-based algorithms of 
Gigerenzer and Hoffrage (1995) are responsible for most of 
our successful reasoning in everyday life. Real-world 
systems are too complex, and often sufficiently different 

from anything we have seen before, to support reasoning 
based on simply looking up frequencies in a table compiled 
from past experience. 

Here we propose an alternative account of probabilistic 
reasoning errors in laboratory tasks, based on a different 
conception of how uncertain reasoning operates in the real 
world. We argue that human reasoning under uncertainty 
naturally operates over causal mental models, rather than 
purely statistical representations, and that statistical data 
typically support correct Bayesian inference only when they 
can be incorporated into a causal model consistent with 
people’s theories of the domain. We will argue that 
misunderstanding causal structure is a major source of error 
in standard laboratory studies of probabilistic reasoning, and 
then describe two modifications to a standard task which are 
each capable of eliminating the typical “base-rate neglect” 
error by clarifying the causal structure of the problem. 

Bayesian Inference and Base-rate Neglect 
We focus on diagnostic reasoning problems: inferring the 
probability of a proposition H based on some observed data 
D. The normative Bayesian approach to diagnostic inference 
requires two kinds of probabilities: the prior, ( )P H , 
representing our degree of belief that the hypothesis is true 
before making the observation, and the likelihoods, 

( | )P D H  and ( | )P D H¬ , representing the probabilities 
that the data would have been observed if the hypothesis 
were true and if the hypothesis were false, respectively. 
Bayes’ rule then prescribes an equation for computing the 
posterior, our degree of belief in the hypothesis given the 
data: ( | ) ( ) ( | ) / ( )P H D P H P D H P D= × , where ( )P D  is 
computed as ( ) ( | ) (1 ( )) ( | )P H P D H P H P D H× + − × ¬ .  

Bayes’ theorem does not prescribe how one should set the 
prior probability or the likelihoods, but most researchers 
have assumed that experimental participants should set them 
based on the statistics provided, specifically setting the prior 
equal to the base rate. The term “base rate” refers to a 
statistic summarizing how often H has been true in similar 
previous situations, independent of whether D was 
observed. The label “base-rate neglect” refers to errors in 
probabilistic reasoning that appear to be due to not setting 

( )P H  equal to the presented base rate, or to ignoring the 
influence of the ( )P H  term in Bayes’ rule. 

Our primary example of base-rate neglect is a word 
problem adapted from Eddy (1982) and tested in an 
influential paper by Gigerenzer and Hoffrage (1995), and 
several follow-ups (Cosmides & Tooby, 1996; Lewis & 
Keren, 1999; Macchi, 2000). The problem reads as follows 
(from Gigerenzer & Hoffrage, 1995): 



 

The probability of breast cancer is 1% for a woman at age forty who 
participates in a routine screening. If a woman has breast cancer, the 
probability is 80% that she will get a positive mammography. If a 
woman does not have breast cancer, the probability is 9.6% that she will 
also get a positive mammography. A woman in this age group had a 
positive mammography in a routine screening. What is the probability 
that she actually has breast cancer? ____ % 

The probabilities here are called “single-event 
probabilities”, or “epistemic probabilities”; they refer to 
degrees of belief about an individual case rather than the 
frequency of an outcome in a series of repeated trials. 
People are poor at solving this diagnosis problem, often 
giving an answer of 70%-90%, while Bayes’ rule prescribes 
an answer of 7.8% (Gigerenzer & Hoffrage, 1995). 
Kahneman and Tversky (1982) used the term “base-rate 
neglect” to characterize errors in this range because in this 
and similar problems people seemed to be neglecting the 
base rate of 1% (the prior) in favor of the individuating 
information (the likelihoods), rather than combining the two 
via Bayes’ rule to calculate the posterior. Other explanations 
for this phenomenon have been offered, such as the 
tendency to confuse a given conditional probability with its 
inverse (Villejoubert & Mandel, 2002). Macchi (1995) has 
catalogued incorrect answers to typical inference problems 
and found that most instances of “base-rate neglect” are best 
described as calculating ( | )P D H , 1 ( | )P D H− ¬ , or 

( | ) ( | )P D H P D H− ¬ . Few participants actually carry out a 
Bayesian computation that neglects priors, which would 
produce answers equal to ( | ) /[ ( | ) ( | )]P D H P D H P D H+ ¬ . 

Regardless of how one categorizes errors, one thing is 
clear: people do not possess a general-purpose probabilistic 
reasoning engine that takes as input single-event 
probabilities, sets priors and likelihoods equal to the 
corresponding statistics, and outputs correct posterior 
probabilities. But if people do not have such an ability, how 
are they generally able to navigate the world so well? 
Gigerenzer and Hoffrage (1995) propose that people do 
have the ability to make correct Bayesian computations, but 
typical laboratory problems present the statistical 
information in an unnatural format. They have shown that 
questions provided in a natural frequency format, rather than 
a probabilistic format, can dramatically reduce inference 
errors such as base-rate neglect. For instance, they tested the 
following “natural frequency” version of the mammography 
problem: 

10 out of every 1,000 women at age forty who participate in a routine 
screening have breast cancer. 

8 of every 10 women with breast cancer will get a positive 
mammography. 

95 out of every 990 women without breast cancer will also get a positive 
mammography. 

Here is a new representative sample of women at age forty who got a 
positive mammography in a routine screening. How many of these 
women do you expect to actually have breast cancer?  ___ out of ___. 

 Gigerenzer and Hoffrage (1995) explain these results on 
evolutionary grounds, arguing that “as humans evolved, the 
‘natural’ format was frequencies as opposed to probabilities 
or percentages.” However, we know that people can use 
simple probabilities and percentages to reason correctly, and 
can often solve more complex probabilistic reasoning 
problems provided that the causal relevance of all factors is 

made clear (Kahneman & Tversky, 1980). The frequentist 
hypothesis does not explain success in these cases. 
Furthermore, the reduction of error in frequency formats 
could be due to the fact that Bayesian diagnosis problems 
phrased in terms of frequencies are just simpler to solve, 
involving only the addition of two whole numbers rather 
than the multiplication and division of six decimal numbers. 

Gigerenzer and Hoffrage point to the simplicity of the 
frequency calculation as evidence that people only needed 
to evolve a simple inference system, but the success of the 
frequentist algorithm in simple word problems is not enough 
to justify the claim that people use this simple frequency 
computation for most real-world inferences. One never 
hears a mechanic say: “If you want to estimate the chances 
of your car breaking down on a long road trip, first think of 
the last 1000 cross-country road trips you took….” This 
approach only works when only one or two variables are 
relevant, and ample statistics are available. Real-world 
systems present complex patterns of correlation over many 
variables, and people typically do not have access to enough 
observations to warrant drawing conclusions based on a 
simple look-up table of frequencies of previous occurrences. 
Rather than appealing to a large collection of similar past 
experiences, we typically make judgments about the 
probability of a car breaking down, the chance of getting a 
certain job, or an acquaintance’s intentions, by constructing 
and manipulating some kind of domain-specific causal 
mental model. This capacity to reason with causal mental 
models may also be responsible for our successes – and 
failures – on probabilistic reasoning tasks in the laboratory. 

Bayesian Inference with Causal Models 
Both the frequentist algorithms and standard Bayesian 
inference are domain-general and purely statistical 
approaches to uncertain reasoning. We propose that rather 
than possessing a domain-general engine taking statistical 
data as input and producing probabilities of hypotheses as 
output, people naturally evaluate and interpret statistical 
information within the framework of a domain-specific 
probabilistic causal model, derived from a theory of how 
particular kinds of causes produce particular kinds of effects 
in that domain. An individual’s probabilistic causal model 
encompasses knowledge of which causes produce which 
effects (the structure), how likely certain causes are to occur 
(the priors), and how likely a given effect is to follow from a 
given set of causes (the likelihoods). This model provides 
the knowledge base for a causal reasoning engine, which 
takes as input (1) a probabilistic causal model and (2) 
observations or statistical data, and is capable of producing 
probabilities of hypotheses as output. The causal reasoning 
engine can be formally modeled using the tools of Bayesian 
networks (Pearl, 2000), but for the purposes of this short 
paper, we limit our discussion to informal graphical 
representations of probabilistic causal models. 

Graphical models have figured in many recent accounts of 
human categorization (Rehder, 2001; Waldmann et. al, 
1995) and causal structure learning (Ahn & Dennis, 2000; 
Gopnik et al, in press; Steyvers, Tenenbaum et al., in press; 
Tenenbaum & Griffiths, 2001), but have not to date made a 
large impact on the study of reasoning under uncertainty 



 

more generally. Yet the connections between real-world 
causality and uncertainty run deep – so deep that we doubt 
there can be a complete theory of reasoning under 
uncertainty that does not include, and perhaps center 
around, causality. Pearl (2000) argues that much of the 
uncertainty of inference in an otherwise deterministic world 
is due to multiple causal influences that can produce the 
same effect. For instance, coffee is occasionally bitter, but 
this is not due to a stochastic mechanism that unpredictably 
makes coffee bitter; rather it is due to one of several hidden 
causal influences: over-roasting or burning the coffee. If one 
wishes to know the probability that a given cup of coffee 
will be bitter, the first step should be to identify the potential 
causes of bitterness and then to investigate them, (e.g., how 
long has the pitcher been on the burner, etc.), rather than to 
start with a statistical analysis, e.g., estimating the 
proportion of bitter cups of coffee you’ve had in your 
lifetime. As all statistical correlations are ultimately a result 
of (perhaps very indirect) differential causal influences, we 
expect reasoning under uncertainty to be sensitive to the 
causal structures that create uncertainty in the first place. 

The connection between causality and uncertain reasoning 
was one of many directions pioneered by Tversky and 
Kahneman. Tversky and Kahneman (1980) found that 
providing “causally relevant” base rates improved 
probabilistic inference, but they did not explain why, or 
even define what they meant by “causally relevant”. Their 
most explicit proposal was that “base-rate information 
which is not incorporated into a causal schema, either 
because it is not interpretable as an indication of propensity 
or because it conflicts with an established schema, is given 
little or no weight.” Tversky and Kahneman treated causal 
schemas as potential sources of error in statistical reasoning, 
whereas we take them as necessary substrates for 
probabilistic inference to succeed in complex, everyday 
scenarios. The effects of causal schemas are not indicators 
of how some “pure” statistical reasoning engine may go 
wrong, but the sign that people are not doing “pure” 
statistical reasoning at all; they are doing intrinsically causal 
reasoning, by computing probabilities over causal mental 
models. 

Our goal is to go beyond the notion of “causally relevant” 
base rates by examining more precisely how causal mental 
models provide the substrate for reasoning under 
uncertainty, and how those models are constructed. We 
view causal models as transient mental representations 
constructed on the fly to solve specific problems, based on 
both given information and the constraints imposed by 
people’s domain theories. For instance, one’s theory of 
electricity should not allow one to construct a causal model 
in which taking the batteries out of a device causes it to start 
working. Our evidence suggests that any piece of given 
information – base rates, likelihoods, or qualitative 
statements – will only be used if people can incorporate it 
into a causal model compatible with their domain theory. 
 More specifically, we will argue that the difficulty in the 
probabilistic version of the mammogram problem stems not 
from neglecting the base rate, but from misunderstanding 
the causal mechanism behind the false-positive rate. Based 
on the information provided in the problem, people may 

assume that false positives are caused by noise or random 
error. Since doctors presumably trust the test, people might 
further assume that the level of noise is low, and this 
assumption is incompatible with the statistics provided. In 
fact, the statistics provided are not compatible with the 
actual causal structure of standard mammogram screenings. 

Gigerenzer and Hoffrage adapted the probabilistic version 
of the breast cancer problem from Eddy (1982), which 
describes the true statistical nature of mammograms. We 
found several important discrepancies between the true 
statistics in Eddy (1982) and those presented to participants 
by Gigerenzer and Hoffrage (1995), which could be at least 
partly responsible for their participants’ poor performance. 
 
1. In Eddy’s paper, the likelihoods of 80% and 9.6% are 

not for women receiving routine screenings. The 
numbers come from Snyder (1966, p. 217), whose 
statistics are of women who already have a breast mass 
(a lesion): “The results showed 79.2 per cent of 475 
malignant lesions were correctly diagnosed and 90.4 per 
cent of 1,105 benign lesions were correctly diagnosed” 
(Snyder, 1966). Gigerenzer and Hoffrage chose to apply 
the likelihood of 9.6% to all women without cancer, 
rather than just those with benign lesions. Participants 
thus had no indication that benign lesions are actually 
the cause of the false positives. 

2. The structure of the problem is misleading, by simply 
giving a probability of 9.6% that a woman without 
cancer will get a positive mammography. This could be 
interpreted to mean that if this woman takes the 
mammogram 1000 times, she will receive a positive 
result approximately 96 times. However, the facts of the 
matter are quite different: the size and density of the 
benign lesion is actually the major determinant of the 
false positive, and this does not change from moment to 
moment. So, while it is true that 9.6% of women with 
benign lesions will receive a positive mammogram, it is 
not true that any individual will have a 9.6% chance; 
some will have a high chance and others a low chance. 

 
As Gigerenzer and Hoffrage have described it, the 

mammogram appears to be an extremely error-prone test: 
the mammogram will come back positive nearly 10% of the 
time when testing a woman without cancer, for no reason 
whatsoever. How could the medical community trust such a 
test, with a noise rate 10 times higher than the base rate of 
cancer (1%)? We believe a principal reason people perform 
so poorly is that they have difficulty understanding how 
such a high false-alarm rate could result purely from noise 
(the only cause of a false alarm they are aware of) given that 
doctors trust this test enough to declare the result “positive”. 

Probabilistic Causal Models 
A basic causal model for this scenario is depicted in Figure 
1A, in which a positive mammogram can result from one of 
two independent and stochastic causes: the patient having 
cancer or the test having noise. Formally, this model can be 
represented as a Bayes net with a noisy-or parameterization 
(Cheng, 1997; Pearl, 2000).  If there were only one potential 
cause, the probability that the effect occurs is just the base 



 

rate of the cause times the causal power of that cause (a 
conditional probability, between 0 and 1; Cheng, 1997); 
with multiple potential causes, the probability that the effect 
occurs is equal to the probability that one or more of its 
causes occurs and succeeds in causing the effect (treating 
both the occurrence of causes and their causal powers as 
independent). 

Suppose a participant believes a positive mammogram to 
be tantamount to a doctor’s diagnosis of breast cancer. This 
is not implausible: doctors as a rule avoid scaring patients 
unnecessarily, and it is common for them to say, “You have 
some indications consistent with disease X, but it’s probably 
nothing”. If instead the doctor says, “You’ve tested positive 
for breast cancer,” there should be a good chance that you 
actually have cancer. In this case, people may assume that 
the base rate of noise would not be higher than the base rate 
of cancer. Otherwise, the doctor would say, “It could be 
cancer, but there’s a good chance it was just noise”. This 
assumption, however, is inconsistent with the high 9.6% 
false-positive rate and the causal model described above; at 
most, the false alarm rate could equal the base rate of cancer 
(1%). People reasoning with this model could become 
confused at this point and just look for some way to 
combine the given numbers to obtain a reasonable estimate. 

As discussed above, the model in Figure 1A does not 
reflect the true causal structure of the test. Figure 1B shows 
a more realistic model, in which the source of the false 
positives is an alternative tissue anomaly: dense benign 
lesions. Now, the 9.6% false-positive rate can be naturally 
interpreted as the approximate base rate (for women with a 
breast mass) of having a benign lesion dense enough to 
cause a positive mammogram. This interpretation is 
perfectly consistent with people’s background knowledge 
that tissue anomalies (e.g., pimples, moles, birthmarks, or 
bumps) are often harmless. 

 
(A) 
 

(B) 

Figure 1: (A) basic causal model of mammogram, with noise. 
(B) more accurate model with specific alternative cause. 

Experiment 1 
Our first experiment directly tested the idea that people 
might tacitly assume a positive result to be tantamount to a 
doctor’s diagnosis of cancer. We hypothesized that people 
would better understand the given statistics if most women 
without cancer who did not test “negative” received an 
“uncertain” result rather than a “positive” one. Since a 
doctor’s report of “uncertain” implies that she believes the 
test outcome could well be the result of random noise, 
participants could naturally incorporate the 9.6% 
“uncertain” rate in healthy women as the base rate of the 
noise variable in Figure 1A. 

Method 
Participants. 73 airplane passengers were recruited while 
waiting for their flights to begin boarding. Their only 
compensation was temporary alleviation of boredom. 
 
Design. Participants were given paper-and-pen versions of 
Gigerenzer’s breast cancer question, with the modification 
that the test has three possible results: “positive”, 
“uncertain”, and “negative” (inspired by Eddy, 1982). 
Participants received one of two versions: in one, a woman 
gets a “positive” result; in the other she gets an “uncertain” 
result. The numbers were exactly the same in both versions, 
except that the conditional probabilities for “positive” and 
“uncertain” were switched, so the same calculations were 
required in both versions. The questions follow: 
 

 “Positive” Question 
Women at age 40 are often encouraged by their doctor to participate in a 
routine mammography screening for breast cancer. The mammogram 
has 3 possible results: 

Positive: the patient has breast cancer. This results when tumors are 
found that are definitely cancerous. 

Uncertain: the patient may have breast cancer. This result occurs 
when tissue exists that may be normal breast tissue, benign tumor, 
or cancerous tumor. More testing is needed to determine whether 
the patient has breast cancer. 

Negative: the patient does not have breast cancer. 
From past statistics of routine mammography screenings, the following 

is known: 
1% of the women who have participated in past screenings had breast 

cancer at the time of the screening.  
Of the 1% who had breast cancer, 20% tested 'uncertain' during the 

mammogram (further testing was required to determine that they had 
breast cancer), and the other 80% tested ‘positive'.  

Of the 99% of women who did not have breast cancer, 2% tested 
‘uncertain’ (further testing was required to determine that they did not 
have breast cancer), 9.6% tested 'positive', and the other 88.4% tested 
'negative'. 

Suppose a woman in this age group participates in a routine 
mammography screening and the test result is 'positive'. Without 
knowing any other symptoms, what is the probability that she actually 
has breast cancer? 

 

“Uncertain” Question 
[first 14 lines identical to “positive” question] 
Of the 1% who had breast cancer, 20% tested 'positive' during the 

mammogram, and the other 80% tested 'uncertain' (further testing was 
required to determine that they had breast cancer).  

Of the 99% of women who did not have breast cancer, 2% tested 
‘positive’, 9.6% tested 'uncertain' (further testing was required to 
determine that they did not have breast cancer), and the other 88.4% 
tested 'negative'. 

Suppose a woman in this age group participates in a routine 
mammography screening and the test result is 'uncertain’. Without 
knowing any other symptoms, what is the probability that she actually 
has breast cancer? 

Results and Discussion 
A one-way ANOVA of the raw responses revealed a 
significant difference between the two versions (F(1,71)= 
21.59, MSE=897.36, p<.0001). We classified as base-rate 
neglect any answer greater than or equal to 70%. Since the 
exact correct answer of 7.8% is difficult to calculate, we 
classified as “close” any answer between 5% and 12% 
inclusive. We also classified answers of 1% or 2% as base 
rate overuse. The result was a significant difference between 
the two versions (χ2(3) = 16.15, p < .005). 

Cancer Noise 

Positive 
Mammogram 

Positive 
Mammogram

Dense Benign 
Lesion Cancer 



 

Table 1: “Positive” versus “Uncertain” Questions 
Mammogram Base-rate 

Neglect 
Close 
Answer 

Base-rate 
Overuse 

Other 

Positive 14 9 6 6 
Uncertain 1 15 14 8 

These results are consistent with our hypothesis that “base-
rate neglect” may arise in the basic question because people 
take the “positive” label to mean that the doctor trusts the 
test, thus limiting the base rate of noise to a level 
inconsistent with the high false-alarm rate. An alternative 
interpretation is that participants are answering simply based 
on the meaning of the words “uncertain” and “positive”, 
rather than reasoning about likely levels of noise. To test 
this, we gave 36 new participants a third “control” question 
in which we relabeled the “positive” result “certain” and the 
“uncertain” result “positive”, so that “positive” now means 
the patient may have cancer, and more testing is needed: 
 

 “Control” Question 
The mammogram has 3 possible results: 

Certain: the patient has breast cancer. This results when tumors are 
found that are definitely cancerous. 

Positive: the patient may have breast cancer. This result occurs when 
tissue exists that may be normal breast tissue, benign tumor, or 
cancerous tumor. More testing is needed to determine whether the 
patient has breast cancer. 

 [the rest of the question is identical to the “positive” question] 
 

The incidence of base-rate neglect for this “control” 
question was significantly higher than in the “uncertain” 
question (6/36 versus 1/38, χ2(1) = 4.25, p < .05), but much 
lower than in the “positive” question (6/36 versus 14/35, 
χ2(1) = 4.78, p < .05). The only difference in the latter case 
was defining “positive” as “may have cancer” rather than 
“has cancer”. This result suggests that “base-rate neglect” is 
due to a mismatch between the information given (a false-
positive rate much higher than the cancer rate) and people’s 
domain knowledge (the only cause of false positives they 
are aware of is noise, and a trusted test implies a noise rate 
lower than the disease rate). 

Experiment 2 
While Experiment 1 focused on constraints imposed by 
domain knowledge, Experiment 2 directly tests the role of 
causal reasoning. Specifically, we investigated whether 
people would more easily integrate the high false-positive 
rate into their causal models if they knew what causes false 
positives: dense benign cysts. They could then use the 
causal model of Figure 1B, assimilating the high false-
positive rate as the base rate of an alternative kind of tissue 
anomaly, which would not be inconsistent with their domain 
knowledge. 

Method 
Participants. 155 people were recruited at the airport or the 
MIT campus. MIT students were compensated with candy; 
airplane passengers were compensated as in Experiment 1. 
 
Design. We posed two paper-and-pen questions, one with 
only statistical information about false positives and one 
with information about an alternative cause for a positive 

result. Crucially, both versions required the exact same 
Bayesian formula to calculate the answer. To minimize 
arithmetic errors, participants were allowed to answer with 
either ratios or percentages. We also varied the base rate and 
false-positive likelihoods (1% and 5% respectively vs. 2% 
and 6%), and the cover story (breast cancer and harmless 
cyst vs. colon cancer and harmless polyp), for a total of 8 
different questions. Sample questions were as follows (for 
variants, see http://web.mit.edu/tevya/www/CogSci20003): 
 

 “Statistical” Question 
The following statistics are known about women at age 60 who 

participate in a routine mammogram screening, an X-ray of the breast 
tissue that detects tumors: 

About 2% have breast cancer at the time of the screening. Most of those 
with breast cancer will receive a positive mammogram. 

There is about a 6% chance that a woman without cancer will receive a 
positive mammogram. 

Suppose a woman at age 60 participates in a routine mammogram 
screening and receives a positive mammogram. Please estimate the 
chance that she actually has breast cancer. 

 

 “Causal” Question 
The following statistics are known about women at age 60 who 

participate in a routine mammogram screening, an X-ray of the breast 
tissue that detects tumors: 

About 2% have breast cancer at the time of the screening. Most of those 
with breast cancer will receive a positive mammogram. 

About 6% of those without cancer have a dense but harmless cyst, which 
looks like a cancerous tumor on the X-ray and thereby results in a 
positive mammogram. 

Suppose a woman at age 60 participates in a routine mammogram 
screening and receives a positive mammogram. Please estimate the 
chance that she actually has breast cancer.  

 

 Note that this experiment did not specify the true positive 
rate, but only that “most women with breast cancer will 
receive a positive mammogram.” We made this change to 
encourage participants to provide answers based on their 
intuition rather than memorized mathematical formulas. 

Results and Discussion 
Preliminary analyses showed no differences between MIT 
students and airport passengers, so the two groups were 
collapsed for the remaining analyses. A three-way ANOVA 
of raw responses showed no significant interactions, with a 
significant difference between “Statistical” and “Causal” 
questions (F=8.33, p<.005), and no significant effect of 
cover story (F=0.43, p=.51) or prior and false-positive 
likelihood values (F=.0052, p=.94), all with df=(1,125), 
MSE=836. We classified as base-rate neglect any answer 
greater than or equal to 70%. We classified as correct any 
answer equal to between 80% and 100% of the correct ratio 
or percentage. (This range accommodates the fact that most, 
but not all, women with cancer receive positive results.) The 
causal version significantly reduced base-rate neglect and 
improved correct responding as compared to the statistical 
version (χ2(2) = 12.83, p < .0005) (see Table 2). 

 
Table 2: “Statistical” versus “Causal” Questions 

Problem 
Type 

Base-rate 
Neglect 

Correct 
(or close) 

Base-rate 
Overuse 

Other 

Statistical 19 24 17 16 
Causal 3 40 16 20 

http://web.mit.edu/tevya/www/CogSci20003


 

General Discussion 
In two experiments, we gave people a natural way to 

make sense of the high false-positive rate in terms of their 
causal mental models of the mammogram scenario, and 
thereby essentially eliminated the phenomenon of base-rate 
neglect. A total of 4 out of 117 participants exhibited base-
rate neglect on our new questions, compared to 33 out of 
111 people on questions paralleling the original version, 
despite the required calculations being identical. Likewise, 
the incidence of correct or near-correct responses increased 
from 33 out of 111 participants to 55 out of 117. Experiment 
1 showed that diagnostic reasoning could be improved by 
removing the inconsistency between an apparently high 
noise rate and an apparently trusted test. Experiment 2 
showed that reasoning could be improved by introducing a 
compelling non-noise alternative cause for the frequent false 
positives. We interpreted these findings as evidence that 
human probabilistic reasoning operates over causal mental 
models rather than purely statistical databases. We also 
argued that this central role for causality in reasoning under 
uncertainty should be considered rational and normative, 
contrary to standard assumptions in the Heuristics and 
Biases (Kahneman & Tversky, 1982) or Natural Frequency 
research programs (Gigerenzer & Hoffrage, 1995). 

From the standpoint of probabilistic causal models, the 
real problem behind “base-rate neglect” errors comes not 
from having a low base rate for the cause in question, but 
from having a high false-positive rate. Assuming 
independent, probabilistically sufficient causes, as in the 
noisy-or model, and assuming that each cause is relatively 
rare, suggests a natural interpretation for the true positive 
rate ( | )P D H  in terms of the approximate causal strength 
of H. But the false-positive rate ( | )P D H¬ , while just as 
important as the true positive rate in purely probabilistic 
reasoning, has no such natural causal interpretation; an 
effect cannot result from the absence of a cause. In causal 
reasoning, we must come up with one or more alternative 
causes to account for false positives. Whether that can be 
done coherently depends on the match between the statistics 
given in the problem and our intuitive domain theories, 
which determine what alternative causes are likely to be 
considered and constrain their base rates and causal 
strengths. Telling people about an alternate cause whose 
base rate could plausibly be high enough to account for the 
given false alarm rate, such as the “dense benign cysts” in 
the breast cancer scenario, could thus make a huge 
contribution to improving uncertain reasoning. 

Despite the advantages of probabilistic causal reasoning 
over purely statistical reasoning, the successes of real-world 
inference cannot be explained just by appealing to causal 
models. In order to construct a causal model for a given 
scenario, people must recruit domain-specific theories that 
specify which kinds of causes are likely to produce which 
kinds of effects. But what does that theoretical knowledge 
consist of, and how is it used to constrain causal model 
construction? Understanding how causal models are 
constructed through the interaction of domain theories (top-
down constraints) and statistical data (bottom-up 
constraints) is a largely open question, and the answer 

should play a critical role in explaining how people reason 
so successfully and efficiently in an uncertain world. 
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