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Abstract 

This paper presents a Bayesian framework for understanding how adults and children learn the 

meanings of words.  The theory explains how learners can generalize meaningfully from just one or a few 

positive examples of a novel word’s referents, by making rational inductive inferences that integrate prior 

knowledge about plausible word meanings with the statistical structure of the observed examples.  The 

theory addresses shortcomings of the two best-known approaches to modeling word learning that are based 

on deductive hypothesis elimination or associative learning.  Three experiments with adults and children test 

the Bayesian account’s predictions in the context of learning words for object categories at multiple levels of 

a taxonomic hierarchy.  Results provide strong support for the Bayesian account over competing accounts, 

both in terms of quantitative model fits and the ability to explain important qualitative phenomena.  Several 

extensions of the basic theory are discussed, illustrating the broader potential for Bayesian models of word 

learning.   
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Word Learning as Bayesian Inference 

Learning even the simplest names for object categories presents a difficult induction problem 

(Quine, 1960).  Consider a typical dilemma faced by a child learning English.  Upon observing a competent 

adult speaker use the word “dog” in reference to Max, a particular Dalmatian running by, what can the child 

infer about the meaning of the word “dog”?  The potential hypotheses appear endless. The word could refer 

to all (and only) dogs, all mammals, all animals, all Dalmatians, this individual Max, all dogs plus the Lone 

Ranger’s horse, all dogs except Labradors, all spotted things, all running things, the front half of a dog, 

undetached dog parts, things which are dogs if first observed before next Monday but cats if first observed 

thereafter, and on and on. Yet despite this severe underdetermination, even 2- or 3-year-olds seem to be 

remarkably successful at learning the meanings of words from examples.  In particular, children or adults 

can often infer the approximate extensions of words such as “dog” given only a few relevant examples of 

how the word can be used, and no systematic evidence of how words are not to be used (Bloom, 2000; 

Carey, 1978; Markman, 1989; Regier, 1996).  How do they do it? 

Two broad classes of proposals for how word learning works have been dominant in the literature: 

hypothesis elimination and associative learning.  Under the hypothesis elimination approach, the learner 

effectively considers a hypothesis space of possible concepts onto which words will map, and (leaving aside 

for now the problem of homonyms and polysemy) assumes that each word maps onto exactly one of these 

concepts. The act of learning consists of eliminating incorrect hypotheses about word meaning, based on a 

combination of a priori knowledge and observations of how words are used to refer to aspects of experience, 

until the learner converges on a single consistent hypothesis. Some logically possible hypotheses may be 

ruled out a priori because they do not correspond to any natural concepts that the learner possesses, e.g., the 

hypothesis that “dog” refers to things which are dogs if first observed before next Monday but cats if first 

observed thereafter. Other hypotheses may be ruled out because they are inconsistent with examples of how 

the word is used, e.g., the hypotheses that “dog” refers to all and only cats, or all and only terriers, can be 

ruled out upon seeing the example of Max the Dalmatian.   
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Settling on one hypothesis by eliminating all others as incorrect amounts to taking a deductive 

approach to the logical problem of word learning, and we sometimes refer to these approaches as deductive 

approaches.  Hypothesis elimination has its roots in early accounts of human and machine concept learning 

(Bruner, Goodnow & Austin, 1956; Mitchell, 1982), and it corresponds to one of the standard paradigms 

considered in formal analyses of natural language syntax acquisition (Gold, 1967; Pinker, 1979).  It is also 

related to classic inferential frameworks that have been considered in the philosophy of science, including 

Popper’s (1959) falsificationism, and the eliminative induction of Mill (1843) and Bacon (1620).   

Many variants of hypothesis elimination are present in the word learning literature.  Pinker (1984, 

1989), Berwick (1986), and Siskind (1996) propose particularly clear and explicit formal models. For 

instance, Siskind (1996) presents an efficient algorithm for keeping track of just the necessary and possible 

components of word meaning hypotheses consistent with a set of examples.  Most research on word learning 

does not work with such precise formal models, so it is not always so easy to identify the inference 

framework guiding the research.  Whenever researchers speak of some process of “eliminating” or “ruling 

out” hypotheses about word meaning, as Pinker (1989) does, or of tracking some minimal set of necessary 

and sufficient meaning components, as Siskind (1996) does, we take them to be appealing to some kind of 

eliminative or deductive model, at least implicitly.  This way of thinking about word learning serves as the 

foundation for many substantive proposals about children bring prior knowledge to bear on the inference 

problem (e.g., Carey, 1978; Clark, 1987; Markman, 1989).     

The main alternatives to hypothesis elimination are based on some form of associative learning, 

such as connectionist networks (Colunga & Smith, 2005; Gasser & Smith, 1998; Regier, 1996, 2005; Smith, 

2000) or similarity-matching to examples (Landau, Smith & Jones, 1988; Roy and Pentland, 2004).1 By 

using internal layers of “hidden” units and appropriately designed input and output representations, or 

appropriately tuned similarity metrics, these models are able to produce abstract generalizations of word 

meaning that go beyond the simplest form of direct percept-word associations.  The boundary between 

hypothesis-elimination approaches and associative-learning approaches is not always starkly clear.  For 
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instance, Siskind (1996) keeps track of the frequencies with which specific words and world contexts are 

associated, to support rejection of noise and construction of homonymic lexical entries. 

While both hypothesis elimination and associative learning models offer certain important insights, 

we will argue that neither approach provides an adequate framework for explaining how people learn the 

meanings of words. We will consider the following five core phenomena that have been highlighted in the 

literature of the last twenty years (e.g., Bloom, 2000; Carey, 1978; Colunga & Smith, 2005; Markman, 1989; 

Regier, 1996; Siskind, 1996; Tomasello, 2001), and which any model of word learning should account for:   

1. Word meanings can be learned from very few examples.  Often a reasonable guess can be made 

from just a single example, while two or three more examples may be sufficient in the right contexts to 

home in on the meaning with high accuracy.  

2. Word meanings can be inferred from only positive examples – examples of what the word refers 

to.  Negative examples – examples of what the word does not refer to – may be helpful but are often not 

necessary to make a reasonable guess at a word’s meaning.  

 3. Word meanings carve up the world in complex ways, such that an entity, action, property or 

relation can typically be labeled by multiple words. The target of word learning is not simply a single 

partition of the world into mutually exclusive categories, with one word per category, but rather a 

system of overlapping concepts each with a distinct linguistic label.  

4. Inferences about word meanings from examples may often be graded, with varying degrees of 

confidence reflecting the level of ambiguity or noise in the learner’s experience.  

5. Inferences about word meanings can be strongly affected by pragmatic or intentional reasoning 

about how the observed examples were generated given the relevant communicative context.   

We do not mean to suggest that all of these phenomena apply in every case of word learning, only 

that they are pervasive and of central importance.  They illustrate some of the severe challenges that word 

learning poses as a computational problem to be solved, as well as some of the powerful inferential 

capacities that children must be able to bring to bear in its solution.   A satisfying framework for modeling 

word learning should thus present natural explanations for these phenomena. As we explain below, 
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traditional approaches based on hypothesis elimination or associative learning do not do so in general; at 

best each approach captures only a subset of these phenomena.  

The main goal of this paper is to propose a new approach to understanding word learning based on 

principles of rational statistical inference.  Our framework combines some of the principal advantages of 

both deductive and associative frameworks, while going beyond some of their major limitations.  Our key 

innovation is the use of a Bayesian inference framework.  Hypotheses about word meanings are evaluated 

by the machinery of Bayesian probability theory rather than deductive logic: hypotheses are not simply ruled 

in or out, but scored according to their probability of being correct.  The interaction of Bayesian inference 

principles with appropriately structured hypothesis spaces can explain the core phenomena listed above.  

Learners can rationally infer the meanings of words that label multiple overlapping concepts, from just a few 

positive examples.  Inferences from more ambiguous patterns of data lead to more graded and uncertain 

patterns of generalization.  Pragmatic inferences based on communicative context affect generalizations 

about word meanings by changing the learner’s probabilistic models.    

The plan of the paper is as follows.  We begin by pointing out some of the specific difficulties faced 

by the standard approaches to word learning.  The core of the paper develops our Bayesian framework in the 

context of a particular case study: learning common nouns for object categories, such as “animal”, “dog”, or 

“terrier”.  We present the main ingredients of a computational model based on the principles of our Bayesian 

framework, providing an explanation for the key phenomena in learning overlapping extensions.  The 

predictions of this model are then tested in three experiments, with both adult and child learners, 

demonstrating the importance of these inferences in an ostensive word learning context. These inferences 

may provide one means by which people can acquire words for concepts at multiple levels of an object-kind 

hierarchy (subordinate, basic, and superordinate) – traditionally considered a critical challenge of early word 

learning (e.g., Markman, 1989; Waxman, 1990).  We then present a more quantitative fit of the model given 

the data.  Finally, we show how the Bayesian framework can potentially address other difficulties faced by 

standard approaches, and we consider the challenges facing it as a general framework for word learning.   
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Evaluating traditional approaches: the case of object-kind labels 

Before describing our Bayesian approach and its experimental tests, it will be helpful to give some 

concrete illustrations of the core phenomena of word learning listed above, and to explain traditional 

deductive and associative accounts of these phenomena, as well as some of the difficulties facing them.  Let 

us return to our opening question of how a child could infer the meaning of a common noun that labels an 

object-kind, such as the word “dog”.  Numerous studies have shown that children can make reasonable 

guesses about such word meanings from a single labeling event.  For instance, Markman and Hutchinson 

(1984) taught 3-year-olds a new word (e.g., “fep”) for a familiar object (e.g., a German shepard) and showed 

that children preferred to generalize new labels to taxonomically similar objects (e.g., a Poodle) rather than a 

thematically matching object (e.g., a bone).  Markman and Wachtel (1988) found that 3-year-olds 

interpreted a novel word as referring to a whole object as opposed to a salient part of the object.  Landau, 

Smith, and Jones (1988) showed that two-year-olds preferred to generalize category labels to objects 

matching in shape rather than texture, size or color.  The ability to learn words from one or a few exposures 

may even be present in children as young as 13 to 18 months (Woodward, Markman, & Fitzsimmons, 1994).  

These rapid inferences are not restricted to object-kind labels.   In the first fast mapping study of Carey and 

Bartlett (1978), an adult pointed children to two trays, one colored a prototypical blue and the other colored 

an unusual olive green.  The adult then asked, “Bring me the chromium tray, not the blue one, the chromium 

one.”  Many of the children made the correct inference that “chromium” referred to the olive green color 

from only one or two experiences of this sort, and about half of them remembered the word-referent pairing 

about 5 weeks later.  Furthermore, Heibeck and Markman (1987) showed that the ability to use linguistic 

contrast to infer word meanings applied to other semantic domains such as shape and texture.  In sum, the 

ability to infer important aspects of a word’s meaning from just a single positive example – what we have 

referred to as phenomena 1 and 2 above – seems to be present in children as young as two years of age.   

How do children make these inferences about word meanings from such sparse data?  One 

influential proposal within the hypothesis-elimination paradigm has been that people come to the task of 

word learning equipped with strong prior knowledge about the kinds of viable word meanings (Carey, 1978; 
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Clark, 1987; Markman, 1989), allowing them to rule out a priori the many logically possible but unnatural 

extensions of a word.  Two classic constraints on the meanings of common nouns are the whole object 

constraint and the taxonomic constraint (Markman, 1989).  The whole object constraint requires words to 

refer to whole objects, as opposed to parts of objects or attributes of objects, thus ruling out word meanings 

such as the front half of a dog, or undetached dog parts.  The taxonomic constraint requires words refer to 

taxonomic classes, typically in a tree-structured hierarchy of natural kind categories. Given one example of 

“dog”, the taxonomic assumption would rule out the subsets of all spotted things, all running things, all dogs 

plus the Lone Ranger's horse, or all dogs except Labradors.  

In most cases, such as our example of a child learning the word “dog”, these constraints are useful 

but not sufficient to solve the inference problem.  Even after ruling out all hypotheses that are inconsistent 

with a typical labeled example (e.g., Max the Dalmatian), a learner will still be left with many consistent 

hypotheses that also correspond to possible meanings of common nouns (Figure 1). How are we to infer 

whether a word that has been perceived to refer to Max applies to all and only Dalmatians, all and only 

dogs, all canines, all mammals, or all animals, and so on?  This problem of inference in a hierarchical 

taxonomy is interesting in its own right, but more importantly as a special case of a fundamental challenge: 

the problem of learning with overlapping hypotheses – phenomenon 3 from the list above.  In most 

interesting semantic domains, the natural concepts that can be named in the lexicon are not mutually 

exclusive, but overlap in some more or less structured way.   Thus a single example of a new word will 

typically fall under multiple nameable categories and thus be insufficient to fix the reference class of the 

word.   

-------------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE  

--------------------------------------------------- 

Another example of learning with overlapping hypotheses arises in contexts where multiple 

dimensions of an object, such as its shape and material composition, might be relevant simultaneously.  

Consider the words that might apply to objects found in a furniture store: kinds of objects such as “table”, 
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“chair”, “shelf”, and “vase”, together with kinds of solid substances such as “wood”, “metal”, “plastic”, and 

“stone” (Figure 2).  Kinds of objects tend to have a fairly reliable perceptual correlate of shared shape, and 

kinds of substances refer to the material an object is made of.  Both adults and children are capable of 

learning word meanings with this orthogonal pattern overlap from a small number of examples (Mintz & 

Gleitman, 2002; Akhtar, Jipson, & Callanan, 2001).  Later in the paper we will discuss this case in more 

detail.    

---------------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE  

--------------------------------------------------- 

Markman (1989) suggested one solution for dealing with overlapping hypotheses in the case of 

object categories: people may assume that new common nouns map not to just any level in a taxonomy, 

but preferentially to a basic level of categorization (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 

1976).  Basic-level categories, such as the category of dogs, are clusters of intermediate size that 

maximize many different indices of category utility (relative to smaller subordinate categories, e.g., 

Dalmatians, or larger superordinate categories that contain them, e.g., animals).  Whether children really 

have a preference to map words onto basic-level kinds is controversial (Callanan, Repp, McCarthy & 

Latzke, 1994), but if this preference does exist, it is clear how it would enable names for basic-level 

categories to be learned after seeing just a single typical labeled example.  In the context of learning 

words for kinds of objects and kinds of substances, Landau, Smith, and Jones (1988) made an analogous 

suggestion that children preferentially map words onto shape-based object categories, at least for simple 

or regular shapes (Imai & Gentner, 1997; Soja, Carey, & Spelke, 1991).    

Assuming biases to map words onto basic-level object categories, together with other constraints 

mentioned above, appears to explain how a hypothesis-elimination learner could learn word meanings from 

just a single positive example, because each object now belongs to just one nameable category.  But this 

solution only works for basic-level object labels like “dog”, and in fact is counterproductive for all other 

kinds of words.  How do we learn all the other words we know, for categories at superordinate or 

 9



subordinate levels, for substance concepts, and everything else? Admitting some kind of soft combination of 

these constraints seems like a reasonable alternative, but no one has offered a precise account of how these 

biases should interact with each other and with the observed examples of a novel word, in order to support 

meaningful generalizations from just one or a few examples. In one sense, that is our goal in this paper. 

Are the prospects any better for associative learning accounts, in trying to explain word learning 

from just one or a few positive examples?  On the surface, associative learning would not seem well-suited 

to explaining any kind of rapid inference, because it is typically conceived of as a gradual process of 

accumulating associative strength over many experiences.  Indeed, some classic associative models of 

language acquisition do not show enduring fast mapping (Plunkett, Sinha, Moller, & Strandsby, 1992), 

because of the potential for catastrophic interference.  More recent models have tried to account for rapid 

inferences about word meaning (e.g., Colunga & Smith, 2005; Regier, 2005), through a combination of 

exemplar representations and attentional learning.   

It is not clear, however, how the associative models can solve the problem of overlapping 

extensions.  One standard mechanism in associative models is the presence of implicit negative evidence: 

the models implicitly assume that a positive example of one word is a negative example of every other word.  

This is precisely the issue concerning overlapping extensions.  One attempt to address this problem was 

Regier (1996).  He describes a neural network learning algorithm capable of learning overlapping words 

from positive evidence only, using a weakened form of mutual exclusivity that is gradually strengthened 

over thousands of learning trials.  However, this model does not address the phenomenon of learning from 

very few examples.    Another class of models (Li & MacWhinney, 1996; MacWhinney, 1998; Merriman, 

1999) uses competition among outputs to implement the idea of implicit negative evidence. However, the 

simple mechanism of competition embodied in these models is not designed to explain how children learn 

that multiple words can each apply to a single object.  

Recent work in associative models of word learning has focused on the idea of tuning attentional 

biases.  For example, a shape bias for object labels could be the result of shifting attention to shape (as 

opposed to material) over a set of training exemplars (e.g., Colunga & Smith, 2005).  The model of Regier 
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(2005) acquires attentional biases in both meaning space and form space, to enable learning a system of 

form-meaning mappings.  But the problem of learning words with overlapping extensions persists: how do 

learners acquire words at the subordinate or superordinate levels, or words for categories not based on 

shape, from just a few examples?  These models have not tried to address this question, and it is not clear 

how they could.  

We will argue that this essential problem of learning overlapping word meanings from sparse 

positive examples can be solved by a Bayesian approach to word learning. Relative to more traditional 

approaches, our approach posits a more powerful statistical-inference framework for combining prior 

knowledge with the observed examples of a word’s referents.  We will focus on a set of phenomena in the 

context of learning words for taxonomic categories, which strongly suggest that some inferential mechanism 

of this sort is at work.  To illustrate with the ostensive learning problem introduced earlier, after observing 

Max the Dalmatian labeled a “fep”, a learner guided by a taxonomic hypothesis space and perhaps some 

preference for labeling basic-level categories might reasonably guess that “fep” refers to all dogs. Now 

suppose that the learner observes three more objects labeled as feps, each of which is also a Dalmatian.  

These additional examples are consistent with exactly the same set of taxonomic hypotheses that were 

consistent with the first example; no potential meanings can be ruled out as inconsistent that were not 

already inconsistent after seeing one Dalmatian called a “fep”. Yet after seeing these additional examples, 

the word “fep” seems relatively more likely to refer to just Dalmatians than to all dogs. Intuitively, this 

inference appears to be based on a suspicious coincidence: it would be quite surprising to observe only 

Dalmatians called “fep” if in fact the word referred to all dogs, and if the first four examples were a random 

sample of “fep” in the world.  This intuition can be captured by a Bayesian inference mechanism that scores 

alternative hypotheses about a word’s meaning according to how well they predict the observed data, as well 

as how they fit with the learner’s prior expectations about natural meanings. An intuitive sensitivity to these 

sorts of suspicious coincidences is a core capacity enabling rapid word learning, and we will argue it is best 

explained within a Bayesian framework.  
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Several previous studies have shown that multiple examples help children learn subordinate or 

superordinate kind labels (Callanan, 1985, 1989; Liu, Golinkoff & Sak, 2001; Waxman, 1990), or adjectives 

(Mintz & Gleitman, 2002; Akhtar, Jipson, & Callanan, 2001). For instance, showing a dog, a horse, and a 

cow as examples of “animals” provides better evidence than just showing a “cow”; showing several 

differently shaped objects with a characteristic texture, as examples of a word for that texture, provides 

better evidence than just showing a single object.  Intuitively, the additional examples help in these cases by 

ruling out compelling alternative hypotheses, and a formal account of this “cross-situational learning” was a 

key part of Siskind’s (1996) hypothesis-elimination model of word learning. However, Siskind’s hypothesis-

elimintation approach cannot explain the phenomenon of learning from a suspicious coincidence, because 

no hypotheses are eliminated by the additional examples.  This phenomenon also poses a challenge to 

associative learning approaches to word learning.  Given one Dalmatian labeled three times as “a fep” and 

three Dalmatians labeled “a fep” once for each, the correlation between the appearance of dog features and 

the word “fep” is exactly the same as the correlation between the appearance of Dalmatian features and the 

word “fep”: 100% in both cases.  Associative models that attempt to infer word meaning from correlations 

between perceptual feature clusters and labeling events thus also get no inductive leverage from this 

coincidence. 

To see further how the effects of multiple examples reveal the inductive logic behind word learning, 

consider how a learner’s beliefs about the meaning of “fep” might have changed had the first four examples 

been a Labrador, a Golden Retriever, a Poodle, and a Basset Hound – rather than three Dalmatians.  

Presumably the learner would become more confident that “fep” in fact refers to all and only dogs, relative 

to our initial belief given just the single example of one Dalmatian called a “fep”. That is, the inference to a 

basic-level meaning is qualitatively similar given either one example or four examples from different 

subordinate classes, but becomes more confident in the latter case.  This shift in confidence suggests that the 

initial inference after one example was not simply due to the application of a defeasible constraint ruling out 

all but the basic-level hypothesis of dogs; if so, then the additional examples would tell us nothing.  A more 

plausible interpretation might be to say that given the first example, there was still some probability that the 
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word mapped only onto the subordinate category of Dalmatians. Subsequent evidence weighs against that 

overly specific hypothesis and shifts the corresponding weight of belief onto the basic-level hypothesis of all 

and only dogs.  In the experiments described below, we show that both children and adults behave in 

agreement with this picture: they increase their tendency to generalize at the basic level given multiple 

examples spanning a basic-level hypothesis, relative to their base preference given just a single example.  

The explanation for this behavior, as with the restriction of generalization given three examples spanning a 

subordinate category discussed above, is that inferences to word meaning are not based purely on hypothesis 

elimination subject to hard and defeasible constraints.  Rather they reflect some kind of statistical inference 

that may become sharper or more focused as additional consistent data are observed.   

We will also show how these patterns of inference based on suspicious coincidence can be captured 

in a statistical framework based on Bayesian inference.  In contrast with hypothesis elimination approaches, 

hypotheses are not just ruled in or out.  Instead, the probability of each alternative hypothesis is evaluated.  

In contrast with associative learning approaches, the statistical information does not just come from 

correlations between words and referents.  The inference mechanism is sensitive to how examples are 

generated and may disregard “outliers” or uninformative examples.  The Bayesian framework can thus 

explain the more general graded character of generalization in word learning – Phenonemon 4 above – 

which causes difficulties for hypothesis elimination approaches in particular. A learner who has seen just a 

single example will typically be less confident in generalizing the word to new instances than a learner who 

has seen many consistent examples. Anomalous examples may be discounted as “outliers” rather than given 

full weight in revising learners’ hypotheses (Jaswal & Markman, 2001).  

One last phenomenon of word learning has been particularly central in recent studies: the role of 

intentional and pragmatic inferences – Phenomenon 5 above.  These phenomena pose a challenge for all 

approaches to word learning, but particularly so for the associative tradition. As even advocates of this  

tradition have suggested (Regier, 2003), it is likely that some mechanisms beyond simple associative 

learning will be necessary to account for the social factors at work in word learning.  For example, Baldwin 

and colleagues (Baldwin, 1991, 1993; Baldwin, Markman, Bill, Desjardins & Irwin, 1996) showed that by 
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18 months of age, children use speaker’s eye gaze and joint attention to infer which object the speaker is 

referring to.  If the speaker looks into a bucket and says “Look, a fep!” while the child is looking at another 

object, she would track the speaker’s gaze and interpret the word as referring to the object inside the bucket.   

Or consider a study by Tomasello and Barton (1994).  An adult said to children, “Let’s glip the doll,” then 

executed one action, followed by the exclamation “Oops!” and a second action, followed by the 

exclamation, “There!”  Children correctly inferred that “glipping” referred to the second action using the 

emotional expression of the experimenter. Furthermore, some word learning constraints such as mutual 

exclusivity (Markman, 1989) have been reinterpreted as pragmatic constraints (Diesendruck & Markson, 

2001).  In other words, an example of a new word is not just a raw data point to be entered blindly into a 

matrix of word-object co-occurrences, but a potentially rich communicative experience to be explained by 

an inference to the word’s most likely meaning.  Although it is somewhat controversial whether it is in fact 

intentional reasoning, or more basic attentional cuing (e.g., Smith, 2000), that guides children solving these 

word learning problems, most agree that deciphering speaker’s communicative intent is an important 

component of word learning.  It is clear how these children’s inferences could be cast naturally in the 

framework of hypothesis elimination, based on chains of pragmatic deductions about what the adult 

intended to refer to, but not so clear under an associative learning framework. Our Bayesian framework can 

address at least some of these inferences in terms of sensitivity to the sampling process, and we will give an 

example of this capacity later on in the paper.      

In sum, traditional approaches based on hypothesis elimination or associative learning can account 

for some but not all of the five critical aspects of word learning we identified. In contrast, the Bayesian 

framework we propose can potentially handle all five phenomena.  The rest of the paper will lay out the 

model in more detail, provide empirical evidence from both adults and 4-year-old children in learning words 

for different levels of a taxonomic hierarchy, and discuss some extensions and implications for our 

framework.   

The Bayesian framework 
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Our model is formulated within the Bayesian framework for concept learning and generalization 

introduced by Tenenbaum and his colleagues (1999; Tenenbaum & Griffiths, 2001; Tenenbaum, Griffiths & 

Kemp,2006).  This framework aims to explain inductive learning at the level of “computational theory” 

(Marr, 1982) or “rational analysis” (Anderson, 1990; Oaksford & Chater, 1998) – to understand in 

functional terms the implicit knowledge and inferential machinery guides people in generalizing from 

examples – rather than to describe precisely the psychological processes involved.   

We focus on the restricted problem of learning a single novel word C from a few examples, but as 

we discuss later on, the framework in principle extends to the more general problem of learning a whole 

lexicon from a large corpus of experience.  Let X = x(1), . . . , x(n) denote a set of n observed examples of the 

novel word C.  The examples are drawn from some known domain of entities U.  We assume that the learner 

has access to a hypothesis space H of possible concepts and a probabilistic model relating hypotheses h ∈ H 

to data X. Each hypothesis h can be thought of as a pointer to some subset of entities in the domain that is a 

candidate extension for C.  We assume that the learner can identify the extension of each hypothesis (which 

entities fall under it).  More generally, hypotheses could represent candidate intensions, but here we make 

the simplifying assumption that each intension yields a unique extension (a version of Clark’s (1987) 

contrast principle), and we focus on how learners infer a word’s extension.   

Given the examples X, the Bayesian learner evaluates all hypotheses for candidate word meanings 

according to Bayes’ Rule, by computing their posterior probabilities p(h|X), proportional to the product of 

prior probabilities p(h) and likelihoods p(X|h): 
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The prior p(h), including the hypothesis space itself, embodies the learner’s expectations about plausible 

meanings for the word C, independent of the examples X that have been observed.  Priors may reflect 
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conceptual or lexical constraints, expectations about how different kinds of words are used in different 

contexts, or beliefs conditional on the meanings of other previously learned words.  They may be innate or 

acquired.  A taxonomic constraint or basic-level bias can be incorporated naturally through this term. 

The likelihood p(X|h) captures the statistical information inherent in the examples X.  It reflects 

expectations about which entities are likely to be observed as examples of C given a particular hypothesis h 

about C’s meaning, such as a default assumption that the examples observed will be a representative sample 

of the concept to be learned.  The likelihood may also be sensitive to other data, such as the syntactic 

context of the examples, or examples of other words (which might contrast with C).  We consider some of 

these possibilities later in the paper.  

The posterior p(h|X) reflects the learner’s degree of belief that h is in fact the true meaning of C, 

given a combination of the observations X with prior knowledge about plausible word meanings.  It is 

proportional to the product of the likelihood and prior for that hypothesis, relative to the corresponding 

products for all other hypotheses.  This form embodies a principle of “conservation of rational belief”: if the 

learner believes strongly in a particular hypothesis h about the meaning of a word to be learned, i.e., she 

assigns a value near 1 to p(h|X), then she must necessarily believe strongly that other hypotheses do not pick 

out the true meaning, i.e., she must assign values near 0 to p(h'|X) for all other h' ≠ h. 

All of these probabilities – priors, likelihoods, and posteriors – are implicitly conditioned on a 

knowledge base, which could include the meanings of previously learned words, or abstract principles about 

possible word meanings, how words tend to be used, or how examples are typically generated.  Later in the 

paper we consider more general analyses in which the likelihoods or prior probabilities change to 

incorporate different aspects of a learner’s background knowledge.  

The main work of the model is done in specifying the likelihoods and priors that enter into Bayes’ 

rule.  Before considering these components further, we note one further piece of machinery that is needed to 

relate the learner’s beliefs about word meaning encoded in p(h|X) to generalization behavior.  The learner 

needs some way to decide whether or not any given new object y belongs to the extension of C, given the 

observations X.  If the learner is completely sure of the word’s meaning – that is, if p(h|X) = 1 for exactly 
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one h = h* and 0 for all other h – then generalization is trivial: C applies to all and only those new objects y 

∈ h*.  More generally, the learner must compute a probability of generalization, p(y ∈ C|X), by averaging 

the predictions of all hypotheses weighted by their posterior probabilities p(h|X): 

)3()|()|()|( ∑
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∈=∈
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To evaluate Equation 3, note that p(y ∈ C|h) is simply 1 if y ∈ h, and 0 otherwise, and p(h|X) = 0 unless the 

examples X are all contained within h.  Thus the generalization probability can also be written as  
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or the sum of the posterior probabilities of all hypotheses that contain both the new object y and the old 

examples X.  Following Tenenbaum & Griffiths (2001), if we interpret hypotheses h as features or feature 

bundles (that might define the intensions of the hypotheses), and the posterior probabilities p(h|X) as feature 

weights, then Equation 4 captures the intuition that generalization from X to y will increase in proportion to 

the number or weight of features in common between X and y – as in classic models of similarity judgment 

by Tversky (1977) or Shepard and Arabie (1979).  Yet because each hypothesis sharply picks out a subset of 

entities, Equation 4 can also produce essentially all-or-none, rule-like generalization if the posterior 

probability concentrates its mass on a single hypothesis.   

The hypothesis space   

Most generally, the hypothesis space H is simply a set of hypotheses about the meaning of the novel 

word C.  Each hypothesis h points to a subset of entities in the domain U that is a candidate for the extension 

of C.  For the purposes of Bayesian inference, these hypotheses need not be structured or related to each 

other in any particular way.  They may be simply a set of mutually exclusive and exhaustive candidate word 

extensions, carrying the assumption that the word to be learned maps onto one and only one of these subsets 

of the world.  However, there are strong theoretical reasons – as well as practical motives – why we should 
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typically assume a more structured hypothesis space.  Figures 1 and 2 show two examples of hypothesis 

spaces with different large-scale structures: a tree-structured taxonomy of object kinds, in which the 

hypotheses are nested (Figure 1), and an orthogonal “two-dimensional” matrix of object and substance 

categories, in which any two hypotheses from different dimensions overlap (Figure 2). As explained below, 

a structured hypothesis space can be thought of as an important component of the learner’s prior, perhaps 

the most important component that supports successful learning from few examples.  It is also the place 

where many candidate word-learning principles enter into the analysis.  Practically speaking, assuming an 

appropriately structured hypothesis space can allow that space  to be constructed in a fairly automatic 

fashion, based on independent behavioral data we collect from participants. Assuming no structure to the 

hypothesis space can force modelers to specify every hypothesis and its associated prior probability by hand 

(e.g., Heit, 1998), leading to a proliferation of free parameters in the model.  

In our model of learning object-kind labels, we assume that the hypothesis space corresponds to a 

taxonomy of nested categories, which can be constructed automatically by hierarchical clustering (“average 

linkage”; Duda & Hart, 1973) on human participants’ similarity ratings (see Figure 7).  Each hypothesis 

corresponds to one cluster in this tree.   We should emphasize that this intuitive taxonomy is intended only 

as a simple but tractable first approximation to the hypothesis space people could adopt for learning 

common object labels; it is not intended to be the only source of object-label hypotheses, nor to represent the 

structure of hypothesis spaces for learning other kinds of words.   

Probabilistic components of the model   

Two kinds of probabilities, prior probabilities and likelihoods, are defined over our hypothesis space 

of candidate word meanings.  Here we describe the general character of these probabilities, saving the 

details of how they are computed in applying our model for the section on model evaluation (following the 

experimental sections).  

Likelihoods.  The likelihood function comes from assuming that the observed positive examples are 

sampled at random (and independently) from the true concept to be learned.  Consider a hypothesis about 

the word’s extension that picks out a finite set of K objects.  Then the likelihood of picking any one object at 
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random from this set of size K would be 1/K, and for n objects (sampled with replacement), 1/Kn. This 

reasoning leads to the following likelihood function: 
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if xi ∈ h for all i, and 0 otherwise. We refer to Equation 5 as the size principle for scoring hypotheses: 

hypotheses with smaller extensions assign greater likelihood than do larger hypotheses to the same data, and 

they assign exponentially greater likelihood as the number of consistent examples increases. This captures 

the intuition that given a Dalmatian as the first example of “fep”, either all Dalmatians or all dogs seem to be 

fairly plausible hypotheses for the word’s extension, but given three Dalmatians as the first three examples 

of “fep”, the word seems much more likely to refer only to Dalmatians than to all dogs – because the 

likelihood ratio of these two hypotheses is now inversely proportional to the ratio of their sizes, raised to the 

fourth power.  The size principle thus explains why a learner who observes four examples of “fep” that all 

happen to be Dalmatians will tend to infer that the word refers only to Dalmatians, rather than all dogs, even 

though both hypotheses are logically consistent with the examples encountered.  Intuitively, this inference is 

based on noticing a suspicious coincidence; formally, it is justified on the grounds of maximizing the 

likelihood of the data given the hypothesis.  

This proposal addresses a crucial shortcoming of traditional deductive or hypothesis-elimination 

approaches to word learning, which cannot explain how inferences may change without encountering 

falsifying examples.  It also addresses an analogous shortcoming of associative approaches, which cannot 

explain why one feature may be preferred over another as the basis for a word’s meaning, even though both 

features are equally correlated with the observed usage of the word. The rationality of the size principle 

depends on how widely applicable is the assumption of randomly sampled examples, and how defeasible it 

is when the learner is confronted with examples sampled in importantly different ways.  The size principle 

can be viewed as a softer statistical version of the subset principle (Wexler & Cullicover, 1980; Berwick, 
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1986), a classic deductive approach to learning from positive examples in formal models of language 

acquisition.  We discuss the connection between Bayesian learning and the subset principle in more detail 

later, when we compare alternative models with our experimental data.   

 

Priors. Most generally, the prior should reflect all of people’s implicit knowledge about how words 

map onto meanings and how meanings tend to be used in different contexts.  Perhaps the most important 

component of the prior is simply the qualitative structure of the hypothesis space: here, the assumption that 

hypotheses correspond to nodes in a tree-structured taxonomy.  This assumption is equivalent to assigning 

zero prior probability to the vast majority of logically possible hypotheses – all other subsets of objects in 

the world – that do not conform to this particular taxonomy. 

Although a tree-structured hypothesis space is not necessary for our Bayesian approach, a rational 

statistical learner can only make interesting generalizations by adopting some bias that assigns zero or near-

zero prior probability to most logically possible hypotheses.  To see why, consider a Bayesian learner who 

assigned equal priors to all logically possible hypotheses – all subsets of entities in the domain.  Then, under 

the size principle in the likelihood function, the best hypothesis for any set of examples would always be the 

one containing just those objects and no others – a hypothesis that calls for no generalization at all! 

Generalization in word learning, or any kind of inductive learning, is only possible with a prior that 

concentrates most of its mass on a relatively small number of hypotheses. 

More fine-grained quantitative differences in prior probability will be necessary to explain the 

particular patterns of generalization that people make, as well as the different patterns shown by different 

groups of learners, such as adults versus children, or experts versus novices.  One important kind of graded 

prior knowledge in word learning may be a preference for labeling distinctive clusters: more distinctive 

clusters are a priori more likely to have distinguishing names.  In learning common nouns, a paramount goal 

is to acquire linguistic handles for natural kind categories.  The perceptual distinctiveness of a cluster is a 

ready (if not infallible) indicator of how likely that cluster is to correspond to a natural kind.  But 

distinctiveness (perceptual or conceptual) may also be important in its own right, as the utility and stability 
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of any word will depend in part on how easily speakers can pick out entities in its extension.  Thus we 

expect that some kind of preference for distinctiveness will be a general aspect of prior probabilities in word 

learning.   

Summary of the basic modeling framework.  While both priors and likelihoods can be understood on 

their own terms, it is only in combination that they explain how people can successfully learn the reference 

of new words from just a few positive examples.  Successful word learning requires both a constrained 

space of candidate hypotheses – provided by the prior – and the ability to re-weight hypotheses based on 

how well they explain a set of observed examples – provided by the likelihood.  Without the constraints 

imposed by the prior, no meaningful generalizations would be possible. Without the likelihood, nothing 

could be learned from multiple examples beyond simply eliminating inconsistent hypotheses.  In particular, 

priors and likelihoods each contribute directly to the main pattern of generalization that we described in the 

introduction and that we will look for in our experiments: given just a single example of a novel kind label, 

generalization to other objects should be graded, but given several examples, learners should apply the word 

more discriminatingly, generalizing to all and only members of the most specific natural concept that spans 

the observed examples.  The prior determines which concepts count as “natural”, while the likelihood 

generates the specificity preference and determines how the strength of that preference – and thus the 

sharpness of generalization – increases as a function of the number of examples. 

The need for strong prior knowledge to constrain word learning has been a major theme of previous 

research in the rationalist tradition (Markman, 1989; Pinker, 1989; Bloom, 2000).  The importance of 

statistical learning across multiple examples of word-object pairings has been stressed in associative 

learning approaches (e.g., Colunga & Smith, 2005; Regier, 2005). Our thesis here is that successful word 

learning depends on both prior knowledge and statistical inference – and critically, on their interaction.  We 

have presented a theoretical framework for understanding how this interaction functions to support rational 

generalization from a few positive examples.  We now turn to a series of empirical studies mapping out how 

adults and children generalize words from one or a few examples, followed by quantitative comparisons 

between these judgments and the generalization patterns of our Bayesian model.  
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Experiment 1 

Experiment 1 tested adults in a word learning situation.  The experiment consisted of two phases, a 

word learning phase and a similarity judgment phase.  In the word learning phase, adults were taught novel 

words (e.g., “This is a blicket.”) and were asked to generalize the word to other objects.  Two variables were 

manipulated: the number of examples (1 vs. 3) and the range spanned by the examples (e.g., three green 

peppers, or three different-colored peppers, or three different kinds of vegetables).  In the similarity 

judgment phase, participants were asked to give similarity ratings for pairs of the same objects used in the 

word learning phase.  Similarity judgments will be used to yield a hypothesis space for subsequent 

computational modeling.  

The predictions are that adults would show graded generalization with one example, and more all-

or-none generalizations with three examples. Furthermore, depending on the span of the three examples, 

adults would generalize to the most specific category that is consistent with the examples. 

 

Method 

Participants.  Participants were 22 students from MIT and Stanford University, participating for pay 

or course credit.  All participants carried out the word learning task and also participated in the similarity 

judgment phase that followed.  All participants were native speakers of English and had normal or 

corrected-to-normal vision. 

Materials.  The stimuli were digital color photographs of 45 real objects.  They were distributed 

across three different superordinate categories (animals, vegetables, vehicles) and within those, many 

different basic-level and subordinate-level categories.  These stimuli were divided into a training set of 21 

stimuli and a test set of 24 stimuli. 

---------------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE  

----------------------------------------------------  
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Twelve sets of labeled examples were used as training stimuli during the experiment (Figure 3).  

The first three sets contain one example each: a Dalmatian, a green pepper, and a yellow truck.  The next 

nine sets contain three examples each: one of the three objects from the single-example sets (e.g., a 

Dalmatian), along with two new objects that match the first at either the subordinate-level (e.g., two other 

Dalmatians in different postures), basic-level (e.g., a terrier and a mutt), or superordinate-level (e.g., a 

pelican and a pig).  Thus the nine sets arise from the combination of the three objects in the one-example set 

crossed with three levels of matching specificity. 

---------------------------------------------------- 

INSERT FIGURE 4 ABOUT HERE  

---------------------------------------------------- 

The 24 objects in the test set are shown in Figure 4. The objects were distributed across all three 

superordinate level categories (8 animals, 8 vegetables, and 8 vehicles).  The set was constructed to provide 

matches at all levels: subordinate (2 other Dalmatians), basic-level (2 other dogs, a Labrador and a hush-

puppy), and superordinate (4 other non-dog animals, a cat, a bee, a seal, and a bear), as well as many non-

matching objects (vegetables and vehicles).  Note that the test set was exactly the same for all trials, and for 

any set of exemplars always contains a total of 2 subordinate-level matches (e.g., the other Dalmatians), 4 

basic-level matches (e.g., the Dalmatians and the other dogs), 8 superordinate-level matches (e.g., the dogs 

and the other animals), and 16 non-matching distractors (e.g., all the other objects). We chose to include 

more basic-level and superordinate-level matches because these categories have more members in the real 

world, although the actual ratio (1:2:4) is only a rough estimate of the size of the categories. 

Design and Procedure. The first phase of the experiment was the word learning task. Stimuli were 

presented within a 15” x 15” square window on a color computer monitor, at normal viewing distance. 

Participants were told that they were helping a puppet (Mr. Frog) who speaks a different language to pick 

out the objects he wants.  On each trial, the participants were shown pictures of either one or three labeled 

examples of a novel, monosyllabic word (e.g., “fep”) and were asked to pick out the other “feps” from the 
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test set of 24 objects, by clicking on-screen with the computer mouse.  The test items were laid out in a four-

by-six array, with the order randomly permuted from trial to trial.  

The experiment began with participants being shown all 24 test objects, one at a time for several 

seconds each, to familiarize them with the stimuli.  This familiarization was followed by the instructions and 

12 experimental trials.  (Some subjects were then given an additional set of trials which are not reported 

here.)  On the first three trials, participants saw only one example of each new word, e.g., “Here is a fep.”  

On the next nine trials, they saw three examples of each new word, e.g., “Here are three feps.” Within each 

set of trials, the example sets appeared in a pseudo-random order, counterbalancing content domain (animal, 

vegetable, and vehicle) and specificity (subordinate, basic, superordinate) across participants.  On each trial, 

the participants were asked to choose the other objects that the word applied to (e.g., the other feps) and 

their responses were recorded.  This phase last approximately 15 minutes in total. 

 The second phase of the experiment was a similarity judgment task. Participants were shown 

pictures of pairs of objects from the word learning study and asked to rate the similarity of the two objects 

on a scale of 1 (not similar at all) to 9 (extremely similar).  They were instructed to base their ratings on the 

same aspects of the objects that were important to them in making their choices during the word learning 

phase.  This instruction, along with the placement of the similarity judgment task after the word learning 

task, was adopted in the hope of maximizing the information that similarity judgments would provide about 

the hypothesis space that participants used in word learning.  Similarity judgments took approximately 45 

minutes to collect.  Judgments were collected for all pairs of 39 out of 45 objects – 13 from each domain of 

animals, vegetables, and vehicles – including all test objects and all but 6 of the training objects (which were 

omitted to save time).  The six omitted objects (two green peppers, two yellow trucks, and two Dalmatians) 

were each practically identical to three of the 39 included objects, and each was treated as identical to one of 

those 39 in constructing the model of learning reported below. Each participant rated the similarity of all 

pairs of animals, vegetables, and vehicles (78 x 3 judgments), along with one-third of all possible cross-

superordinate pairs (e.g., animal-vegetable, vegetable-vehicle, etc.) chosen pseudo-randomly (169 

judgments), for a total of 403 judgments per participant.  The order of trials and the order of stimuli were 
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randomized across participants.  These trials were preceded by 30 practice trials (chosen randomly from the 

same stimuli), during which participants were familiarized with the range of similarities they would 

encounter and were encouraged to develop a consistent way of using the 1-9 rating scale.  They were also 

encouraged to use the entire 1-9 scale and to spread their judgments out evenly across the scale.  The ratings 

were recorded and the average rating for each pair of objects was computed.  

Results 

The main results of Experiment 1 are shown in Figure 5.  Adults clearly differentiated the one-

example and the three-example trials, and they were sensitive to the span of the three examples.  With one 

example, adults showed graded generalization from subordinate to basic-level to superordinate matches.  

These generalization gradients dropped off more steeply at the basic level, with a soft threshold: most test 

items from the same basic-level category were chosen but relatively few superordinate matches were 

chosen.  With three examples, adults’ generalizations sharpened up into a much more all-or-none pattern.  

Generalizations from three examples were almost always restricted to the most specific level that was 

consistent with the examples: for instance, given three Dalmatians as examples of “feps”, adults generalized 

only to other Dalmatians; given three different dogs (or three different animals) adults generalized to all and 

only the other dogs (or other animals).   

 

---------------------------------------------------- 

INSERT FIGURE 5 ABOUT HERE  

---------------------------------------------------- 

With the above overview in mind, we turn to statistical analyses that quantify these effects.  Later 

we present a formal computational model of this word learning task and compare it with the data from this 

experiment in more quantitative detail.  All analyses in this section were based on one-tailed t-tests with 

planned comparisons based on the model’s predictions. Data were collapsed over the three different 

superordinate categories, and over the different test items within a given level of generalization 

(subordinate, basic, and superordinate).  For each of the four kinds of example sets (1, 3 subordinate, 3 
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basic-level, 3 superordinate) and each of the three levels of generalization, each participant received a set of 

percent scores measuring how often they chose test items at that level of generalization given that kind of 

example set.  The means of these scores across subjects are shown in Figure 5.  Because participants almost 

never (less than 0.1% of the time) chose any distractors (test items outside of the examples’ superordinate 

category), subsequent analyses did not include these scores. 

Two questions were addressed with planned t-tests.  First, did participants generalize further in the 

1-example trials compared with the 3-example subordinate trials when they were given 1 vs. 3 virtually 

identical exemplars?  More specifically, did adults show a significant threshold in generalization at the basic 

level in the 1-example trials, and did they restrict their generalization to the subordinate level in the 3-

example trials?  Second, did the 3-example trials differ from each other depending on the range spanned by 

the examples?  More specifically, did participants restrict their generalization to the most specific level that 

was consistent with the set of exemplars? 

To investigate the first question, we compared the percentages of responses that matched the 

example(s) at the subordinate, basic, and superordinate levels.  On the one-example trials, participants chose 

more subordinate (96%) and basic-level matches (76%) than superordinate matches (9%); the difference 

between the first two levels, 20%, is much less than the difference between the latter two levels, 69% (t (73) 

= -10.7869, p < .0001).  In contrast, when presented with three very similar exemplars from the same 

subordinate category, participants chose more subordinate matches (95%) than either basic-level (16%) or 

superordinate matches (1%) (p < .0001, for both comparisons).  Similar comparisons were made between 1 

example and 3 basic-level or 3 superordinate level examples. When presented with 3 examples from the 

same basic-level category, participants generalized even more to the basic-level than the one-example trials 

(76% vs. 91%).  When presented with 3 examples from the same superordinate category, participants 

generalized to almost all exemplars from the superordinate category (87%).     

As our model predicts (see below), given three examples spanning a single subordinate-level 

category, the generalization gradient should relate to the one-example trials as follows: equal generalization 

at the subordinate level, and a large decrease in generalization at the basic level, and a small decrease at the 
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superordinate level.  Given three examples spanning a basic-level category, the generalization gradient 

should be modified as follows: equal generalization at the subordinate level, an increase in basic-level 

generalization, and a small decrease in superordinate-level generalization.  Given three examples spanning a 

superordinate-level category, the generalization function should be modified as follows: equal generalization 

at the subordinate-level, and increases in both basic-level and superordinate-level generalization. All of 

these predictions follow from the model’s general tendency to be relatively uncertain about the correct level 

of generalization when given one example, and to be more certain when given three examples. A set of two-

tailed t-tests were conducted to test these predictions by comparing the mean percentages of all relevant 

pairs of conditions in adults’ generalizations.  The results of all tests were consistent with the model 

predictions, except for a nonsignificant difference in superordinate generalization between the 1 example 

and 3 basic-level examples conditions.  This difference was in the predicted direction, and it was also 

predicted to be small, so a non-significant result is not surprising.  

To investigate the second question, we tested a series of specific predictions from our model (see 

below), about how generalization given three examples at a certain level of specificity should differ from 

each other. A set of planned comparisons address this question by comparing the percentages of response at 

each level. Given 3 examples from the same subordinate-level category, the model predicts a sharp drop 

between subordinate level generalization and basic-level generalization (95% vs. 16%, p < .0001).  Given 3 

examples from the same basic-level category, the model predicts a sharp drop between basic-level 

generalization and superordinate-level generalization (91% vs. 4%, p < .0001).  Given 3 examples from the 

same superordinate category, the model predicts that generalization should include all exemplars from that 

superordinate category (94%, 91%, and 87%, n.s.).    

The similarity data are analyzed later in the paper, when we describe the fits of our Bayesian 

learning model.  The similarities will be used to construct the model’s hypothesis space.   

Discussion 

Adults clearly generalized differently on the one-example and the three-example trials.  With one 

example, they showed graded generalization from subordinate to basic-level to superordinate matches.  In 
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addition, adults showed a basic-level bias: they generalized to all the other exemplars from the same basic-

level category but much less to the superordinate category.  With three examples, adults’ generalizations 

were more all-or-none.  They restricted their generalizations to the most specific level that is consistent with 

the examples.  

Experiment 2 

Experiment 2 investigated how 3- and 4-year-old children learn words for subordinate, basic-level 

and superordinate categories.  Children were taught novel words for object categories and were asked to 

generalize these words to new objects.  As in Experiment 1, two factors were manipulated: the number of 

examples labeled (1 vs. 3) and the range spanned by the examples (e.g., three Dalmatians, three kinds of 

dogs, or three kinds of animals).   

Method 

Participants.  Participants were thirty-six 3- and 4-year-old children (mean age 4 years 1 month, 

ranged from 3 years 6 months to 5 years 0 months; approximately half girls/boys).  All participants were 

recruited from the Greater Boston area by mail and subsequent phone calls.  Most children came from a 

middle-class non-Hispanic white background with about 10% of Asian, African-American, and Hispanic 

infants.  The children received a token gift (i.e., a sticker) after the study.  Five children were excluded 

because of unwillingness to play the game with the experimenter.  English was the primary language spoken 

at home for all children. 

Materials.  The stimuli were the same 45 objects as in Experiment 1, but the children were 

presented with the real toy objects as opposed to photographs.   

 Design and Procedure.  Each child was randomly assigned to one of two conditions: the One-

Example condition or the Three-Example condition.  Children in the One-Example condition always saw 

one example of each word, while children in the Three-Example condition always saw three examples of 

each word.  Each child participated in a total of three trials, one from each of the three superordinate 

categories.  On each trial in the Three-Example condition, the examples spanned a different level of 

generality (subordinate, basic-level, or superordinate).  
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Children were introduced to a puppet, Mr. Frog, and were told that they were helping the puppet 

who speaks a different language to pick out the objects he wants.  The test array of 24 objects was randomly 

laid out in front of the child and the experimenter.  The experiment began with a dialog as follows.  The 

experimenter held out the puppet and said to the child, “This is my friend Mr. Frog.  Can you say `hello' to 

Mr. Frog?” [Child says “Hello.”]  “These are all of Mr. Frog’s toys, and he would like you to play a game 

with him.  Would you like to play a game with Mr. Frog?”  [Child says “Yes.”]  “Good! Now, Mr. Frog 

speaks a different language and he has different names than we do for his toys.  He is going to pick out some 

of them and he would like you to help him pick out the others like the ones he has picked out, okay?” [Child 

says “Okay.”]  Three novel words were used: “blick”, “fep”, and “dax”. 

   One-Example Condition. On each trial, the experimenter picked out an object from the array, e.g., a 

green pepper, and labeled it, “See? A blick.”  Then the child was told that Mr. Frog is very picky.  The 

experimenter said to the child, “Now, Mr. Frog wants you to pick out all the blicks from his toys, but he 

doesn't want anything that is not a blick.  Remember that Mr. Frog wants all the blicks and nothing else.  

Can you pick out the other blicks from his toys?”  The child was then allowed to choose among the 24 test 

objects to find the blicks and put them in front of Mr. Frog.  If a child only picked out one toy, the 

experimenter reminded him/her, “Remember Mr. Frog wants all the blicks.  Are there more blicks?”  If a 

child picked out more than one object, nothing more was said to encourage him/her to pick out more toys.  

At the end of each trial, the experimenter said to the child, “Now, let’s put all the blicks back and play the 

game again. Mr. Frog is going to pick out some more toys and he would like you to help him pick out others 

like the ones he picks, okay?” Then another novel word was introduced as before.   

Each child participated in three trials, each with an example drawn from one of the three 

superordinate categories: a Dalmatian (animal), a green pepper (vegetable), or a yellow truck (vehicle).  The 

order of the trials and the novel words used (“blick”, “fep”, and “dax”) were counterbalanced across 

participants. 

Three-Example Condition. On each trial, the procedure was the same as in the one-example trial 

with the following important difference. The experimenter first picked out one object, labeled it for the 
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child, e.g., “See? A fep.” Then she picked out two more objects, one at a time, and labeled each one for the 

child, e.g., “Look, another fep,” or “Look, this is a fep.”  Three factors – the superordinate category (animal, 

vegetable, and vehicle), the range spanned by the examples (subordinate, basic, superordinate), and the 

novel word used (“blick”, “fep”, and “dax”) – were crossed pseudorandomly and counterbalanced across 

participants.  Each level of each factor appeared equally often in the first, second, or third trial of the 

experiment.  

Results 

The patterns of generalization found were qualitatively similar to those found with adults in 

Experiment 1, and the quantitative analyses followed essentially the same logic.  Analyses were based on 

one-tailed t-tests with planned comparisons.  We collapsed across superordinate categories, novel words, 

and trial orders.  For each type of example set children were shown, they received a set of percent scores 

measuring how often they chose test items at each of three levels of generalization (subordinate, basic, 

superordinate).  The means of these scores across subjects are shown in Figure 6a.  Children in the One-

Example condition each received just a single set of scores, because their three trials all featured the same 

kind of example set. Children in the Three-Example condition each received three sets of scores, one for 

each trial, because each trial featured a different kind of example set (three examples clustering at the 

subordinate, basic or superordinate level).  Because no child chose any distractors, subsequent analyses did 

not include these scores. 

---------------------------------------------------- 

INSERT FIGURE 6 ABOUT HERE  

---------------------------------------------------- 

The same two questions as in Experiment 1 were addressed here with planned t-tests.  First, did 

children generalize differently in the 1-example trials compared with the 3-example trials in each case?  

Importantly, did they generalize differently given 1 vs. 3 virtually identical exemplars?  More specifically, 

did children show a significant threshold in generalization at the basic level in the 1-example trials, and did 

they restrict their generalization to the subordinate level in the 3-example trials?  Second, did the 3-example 
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trials differ from each other depending on the range spanned by the examples?  More specifically, did 

children restrict their generalization to the most specific level that was consistent with the set of exemplars?  

To investigate the first question, we compared the percentages of responses that matched the 

example(s) at the subordinate, basic-level, or the superordinate level.  On the one-example trials, 

participants chose more subordinate (85%) and basic-level matches (31%) than superordinate matches (3%) 

(p < .0001, for both comparisons).  In contrast, when presented with three very similar exemplars from the 

same subordinate category, participants chose more subordinate matches (83%) than either basic-level 

(13%) or superordinate matches (3%) (p < .0001, for both comparisons). Similar comparisons were made 

between 1 example and 3 basic-level or 3 superordinate-level examples. When presented with 3 examples 

from the same basic-level category, participants did not generalize more to the basic-level than the one-

example trials (31% vs. 47%, n.s.).  When presented with 3 examples from the same superordinate category, 

participants generalized more to both the basic-level and the superordinate level (31% vs. 53%, p < .001; 3% 

vs. 43%, p < .0001).      

To investigate the second question, we tested a series of predictions based on our model as in 

Experiment 1.   A set of planned comparisons address this question by comparing the percentages of 

response at each level. Given 3 examples from the same subordinate level category, the model predicts a 

sharp drop between subordinate level generalization and basic-level generalization (83% vs. 13%, p < 

.0001).  Given 3 examples from the same basic-level category, the model predicts a sharp drop between 

basic-level generalization and superordinate level generalization (47% vs. 15%, p < .0001).  Given 3 

examples from the same superordinate category, the model predicts that generalization should include all 

exemplars from that superordinate category (86%, 53%, and 43%).  Children’s performance is in broad 

agreement with the predictions.  

Discussion 

Three- and 4-year-old children’s performance was in broad agreement with our predictions.  On the 

1-example trials, they showed graded generalization.  Interestingly, they did not show a strong basic-level 

bias.  On the 3-example trials, the children modified their generalizations depending on the span of the 
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examples.  Their generalizations were consistent with the most specific category that included all the 

examples.  However, the children’s data were much noisier than those of the adults.  Several methodological 

reasons may account for these differences.  The overall level of response was much lower for children.  

Perhaps the task of freely choosing among 24 objects was too demanding for children of this age and some 

of them may be reluctant to choose more than a few objects.  Also, not all subordinate classes seemed to be 

equally salient or interesting to the children.  The Dalmatians, as a class, seemed to be unusually interesting 

to some children, perhaps because of their distinctive coloration or the fact that they came from a line of 

toys based on a currently popular children’s animated feature film.  The green peppers, as a class, seemed 

not very salient to some children, perhaps because they differed from other members of the same basic-level 

class only in their color (and their coloration was not nearly as striking as the Dalmatians).  

In the next experiment, we present children with each of 10 objects and ask for a yes/no response.  

This modification will ensure that all children provide us with judgement on each of the test objects.  We 

also changed two of the subordinate classes slightly, in order to equalize salience of the subordinates across 

the animals, vegetables, and vehicles.   

The critical prediction made by our Bayesian framework was whether the learner’s generalization 

function differed when labeling a single example vs. three independent examples.  However, given that each 

object was labeled once, the three-example trials contained three times as many labeling events as the one-

example trials.  Thus we are not able to tell if the learner kept track of the number of independent examples 

labeled or simply the number of labeling events (i.e., word-object pairings).  This is particularly important 

because some associative models (e.g., Regier, 2005; Colunga & Smith, 2005) have suggested that 

children’s word learning is built on keeping track of co-occurrences between words and object percepts.  To 

distinguish our Bayesian approach from conventional associative approaches, it is important to tease apart 

these possibilities.  In the next study, we equate the number of labeling events between the One-Example 

and Three-Example conditions by labeling the single example object in the One-Example condition three 

times, while each example object in the Three-Example condition is labeled just once.   

Experiment 3 
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This experiment sought to replicate and extend the results of Experiment 2 with slight modifications 

to the stimuli and two important methodological changes.  First, we equated the number of labeling events in 

the One-Example and the Three-Example conditions.  Second, instead of letting children choose among the 

24 target objects, the experimenter chose 10 of these objects and asked for the child’s judgment in each case.   

Method 

Participants. Participants were thirty-six 3- and 4-year-old children (mean age 4 years 0 months, 

ranged from 3 years 6 months to 5 years 0 months), approximately evenly divided by gender.  Participants 

were recruited as in Experiment 2.  

Materials. The stimuli were the same 45 objects as in Experiment 2, except that the Dalmatians 

were replaced by terriers, and the green peppers were replaced by chili peppers.  Members of each 

subordinate class were now distinguished from other objects in the same basic-level class by both shape and 

color features of moderate salience.  

Design and Procedure. The procedure was identical to that of Experiment 2, except for the 

following.  In the One-Example Condition, each object was labeled three times.  For example, the 

experimenter would pick out a green pepper, show it to the child, and say, “See? A fep.”  She would then 

put the pepper down on the floor and pick it up again, saying, “Look, a fep.”  She would it put down again 

and pick it up a third time, saying, “It’s a fep.”  The experimenter made sure that the child was following her 

actions so it was clear that the same pepper had been labeled three times. 

In the Three-Example Condition, each object was labeled exactly once. Again, the experimenter 

monitored the child’s attention to ensure that joint attention was established before the labeling event for 

each object. 

Although all 24 test objects were laid out in front of the child, the experimenter chose 10 of these 

objects to ask about.  The experimenter picked up each of the 10 objects and asked the child, “Is this a fep?”  

The target set included 2 subordinate matches, 2 basic-level matches, 4 superordinate-level matches, and 2 

distractors.   

Results 
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The main results of Experiment 3 are shown in Figure 6b.  A significance level of 0.05 was used in 

all statistical analyses.  Preliminary analyses found no effects of sex, the order of domain, and the order of 

target type.  Subsequent analyses collapsed over these variables. Only two children chose any of the 

distractors in this experiment on one trial, all analyses excluded the distractor scores. 

The same two questions as in Experiments 1 and 2 are addressed with planned t-tests.  First, did 

children behave differently in the 1-example trials compared with the 3-example trials? Importantly, did 

they generalize differently given 1 vs. 3 virtually identical exemplars?  Second, did the 3-example trials 

differ from each other depending on the span of the examples? 

To investigate the first question, we compared the percentages of responses that matched the 

example(s) at the subordinate, basic-level, or the superordinate level.  On the one-example trials, 

participants chose more subordinate (96%) and basic-level matches (40%) than superordinate matches 

(17%) (p < .001, for both comparisons).  In contrast, when presented with three very similar exemplars from 

the same subordinate category, participants chose more subordinate matches (94%) than either basic-level 

(6%) and superordinate matches (0%) (p < .0001, for both comparisons). Similar comparisons were made 

between 1 example and 3 basic-level or 3 superordinate level examples. When presented with 3 examples 

from the same basic-level category, participants generalized more to the basic-level than the one-example 

trials (75% vs. 40%, p < .005).  When presented with 3 examples from the same superordinate category, 

participants generalized more to both the basic-level and the superordinate level (88% vs. 40%, p < .0001; 

62% vs. 17%, p < .0001).      

To investigate the second question, we tested a series of predictions based on our model as in 

Experiments 1 and 2.  As can be seen in Figure 6b, with the modifications on methodology, children’s 

performance is very consistent with our predictions. Given 3 examples from the same subordinate level 

category, the model predicts a sharp drop between subordinate level generalization and basic-level 

generalization (94% vs. 5%, p < .0001).  Given 3 examples from the same basic-level category, the model 

predicts a sharp drop between basic-level generalization and superordinate level generalization (75% vs. 8%, 

 34



p < .0001).  Given 3 examples from the same superordinate category, the model predicts that generalization 

should include all exemplars from that superordinate category (94%, 88%, and 62%).   

Discussion 

With a simplified testing procedure, preschool children generalized new words in ways that looked 

more like the adults in Experiment 1. However, they still showed a much lower tendency for basic-level 

generalization given a single example, which suggests that adults’ strong tendency for one-shot basic-level 

generalization may reflect a convention acquired through extensive experience with learning and using 

words.  The differences in generalization between the One-Example and Three-Example conditions of 

Experiment 2 persisted (or became stronger) here, even though the number of labeling events was equated 

across conditions.  This finding suggests that preschool children make statistical inferences about word 

meanings which are computed over the number of examples labeled, not just the number of word-object 

pairings.  

Discussion of Experiments 

In order to test specific predictions of the Bayesian framework, our experiments investigated the 

effects of number of examples (1 vs. 3), span of examples presented to our participants (subordinate, basic, 

vs. superordinate levels), and number of labeling events (one object labeled three times vs. three objects 

labeled once each).  We also tested both adults and children.  Each of these experimental design features 

sheds new light onto the process of word learning. 

By varying the number of examples, we were able to examine the effects of multiple examples on 

generalization.  We found that word learning displays the characteristics of a statistical inference, with both 

adult and child learners becoming more accurate and more confident in their generalizations as the number 

of examples increased.  This effect was not the typical gradual learning curve that is often associated with 

statistical learning.  Rather, there was a strong shift in generalization behavior from one to three examples, 

reflecting the rational statistical principle that observing the span of three independent, randomly-sampled 

examples warrants a sharp increase in confidence about which hypothesis for generalization is correct.  Both 
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adult and child learners appear to be sensitive to “suspicious coincidences” in how the examples given for a 

novel word appear to cluster in a taxonomy of candidate categories to be named. 

By varying the span of examples, we found that labels for subordinate and superordinate categories 

may not be as difficult for children to learn as suggested by previous studies.  When given multiple 

examples, preschool children are able to learn words that refer to different levels of the taxonomic hierarchy, 

at least within the superordinate categories of animal, vehicle, and vegetable.  Special linguistic cues or 

negative examples are not necessary for learning these words. 

By varying the number of labeling events independent of the number of examples, we were able to 

explore the ontological underpinning of children’s word learning.  We found evidence that preschool 

children are keeping track of the number of instances labeled and not simply the number of co-occurrences 

between object-percepts and labels. Word learning appears to be fundamentally a statistical inference, but 

unlike standard associative models, the statistics are computed over an ontology of objects and classes, 

rather than over surface perceptual features. 

Lastly, we found an interesting difference between adults and preschool children in how likely they 

were to extend novel words from one example to other instances in the same basic-level category: adults 

showed much greater basic-level generalization than did children.  This is consistent with Callanan et al.’s 

(1994) finding that children do not show robust basic-level generalization when taught unfamiliar words.  

Our results are broadly consistent with Callanan et al., in that they suggest a basic-level bias may not part of 

the foundations for word learning.  Rather, such a bias may develop as children learn more about general 

patterns of word meanings and how words tend to be used.  Further research using a broader range of 

categories in the same experimental paradigm developed here will be necessary to establish a good case for 

this developmental proposal. If further research does support the notion that a basic-level bias develops 

through experience, we expect that this development could also be modeled as an instance of Bayesian 

learning, in which people come to realize that basic-level object labels are used much more frequently than 

subordinate or superordinate labels.   
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It is important to note a few caveats.  We have argued that in our experiments preschool children 

learned words for categories at multiple levels of the taxonomic hierarchy – superordinate, basic-level, and 

subordinate – but it is an open question whether children understand these categories as part of a 

hierarchically organized system of kinds.  Like most previous studies, we did not include an explicit test for 

the child’s understanding of class inclusion relations, which is often taken to be the ultimate test for 

understanding hierarchical structures.  Smith (1979) asked 4- to 6-year-old children inference questions 

based on class inclusion and found that 4-year-olds showed a fragile but statistically reliable understanding.  

It is possible that children simply use the span of perceptual similarity as a first approximation for larger 

versus smaller categories that are akin to a set of nested categories in the mature conceptual system.  This 

alternative possibility assumes that children may have a somewhat different hypothesis space from adults – 

instead of having a nested set of categories, they may have mapped the words onto regions of perceptual 

space (e.g., Shepard, 1987; Tenenbaum & Griffiths, 2001), some broad and some narrow.   

One indication that children may have had a somewhat different hypothesis space than adults is their 

pattern of generalization with superordinates. Given three examples that spanned a superordinate-level 

category, children chose superordinate matches most of the time, and far more often than with other 

example sets, but still less often than adults (62% of the time in Experiment 3, versus 87% in Experiment 1).  

There are several possible explanations for this finding, which could be explored in future work.  Children 

may simply have had a different tree-structured hypothesis space than adults – a stable hypothesis space 

with stable superordinate-level hypotheses that just happen not to include exactly the same objects as 

adults’.  Children could also have less stable hypothesis spaces.  There could be more variance across 

children in the hypothesis spaces they use, or each individual child might not have a single tree-structured 

hypothesis space so clearly articulated as adult learners might have.   Children might also need to acquire 

deeper knowledge about superordinate categories – for example, integrating their representation of the 

category animals with an intuitive theory of biology, or understanding the functional and social significance 

of vehicles  – before these categories can become stable hypotheses for generalizing word meanings.   
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Another potential concern is that in our experiments we used only relatively familiar categories.  It 

is possible that children had already acquired the superordinate or subordinate level terms and they simply 

translated those words into our nonsense labels during the experiments.  This is unlikely because Waxman 

(1990) found that only about half of her 4-year-old children knew the superordinate term “animal,” and both 

“vegetable” and “vehicle” are less commonly known to preschoolers.  In our sample, the 3-year-olds (who 

presumably were less likely to know these words) and the 4-year-olds did not behave differently on our task.  

Some of the subordinate-level concepts we used had an existing label, e.g., Bassett Hound or Dalmatian, 

whereas others did not, e.g., yellow truck or green pepper.  Thus it is unlikely that the children simply 

translated the new words into words they already know.  Still, future work using a broader range of 

categories and novel categories could help to clarify the generality of our findings.  Xu and Tenenbaum (in 

press) and Schmidt and Tenenbaum (unpublished data) have studied word learning with different sets of 

novel objects, each of which can be classified into a tree-structured hierarchy of object kinds, and found 

behavior consistent with the Bayesian framework we present here.   

Lastly, we stress that when we say these words are not too hard to learn from examples, we are not 

saying that all aspects of these words are easy to learn.  Both in our experiments and our model, we have 

only addressed word meaning in terms of extension, i.e., which entities the word refers to.  Other aspects of 

word meaning having more to do with the word’s intension, such as the essence of the concept labeled by 

the word, how that concept relates to a domain theory, and how it relates to other concepts, may not be so 

easily grasped from just a few examples.  (See Bloom (2000) for a discussion of the differences between 

extensions and intensions in word meaning.) In developing models based on statistical inference, it is most 

natural to begin by focusing on the extension of words, because that is the component of meaning with most 

directly measurable statistical consequences.  However, our framework is not limited to extensions. Other 

aspects of word meaning also have statistical consequences for how and when a word is likely to be used, 

and thus in principle could be learned from observations given an appropriate hypothesis space. 

If category labels at different levels of the conceptual hierarchy are not very difficult to learn, as we 

have suggested here, why is it that in young children’s early vocabulary we tend to see more basic-level 
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category labels?  This is, after all, a critical observation that motivated the standard picture of how children 

acquire kind terms at multiple levels of the taxonomy.  Several factors may be important in explaining the 

time lag between acquiring basic-level labels and subordinate and superordinate labels.  First, subordinate 

and superordinate labels may require multiple examples.  If each example is labeled on different occasions 

and spread out in time, children may forget the examples over time.  Second, subordinate- and 

superordinate-level category labels are used much less frequently in adult speech, so the relevant examples 

are harder to come by. Middle-class American parents tend to point to objects and label them with basic-

level terms.  Lastly, superordinates are often used to refer to collections (Markman, 1989), so children may 

be misled by the input in interpreting these words.  In our studies, we have presented children with a 

simplified learning situation in order to uncover the underlying inferential competence that guides them in – 

but is not exclusively responsible for – real world performance. 

Evaluating a Bayesian model of learning object-kind labels 

In this section we assess the quantitative fit between a Bayesian model of word learning and 

participants’ generalization judgments in the kind-label learning experiments just presented.  We also 

consider the predicted generalization patterns of several alternative models, including weaker versions of the 

full Bayesian approach as well as a number of non-Bayesian models intended to capture the essences of the 

major hypothesis-elimination and associative-learning approaches.  

Constructing the hypothesis space 

Based on participants’ similarity judgments in Experiment 1, we generated a hierarchical cluster tree 

to approximate the taxonomy of nested categories (Figure 7).  Each internal node of the tree corresponds to a 

cluster of objects that are on average more similar to each other than to other, nearby objects.  The height of 

each node represents the average pairwise dissimilarity of the objects in the corresponding cluster.  The 

length of the branch above each node measures how much more similar on average are that cluster’s 

members to each other than to objects in the next nearest cluster, i.e., how distinctive that cluster is. 

-------------------------------------------------- 

INSERT FIGURE 7 ABOUT HERE  
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Each of the main classes underlying the choice of stimuli corresponds to a node in the tree: 

vegetable (EE), vehicle (HH), animal (JJ), pepper (J), truck (T), dog (R), green pepper (F), yellow truck (G), 

and Dalmatian (D).  Most of these clusters are highly distinctive, i.e., well-separated from other clusters by 

long branches, as one would expect for the targets of kind terms.2 Other easily describable nodes include 

cluster U containing all and only the construction vehicles (tractor, bulldozer, and crane) or cluster II, 

containing all and only the mammals. The only clusters that do not appear to correspond to conceivably 

lexicalizable concepts are three defined only by subtle perceptual variation below the subordinate level: A, 

including two of the three Dalmatians; B, including two of the three green peppers, and E, including two of 

the three yellow trucks.  We take each cluster to correspond to one hypothesis in H, with the exception of 

these three clusters below the subordinate level.  In so doing, we are assuming that each learner maintains 

only a single hypothesis space, and that its structure does not change as new words are learned. We are also 

assuming that a single tree structure is sufficient to model the hypothesis spaces of all word learners.  While 

these assumptions greatly simplify modeling, none is a fundamental commitment of our theoretical 

framework, and we expect that they will need to be relaxed in future work.   

Computing numerical values for likelihoods and priors 

For learning common nouns under the taxonomic constraint, the geometry of the cluster tree 

suggests general-purpose procedures for computing both likelihoods and priors.  These methods are 

convenient for modeling purposes, but we view them as, at best, just a first approximation to the knowledge 

people actually bring to bear on this problem. The crucial geometrical feature is the height of node h in the 

tree, which is scaled to lie between 0 (for the lowest node) and 1 (for the highest node) and measures the 

average dissimilarity of objects within h.   

The likelihood of each hypothesis is a function of the size of its extension. While we do not have 

access to the “true” size of the set of all dogs in the world, or all vegetables, we do have access to a 

psychologically plausible proxy, in the average within-cluster dissimilarity or cluster height in the tree.  

Thus equating node height with approximate cluster size, we have for the likelihood: 
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if xi ∈ h for all i, and 0 otherwise.  We add a small constant ε > 0 to height(h) to keep the likelihood from 

going to infinity at the lowest nodes in the tree (with height 0).  The exact value of ε is not critical.  We 

generally find best results with ε around 0.05 or 0.1; the simulations in this paper use ε  = 0.05.  (In Figure 7, 

all nodes are shown at a height of 0.05 above their true height, reflecting this value of ε.) Larger values of ε 

may also be appropriate in situations where the sizes of the concepts are not apprehended so distinctly by the 

learner.  Likelihoods will be monotonically related to heights in the cluster tree for any finite ε > 0, but they 

become increasingly uniform (and hence uninformative) as ε increases. 

A preference for cluster distinctiveness in the prior can be captured by taking p(h) to be proportional 

to the branch length separating node h from its parent:  
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This measure is maximized for clusters of entities that have high average within-cluster similarity 

relative to their similarity to the most similar entities outside the cluster.  For example, in Figure 7, the class 

containing all and only the dogs (R) is highly distinctive, but the classes immediately under it (P) or above it 

(Z) are not nearly as distinctive; accordingly, R receives a much higher prior than P (proportional to 0.131 

vs. 0.023).  This example shows why a distinctiveness bias in the prior is necessary. In terms of the 

likelihood, hypothesis P (effectively, dogs with significant body area colored white) will typically be 

slightly preferred to hypothesis R (effectively, all dogs), because P is slightly smaller.  Yet the strong 

distinctiveness prior favoring R will ensure that this much more conceptually natural hypothesis receives the 
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higher posterior probability when a learner observes random examples of dogs (which will tend to fall under 

both hypotheses).     

In general, distinctiveness will be high for basic-level categories, but a prior probability based on 

distinctiveness is not the same thing as a basic-level bias.  Distinctiveness may also be high for other 

conceptually natural clusters, such as superordinate or subordinate categories.  In Figure 7, the superordinate 

categories are significantly more distinctive than any other categories, which accords with the intuition that 

most fundamental differences between contrasting ontological categories occurs at the superordinate-level 

(e.g., animal versus vehicle), rather than at the basic or subordinate-levels (e.g., dog versus cat, or Dalmatian 

versus terrier).  Independent of this general preference for distinctiveness, people may also have a preference 

to map new words onto basic-level categories (Markman, 1989; Golinkoff, Mervis & Hirsh-Pasek 1994).  

The existence of a basic-level bias in children’s learning is a matter of controversy (Callanan et al., 1994; 

Waxman, 1990), but the original studies of Rosch et al. (1976) certainly provide strong reasons to think that 

such a bias would be useful, over and above the preference for distinctiveness we have already introduced.  

Rosch et al. (1976) found that in spontaneous labeling of objects, adults almost always use basic-level 

names.  This preference was much more extreme than the other basic-level preferences Rosch et al. (1976) 

reported based on nonlinguistic (perceptual or motor-action) criteria, which suggests that in learning kind 

labels, it would be appropriate to adopt a basic-level bias over and above a general bias towards more 

natural (e.g., more distinctive) concepts.  Note that this basic-level bias does not reflect learners’ beliefs 

about which word meanings are more natural, but rather their beliefs about how words (specifically, kind 

labels) tend to be used.  The latter belief, as Rosch showed, is strongly supported in naming statistics. The 

former belief would not be statistically valid: the majority of kind labels do not in fact pick out basic-level 

concepts, because there are many more subordinate kinds than basic-level kinds that receive labels. 

In order to test the utility of this sort of basic-level bias in word learning, we will consider two 

versions of our model: one that contains no preference to map words onto the basic level other than as 

instantiated in the distinctiveness prior (Equation 7), and one that contains an extra bias in the prior 

probability for just those hypotheses corresponding to basic-level words in English: “dog”, “truck”, and 
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“pepper” in Figure 7.  For those hypotheses, the basic-level bias is implemented by replacing p(h) with β 

times its value given in Equation 7, where β is a single free numerical parameter that will be adjusted to 

provide the best fit to the data.3  

Model results  

 We first consider the basic Bayesian model using the distinctiveness prior, Equation 7. Figure 8a 

compares p(y ∈ C|X) computed from this model with the generalization judgments of our adult participants 

(Figure 5 and 8d), averaged across participants, superordinate classes (animal, vehicle, vegetable), and test 

items within a given level of generalization.  On the averaged data shown in Figure 8d, the model achieves a 

reasonable quantitative fit (r = 0.89).4  It also captures the main qualitative features of the data: graded 

generalization given one example, and more all-or-none, rule-like generalization at the level of the most 

specific consistent natural concept, given three examples.  However, there are also several differences 

between the model’s generalizations and people’s judgments: the model produces too little generalization to 

basic-level matches given one example or three subordinate examples, and too much generalization to 

superordinate matches given three basic-level examples.   

-------------------------------------------------- 

INSERT FIGURE 8 ABOUT HERE  

--------------------------------------------------- 

Figure 8b shows the fit of the Bayesian model after incorporating a bias in the prior that favors the three 

basic-level hypotheses.  The strength of the basic-level bias is a free parameter, here set to β  = 10.  With 

this one free parameter, the model now provides an almost perfect fit to the average data (r = 0.99).  All of 

the main qualitative trends are captured, including those not accounted for by the Bayesian model without a 

basic-level bias (in Figure 8a).  These results suggest that, at least for adults, hypotheses for word learning 

are biased specifically towards basic-level object categories, over and above a general preference for more 

distinctive categories that was captured in the branch length prior (Equation 7 and Figure 8a).   

 43



A different picture emerges when we compare these two versions of the Bayesian model with 

preschool-age children’s generalizations (Experiment 3; Figures 6b and 8c).  In some ways, children’s 

performance looks more like the Bayesian model’s predictions without the basic-level bias, particularly in 

the shift from one example to three subordinate examples.  Correlation coefficients for the two models are 

similar (r = 0.91 without the basic-level bias, r = 0.89 with the basic-level bias).  Because the additional 

parameter β does not contribute significantly to the variance accounted for, and leads to a fit that is 

qualitatively worse in some ways, these results suggest that child word learners may not have the strong 

basic-level bias that adults exhibit.  Their tendency to extend new words to basic-level matches is much 

weaker than adults, and may simply be explained as the combination of Bayesian hypothesis averaging 

(Equation 3) with a general preference for hypotheses corresponding to distinctive categories (Equation 7).  

We return to this issue in the discussion below.   

Comparison with other models 

Figure 9 illustrates respectively the complementary roles played by the size principle (Equations 5 

and 6) and hypothesis averaging (Equation 3) in the Bayesian framework.  If instead of the size principle we 

weight all hypotheses strictly by their prior (including the basic-level bias), Bayes reduces to a similarity-

like feature matching computation that is much more suited to the generalization gradients observed given 

one example than to the all-or-none patterns observed after three examples (Figure 9a).  Mathematically, this 

corresponds to replacing the size-based likelihood in Equations 5 and 6 with a simpler measure of 

consistency: p(X|h) = 1 if the examples X are consistent with the hypothesis h (i.e., xi ∈ h for all i), and 

p(X|h) = 0 otherwise. Tenenbaum and Griffiths (2001) called this approach Weak Bayes, because it uses only 

a weak binary measure of consistency in the likelihood rather than the strong assumption of randomly 

sampled examples implicit in using the size principle.  Essentially this algorithm has been proposed by 

Mitchell (1997), Haussler et al. (1994), and Shepard (1987). 

-------------------------------------------------- 

INSERT FIGURE 9 ABOUT HERE  
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If instead of averaging the predictions of all consistent hypotheses we base generalization on just the 

single most probable hypothesis, Bayes reduces to an all-or-none rule-like computation.  Priors (again 

including the basic-level bias) and likelihoods cooperate to rank hypotheses, but only the highest-ranking 

hypothesis – rather than a probability distribution over hypotheses – is used in generalization.  

Mathematically, this corresponds to replacing hypothesis averaging in Equation 3 with a simpler decision 

rule: p(y ∈ C|X) = 1 if y ∈ h*, and 0 otherwise, where h* is the hypothesis with maximal posterior 

probability p(h|X) (in Equation 2).  This approach is called Maximum A Posteriori Bayes, or MAP Bayes for 

short.  As Figure 9b shows, MAP Bayes captures the qualitative trends in how adults and children generalize 

from multiple examples, including the restriction of generalization after 3 subordinate examples have been 

observed.5 However, it does not capture the graded nature of generalization from a single example.  It also 

does not capture the increasing confidence in basic-level generalization that comes from seeing three basic-

level examples; unlike both adults and children, MAP Bayes makes exactly the same generalizations from 

three basic-level examples as it does from just a single example.  

-------------------------------------------------- 

INSERT FIGURE 10 ABOUT HERE  

---------------------------------------------------  

Figure 10 shows the predictions of four alternative learning models. None of these models have 

been specifically proposed for word learning, but they are generic approaches from the literature on 

computational models of learning and generalization, and they are representative of previous suggestions for 

how word learning might be viewed computationally.  None are explicitly Bayesian, but to varying degrees 

they correspond to the two special cases of Bayesian learning shown above.  Figure 10a presents the 

predictions of a simple exemplar-similarity model, in which p(y ∈ C|X) is computed by averaging the 

similarity of y to each exemplar in X.  (We use the mean similarity judgments of the adult participants in 
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Experiment 1, normalized to a 0-1 scale.)  For each set of examples the generalization function is scaled 

linearly to have a maximum at 1.   

Figure 10b shows the predictions of an alternative approach to exemplar similarity, inspired by 

proposals of Goldstone (1994) and Osherson et al. (1990), in which p(y ∈ C|X) is computed by taking the 

maximum similarity of y to all exemplars in X.  Like Weak Bayes, the pure hypothesis-averaging version of 

the Bayesian model shown in Figure 9a, both exemplar-similarity models give a soft gradient of 

generalization from one example but fail to sharpen generalization to the appropriate level given three 

examples. 

More flexible similarity-based models of category learning that incorporate selective attention to 

different stimulus attributes (e.g., Kruschke, 1992) might be better able to accommodate our data, but not 

without major modification.  These models typically rely on error-driven learning algorithms, which are not 

designed to learn how broadly they should generalize from just one or a few positive examples without any 

negative examples, and low-dimensional spatial representations of stimuli, which are not suited to 

representing a broad taxonomy of object kinds. 

Several authors have suggested that associative or correlational learning algorithms, perhaps 

instantiated in neural networks, can explain how children learn the meanings of words (Regier, 1996, 2003; 

Colunga & Smith, 2000; Smith & Gasser, 1998).  It is not possible here to evaluate all extant correlational 

learning algorithms, but we do consider the standard approach of Hebbian learning (Hertz, Krogh, and 

Palmer, 1991). Figure 10c shows the predictions of a Hebbian learning network that is matched as closely as 

possible in structure to our Bayesian models.  The Hebbian model uses input features corresponding to the 

same hypotheses used in our Bayesian models, but instead of evaluating and averaging those hypotheses 

with the machinery of Bayesian inference, it uses the Hebb rule to compute associative weights between 

each input feature unit and an output unit representing the occurrence of the novel word to be learned (e.g., 

“fep”).  This network produces generalization patterns very much like those produced by the exemplar-

similarity models (Figures 10a,b) or weak Bayes (Figure 9a), capturing something of the graded character of 
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one-shot generalization but failing to account for how generalization sharpens up to the appropriate level 

after seeing three examples.  

The similar predictions of these various models reflect two underlying computational 

commonalities.  First, learning in the Hebbian network is strictly based on the frequency with which input 

features occur in the observed examples: each exemplar leaves a trace of its feature values in the weights 

connecting input features to the output unit, and the final pattern of generalization is proportional to the 

average of the generalization (or “similarity”) gradients produced by each exemplar individually.  Second, 

all of these models fail to converge to the appropriate level of specificity given multiple examples, because 

they all lack the size principle for re-weighting multiple consistent hypotheses to prefer the hypothesis most 

likely to have produced the observed examples.  When the Hebbian learning network is presented with 

multiple examples in the same subordinate category (e.g., three Dalmatians), the correlation between the 

output unit and input features specific to Dalmatians is no greater than the correlation between output and 

input features that apply to all dogs, or all animals, because every Dalmatian exemplar activates the dog and 

animal units as well as the Dalmatian units. Because these correlations are independent of the number of 

examples observed, the Hebbian model cannot explain why generalization beyond the subordinate concept 

decreases as more examples lying strictly within the subordinate are observed (e.g., why seeing three 

Dalmatian exemplars leads to lower generalization to other dogs, relative to seeing just one Dalmatian 

exemplar).  The same problem afflicts more powerful associative learning mechanisms, such as standard 

neural networks trained using backpropagation of errors (Rumelhart, Hinton & Williams, 1985), or the 

recent associative models of word learning (Colunga & Smith, 2005; Regier, 2003, 2005), which are also 

defined solely in terms of the statistics of input-output co-occurrence.   

The Hebb rule, or other associative learning algorithms, could be modified to include some version 

of the size principle.  For instance, we could allow learning rates to vary for different input features as a 

function of feature specificity.  Such a move might allow Bayesian and associative models of word learning 

to interact productively.  Our point here is not that connectionist models of word learning are untenable, but 

rather that generic associative learning mechanisms based purely on correlations between observable 
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features are not sufficient to explain how children or adults learn the meanings of new words.  More 

powerful mechanisms of statistical inference, such as our Bayesian framework, are necessary. 

Figure 10d shows the predictions of a standard learning algorithm in the hypothesis elimination 

paradigm, known as the subset principle (Berwick, 1986; Pinker, 1989; Siskind, 1996; see also Wexler and 

Cullicover (1980) for a discussion of subset-based learning in syntax acquisition, and Bruner et al., 1957, 

and Feldman, 1997, for analogous proposals in category learning).  The subset principle ranks all hypotheses 

by inclusion specificity: hypothesis hi ranks higher than hypothesis hj if hj strictly includes hi, that is, if hj 

includes every object in hi as well as at least one other object.  A subset learner eliminates all hypotheses 

inconsistent with the observed examples and then generalizes in an all-or-none fashion according to the 

highest-ranking remaining hypothesis – the most specific hypothesis consistent with the observed examples.  

This approach is intuitively sensible and produces reasonable generalizations from multiple examples, but is 

far too conservative given just a single example. 

The patterns of generalization from multiple examples under the subset principle are essentially 

identical to those of MAP Bayes.  Both approaches use just a single all-or-none hypothesis to guide 

generalization, chosen based on inclusion specificity or posterior probability, respectively.  These two 

criteria often converge because one component of posterior probability is likelihood, and under the size 

principle the likelihood is proportional to specificity. The posterior probabilities of MAP Bayes also depend 

on the priors, which exert their strongest role when only one example has been observed.  Here, the basic-

level bias in the prior accounts for why MAP Bayes generalizes differently than the subset principle on one 

example – to all basic-level matches rather than to just the subordinate matches.  The more examples have 

been observed, the stronger the influence of the specificity preference in the likelihood over the prior, and 

the more likely it is that MAP Bayes and the subset principle will coincide. In the limit of infinite data, MAP 

Bayes (as well as our full Bayesian models) become equivalent to maximum likelihood, which under the 

size principle is also equivalent to subset learning.  Thus the subset principle can be justified as a rational 

statistical inference when large numbers of examples have been observed, and it is precisely this case of 

“learnability in the limit” that has been the focus of most previous uses of the subset principle.  Our 
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Bayesian models, based on the size principle, can be viewed as extensions of the subset principle to explain 

the dynamics of learning from just one or a few examples – arguably the most important regime of learning 

for many real-world words and concepts. More broadly, various phenomena of entrenchment and 

conservatism in language acquisition (Braine & Brooks, 1995; Goldberg, 2003) may be more consistent 

with our softer, statistical model than with the hard commitments of the subset principle.   

Summary 

In sum, our inductive models may be seen as probabilistic generalizations of the classic deductive 

approach to word learning based on hypothesis elimination.  As in hypothesis elimination accounts, a 

constrained hypothesis space makes possible meaningful generalization from examples.  But in contrast to 

these accounts, hypotheses are not just ruled in or out.  Using Bayes’ rule, they are assigned a probability of 

being correct based on how well they explain the pattern of examples observed.  The assumption that the 

observed examples are randomly sampled from the word’s extension provides a powerful statistical lever, 

yielding strong but reliable generalizations from just a few examples.  Our experiments in the domain of 

words for object categories showed that people’s patterns of generalization are qualitatively and 

quantitatively consistent with the Bayesian model’s behavior, but not with standard models based on 

hypothesis elimination, exemplar-similarity, or associative or correlational learning. In particular, the 

Bayesian approach naturally explains the spectrum of generalization behavior observed given one or a few 

positive examples.  Graded generalization with one example follows straightforwardly from the mechanism 

of hypothesis averaging, while the sharpening from one to three examples follows straightforwardly from 

the size principle.  Bayesian inference may thus offer the most promising framework in which to explain the 

speed and success of fast mapping.    

Could other models from the hypothesis-elimination or associative traditions be extended to 

accommodate our findings?  Not easily we think, and not without positing additional machinery that either is 

inelegant or fundamentally departs from the original spirit of these approaches.  Using the deductive 

framework of hypothesis elimination, in order to explain the sharpening of generalization from 1 to 3 

examples, one would have to posit a basic-level bias just for the 1-example case and some version of a 
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subset bias (choosing the smallest category consistent with the examples) just for the 3-example case.  

Presumably we do not want to have to posit a specific selection principle for each particular case.  In 

addition, positing a basic-level bias makes subordinate and superordinate kind-labels difficult to learn.  

Since children do eventually learn names at these levels, hypothesis elimination approaches would have to 

posit further provisions, such as overriding the basic-level bias with time, or incorporating some other 

linguistic cue to the appropriate level of generalization for a label.   

As mentioned earlier, it might be possible to extend an associative model of word learning to 

account for the range of generalization behavior we observed, by building the size principle and hypothesis 

averaging into its learning and activation rules.  However, even those extensions might not be sufficient.  

Computations in associative models are typically defined not over a core ontology of objects and object-kind 

concepts, but over relationships between perceptual features: e.g., the visual features of objects and the 

sound features of words (Regier, 2005).  This focus on learning correlations at the level of perceptual 

features could stand in the way of appropriate generalization.  Our Bayesian learner sees a critical difference 

between one object labeled three times and three distinct but perceptually highly similar objects each labeled 

once; so do four-year-old children, as we showed in Experiment 3.  Although both cases provide three 

observations of word-object pairings, and the object features are almost the same in both cases, the latter 

case provides three independent samples of objects in the concept, while the former case provides only one 

independent sample.  Thus only the latter case provides strong evidence about the extent of the concept, and 

only in the latter case do children restrict their generalization to just objects in the same subordinate 

category.  For an associative learner to appreciate this difference, it would need to gain not only something 

like the size principle in its learning rule, but also some kind of ontology that understands about the 

differences between objects, percepts, and categories (e.g., Keil, 1989; Spelke, 1990).  It would also need to 

build some kind of taxonomic hierarchy of object-kind categories on top of that ontology.  Although these 

capacities are not currently part of conventional associative models, they might not be incompatible with a 

more general, predictive-learning view of associationism (Smith, 2000).  Still, adding these capacities would 
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seem to abandon a core associationist claim that word learning can be explained without sophisticated 

inferential mechanisms or sophisticated representations of the world (e.g., Landau, Smith, & Jones, 1996).  

Extending the Bayesian framework 

Our models here have focused on the inductive problem of word learning in its simplest form: 

learning the meaning of a single new word in a fairly restricted hypothesis space, given observations of how 

that word is used to label one or more entities in the world.  We have tried to keep our models as simple as 

possible, to capture some fundamental insights about how the meanings of important classes of words may 

be learned from very limited data.  But word learning in the real world is considerably more complex, in 

terms of the kinds of hypothesis space the learners entertain, the kinds of inferences required, and the kinds 

of data brought to bear on those inferences.  Word learning is also a dynamic process, in which knowledge 

gained from previous word learning experience – both the specific meanings of particular words and 

abstractions about the general principles of word meaning and usage – leads to crucial constraints on future 

word learning (e.g., Baldwin, 1993; Bloom, 2000; Gleitman, 1990; Markman, 1989; Regier, 2003; 

Tomasello, 2001).  This section briefly sketches some of the possible avenues for extending our models to 

handle these complexities.  

A differently structured hypothesis space: objects and solid substances   

The fundamental problem of induction in word learning is how to choose among the multiple 

potential concepts – hypotheses for word meanings – that are consistent with the observed examples of a 

new word.  So far we have addressed this problem in the context of learning count nouns for object kinds, 

where multiple consistent hypotheses come from hierarchically nested kind-concepts. In learning other sorts 

of words, different kinds of inductive ambiguities can arise when hypotheses overlap in other ways. Here we 

sketch a Bayesian analysis of one such case, cross-cutting object kinds and solid substance kinds, showing 

how the same general framework we developed for learning kind-labels applies even when the relevant 

concepts do not conform to a nested hierarchy.    

Consider the “furniture store” context raised in the introduction.  The entities in a furniture store 

may be referred to in terms of either their object category, e.g., “chair”, “table”, “shelf”, “vase”, or the 
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material they are made out of, e.g., “wood”, “plastic”, “metal”, “stone”.  More generally, any solid entity 

may be construed in at least two modes, as an object of a particular kind or as the solid substance(s) that 

comprises it, and words are available to refer to either of these two modes.  Learning words for solid entities 

thus poses a challenge of learning with overlapping hypotheses – but not nested hypotheses.  Object-kind 

categories cross-cut solid-substance categories, with each kind of object realizable in many different 

substances, and each substance capable of taking on many different shapes (Figure 2). 

Prasada, Ferenz and Haskell (2002) explored the conditions under which people would construe a 

solid entity in terms of an object-kind or substance-kind concept, when both cross-cutting hypotheses were 

available.  They showed people solid entities composed of unfamiliar materials, with either regular shapes or 

complex irregular shapes, and asked whether they would prefer to call one of these entities “a blicket” or 

“some blicket”.  Choosing “a blicket” suggests that “blicket” refers to an object category, while choosing 

“some blicket” suggests a substance kind.  Prasada et al. found that given a single regularly-shaped entity, 

people tended to choose an object category, while given a single irregularly-shaped entity, people tended to 

choose the substance interpretation.  Inferences given multiple examples were generally consistent with 

these single-example cases, with one interesting exception.  When people were shown multiple essentially 

identical objects, each with the same complex irregular shape and novel material, their preference for 

labeling an object in this set switched from a substance interpretation to an object interpretation.   

Our Bayesian framework can explain these inferences, if we assume that people are treating the 

examples given as random samples from one of two hypotheses for the meaning of the novel word “blicket”, 

an object-kind category or a substance category.  The goal is to infer which hypothesis is more probable 

given the examples observed. Technical details are beyond our scope here, but there are several basic 

assumptions from which the results are derived.  First, each object category is organized around a 

prototypical shape. Second, object categories with regular shapes should have higher priors than substance 

categories, which in turn should have higher priors than object categories with irregular shapes.  This is 

consistent with English word frequencies, which are higher for regularly-shaped object category labels than 

for material or irregularly-shaped object category labels (e.g., Landau, Smith, & Jones, 1988; Bloom, 2000).  
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Third, there are more conceptually distinct shapes that support object categories than there are material 

properties that support substance categories. Thus the effective size of each object-kind hypothesis is smaller 

than each substance hypothesis, and it is more of a suspicious coincidence to observe three randomly 

sampled entities with the same novel shape than with the same novel material.  Speakers of English do tend 

to find more salient and potentially nameable differences among object shapes than among material 

substances, but there are also cross-linguistic differences (Imai and Gentner, 1997).   

Together, these ingredients allow us to explain Prasada et al’s finding of a shift from a substance-

based interpretation for the novel word given one irregularly-shaped example, to an object-based 

interpretation given three essentially identical examples with the same irregular shape and material. The 

prior initially favors the substance interpretation, but the shift in generalization with multiple examples 

comes from detecting a suspicious coincidence – a reflection of the size principle in the likelihood term.  It 

would be a strong coincidence to observe three random samples all with the same irregular shape if the 

novel word is intended to label a substance kind, which suggests that an object-kind construal is more likely 

to be correct. 

Prasada et al. (2002) interpret their findings in similar terms, arguing that people will be more likely 

to interpret an entity as an instance of an object kind if its form appears non-arbitrary.  This interpretation 

also explains a further finding of theirs, that a single entity with an irregular shape can be construed as an 

instance of an object kind if that shape is shown to have functional significance – that is, in another sense, if 

its shape appears not to be a coincidence.  By framing these interpretations explicitly in terms of statistical 

inference, as we do, we can see how they reflect more general rational inferential mechanisms at work in 

understanding and learning the meanings of words.  The same mechanisms that underlie people’s ability to 

infer the appropriate scope or range of generalization, in learning names for hierarchically nested categories, 

also support the ability to infer the appropriate directions or dimensions for generalization, where multiple 

plausible hypotheses cross-cut each other.  Recent work has shown how to extend this Bayesian approach to 

learning other aspects of linguistic meaning, using differently structured hypothesis spaces appropriate for 
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learning verb frames (Niyogi, 2002), color terms (Dowman, 2002), or principles of anaphora resolution 

(Regier and Gahl, 2004).  

Transforming the likelihood function 

In the basic Bayesian framework presented above, any information about the meaning of a new 

word contributes through its influence on either the likelihood or the prior.  By changing or expanding on 

one or both of these terms, we can address more complex kinds of inferences or incorporate additional 

sources of constraint on the learner’s inferences. 

Other sources of input.  Earlier we mentioned two sources of information about word meaning that 

we did not explicitly incorporate into our formal analyses: negative examples – examples of entities that a 

word does not apply to – and special linguistic cues that relate the meaning of the new word to familiar 

words – as in saying, “This is a Dalmatian.  It’s a kind of dog.”  Although we have focused above on 

learning from positive examples without special linguistic cues, either negative examples or relational 

linguistic cues could sometimes be crucial in inferring the scope of a new word’s extension. Our Bayesian 

framework can naturally accommodate these sources of information through straightforward modifications 

to the likelihood function.  We can assign zero likelihood to any hypothesis that includes one or more 

negative examples, essentially treating negative examples as a deductive constraint on candidate word 

meanings.  A cue such as “This is a Dalmatian.  It’s a kind of dog.” can also be treated as a deductive 

constraint, by assigning zero likelihood to any hypothesis for “Dalmation” that is not contained within the 

extension of the word “dog.”  A Bayesian learner could then rationally infer a subordinate meaning for the 

new word “fep”, given just one positive example of a “fep” (e.g., a Dalmatian), and either of these two 

additional sources of input – a negative example (e.g., a Labrador that is not a “fep”), or a relational cue in 

language (e.g., “Feps are a kind of dog”).  

Theory-of-mind reasoning and sensitivity to sampling. A vital source of information about word 

meaning comes from theory-of-mind reasoning (e.g., Baldwin, 1991, 1993; Bloom, 2000; Tomasello, 2001).  

The fact that a certain kind of object can be labeled with a certain word is not just a simple perceptual 

feature to be associated with the corresponding object concept.  Words are tools used by intentional agents 
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to refer to aspects of the world, and most examples of words that a learner observes are the consequences of 

intentional acts of reference.  Inferences based on theory-of-mind reasoning are often put in opposition to 

statistical inferences about word meaning (Bloom, 2000; Regier, 2003), when the latter are construed as 

bottom-up associative processes.  But in the top-down, knowledge-based approach to statistical inference 

that we propose here, theory-of-mind considerations could play a critical role.  Making statistical inferences 

about the meanings of words from examples may demand from the learner, in addition to other abilities, a 

sensitivity to the intentional and epistemic states of the speakers whose communicative interactions produce 

the examples observed.  This sensitivity may enter into our Bayesian framework in specifying the sampling 

assumption that determines the appropriate likelihood function to use.   

Although we have not yet explored our framework’s predictions in settings with strong theory-of-

mind demands, we have tested whether children and adults are sensitive to the sampling process generating 

the examples that they see labeled, and whether they adjust their likelihoods accordingly.  Xu and 

Tenenbaum (in press) studied generalization for novel object-kind labels in two conditions, one in which the 

labeled examples appeared to be sampled randomly from the set of objects the word applies to, and another 

in which essentially the same examples were observed, but they were clearly not randomly sampled from the 

word’s extension.  The stimuli were simple novel objects, generated by a computer drawing program. As in 

the studies reported above, the objects could be classified at multiple levels of a clear, salient hierarchy of 

classes.  The “teacher-driven” condition was similar to the 3-subordinate trials of the experiments above.   

The experimenter pointed to an object and said to the child, “This is a fep!” Then she pointed to two distinct 

(but very similar-looking) objects, from the same subordinate category, and labeled each one “a fep.”  Here 

it is reasonable (to a first approximation) to treat these examples as random samples of feps. In the “learner-

driven” condition, however, after the first labeled example was chosen by the experimenter, she said to the 

child, “Can you point to two other feps? If you can get both of them right, you will get a sticker.”  In this 

case, children were motivated to choose two other objects from the same subordinate category in order to 

get a sticker, both of which were labeled as correct by the experimenter. The children in the learner-driven 

condition received essentially the same data as the children in the teacher-driven condition.  However, in the 

 55



learner-driven condition, the three examples cannot be treated as a random sample drawn from the word’s 

extension, since the child does not know the meaning of the novel word (and is in fact trying to choose 

objects that are as similar to the one labeled by the experimenter).   

Our results showed that both adults and preschoolers were sensitive to the sampling conditions.  In 

the teacher-driven condition, we replicated our results from the current experiments – the learners restricted 

their generalization of the novel word to other subordinate exemplars.  In the learner-driven condition, 

however, both adults and children generalized more broadly, to the basic-level category that included these 

examples.  This is just what a Bayesian analysis would predict in a situation where the examples to be 

labeled are sampled independently of the meaning of the word (Xu and Tenenbaum, in press).  The 

likelihood, instead of reflecting the size principle, now becomes simply a measure of consistency: it is 

proportional to 1 for hypotheses consistent with the labeled examples, and 0 for all inconsistent hypotheses.  

Without an increasing preference for smaller hypotheses, a Bayesian learner will maintain the same basic-

level threshold of generalization as additional examples are observed beyond the first, as long as they are all 

consistent with the same set of hypotheses.   

This sensitivity to sampling conditions is a distinctive feature of our Bayesian approach.  It is not 

predicted by either traditional associative or deductive accounts of word learning, because they do not view 

word learning as fundamentally a problem of making statistical inferences from samples to underlying 

explanatory hypotheses.  Associative approaches typically embody some implicit statistical assumptions, but 

they do not make these assumptions explicit and grant learners the power to make inferences about the 

sampling process.  They thus forgo not only an important aspect of rational statistical inference, but also an 

important contribution of intentional reasoning to the word learning process.    

Transforming prior probabilities  

The effects of previously learned words. There are several ways in which word meanings learned 

previously can constrain the meanings of new words to be learned.  One way is through the development of 

abstract syntax-semantics mappings, such as a bias to map count nouns onto object kinds and mass nouns 

onto substance kinds (Colunga & Smith, 2005; Kemp et al., in press). Another way is through lexical 
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contrast, an assumption that the meanings of all words must somehow differ (Clark, 1987).  Both of these 

influences can be captured in a Bayesian framework by modifying the learner’s prior probabilities. Although 

the technical details are beyond the scope of this paper, here we sketch a Bayesian analysis for lexical 

contrast.   

Mutual exclusivity is one simple form of lexical contrast: a constraint that each entity has only one 

label, and thus no two words can have overlapping extensions (Markman, 1989). The simplest way to 

capture mutual exclusivity in our framework is in the prior. If mutual exclusivity is assumed to be a hard 

constraint, we simply set the prior to zero for any hypothesis about the extension for a new word that 

overlaps the extension of a previously learned word. If mutual exclusivity is taken to be only a soft bias 

rather than a hard constraint, then the prior probability for hypotheses with extensions overlapping those of 

known words could be set to some fraction of its default value. Regier (2003) suggests an alternative way 

that mutual exclusivity could enter into a Bayesian analysis, via an alternate formulation of the likelihood.  

Mutual exclusivity could be useful in early stages of word learning, but it excludes all cases of 

meaning overlap we have studied here and makes it impossible to learn word meanings like animal, 

Dalmatian, pet, and so on, just for the sake of learning the one basic-level kind term “dog”.  Clark’s 

principle of contrast (Clark, 1987) is a weaker version of lexical contrast that is more suited to the mature 

lexicon: we assume that no two words have exactly the same meaning, although their extensions may 

overlap in any way other than complete identity.  Formally, this principle could be implemented just like 

mutual exclusivity, by setting the prior probability of any hypothesis that corresponds to the extension of a 

known word to zero, or to some small fraction of its default value if a softer bias is called for.   

Our analysis of lexical contrast effects has so far assumed a highly idealized scenario, in attributing 

to the learner a completely fixed lexicon of previously learned words.  In practice, learners will be learning 

many words at a time, with varying degrees of experience and confidence in meaning.  A more realistic 

Bayesian formulation of the word learning problem would construe the hypotheses and data as language-

wide structures rather than learning individual word-concept mappings.  The learner would evaluate 

hypotheses about possible sets of word-concept mappings for the entire language, based on the full body of 
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data for all words in the language seen to date.  The size principle in the likelihood would still apply 

separately for each word.  The prior over candidate lexicons might incorporate all the factors discussed so 

far, including a principle of contrast and a bias to map words onto a priori natural and distinctive concepts.  

Directly implementing this language-wide approach would be computationally intractable, but some kind of 

online approximation could usefully describe the trajectory of large-scale vocabulary acquisition. 

Open issues 

Although our theoretical framework aims for generality, many important questions of word learning 

are beyond its current scope.  Here we sketch several of these open questions.   

First, we have emphasized the phenomenon of fast mapping in both adults and children, showing 

how our Bayesian models naturally give rise to very efficient learning from just a few examples.  But many 

researchers have suggested that very early word learning is a fundamentally different kind of process.  It is 

often characterized as a slow and laborious enterprise (e.g., Dromi, 1987; Golinkoff et al., 1994).  Children 

between 12 and 18 months require many exposures to a single word in order to learn it (but see Woodward 

et al., 1994), and sometimes words appear to drop out of their lexicon.  It is unclear why very early word 

learning appears so much less efficient than later stages, and how that reflects on the applicability of our 

Bayesian framework to the earliest stages of word learning.   

There are at least four possible reasons why word learning in the youngest children might not look 

like the fast-mapping behavior of our Bayesian models.  First, the necessary capacity for Bayesian inference 

may not be available to the youngest children, but may itself develop (through simple maturation, or in a 

way that depends on the development of other general-purpose cognitive capacities). Associative models of 

word learning (e.g., Regier, 2005; Colunga & Smith, 2005) often focus on the earliest stages of word 

learning, and it is certainly possible that word learning is best characterized as initially associative but 

Bayesian in the more mature state that we have studied here.  Second, the capacity for Bayesian inference 

may be available, but very young children may have much weaker, less constrained hypothesis spaces, 

which do not support learning with high confidence from just a few examples.  That is, they may be viewed 

as Bayesian word learners but without the appropriate hypothesis spaces.  Third, very young children could 
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possess domain-general Bayesian inference capacities but not yet be able to apply these mechanisms to the 

task of word learning.  For instance, they might not yet grasp the concepts of reference and intention 

necessary to treat observations of word-object labeling events as randomly sampled examples of a word’s 

reference class, and thus not be able to set up the likelihood functions appropriate for word learning.  

Finally, the youngest children could possess all of these core conceptual capacities but still suffer from 

processing limitations that prevent them from remembering words stably over time or fixing the referent of a 

word quickly.  More research is necessary to distinguish among these and other possible accounts of the 

earliest stages of word learning. 

 We have so far treated word learning as a mapping problem: learners possess concepts – hypotheses 

for candidate word meanings – independent of those words, and their task is to map word forms onto these 

concepts.  This view does not imply that the concepts are innate, just that they are mostly in place by the 

time the words are being learned.  But it is quite possible that word learning and concept formation proceed 

in parallel to some extent (e.g., Bowerman & Levinson, 1996; Gentner & Goldin-Meadow, 2003; Xu, 2002, 

2005).  In terms of our Bayesian framework, perhaps the observation of new words that cannot be mapped 

easily onto the current hypothesis space of candidate concepts somehow triggers the formation of new 

concepts, more suitable as hypotheses for the meanings of these words.  Bayesian models of the relation 

between word learning and concept learning more generally are one focus of our ongoing work (Perfors, 

Kemp & Tenenbaum, 2005).   

More generally, questions about the origins of the learner’s hypothesis space are clearly important 

targets for future work. These questions can be asked on at least two levels.  First, and most deeply, how 

does the learner acquire the abstract knowledge that a certain class of words should map onto a hierarchy of 

object kinds, and that certain kinds of perceptual features are typically diagnostic of kind membership? 

Second, given this abstract knowledge, how does the learner construct a concrete tree-structured hierarchy 

onto which words for object kinds will be mapped?  In principle, both of these questions can be addressed 

within a hierarchical Bayesian framework (Tenenbaum, Griffiths, and Kemp,2006; Kemp, Perfors, and 

Tenenbaum, 2004, in press), an extension of the approach we have developed here to include hypothesis 
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spaces at multiple levels of abstraction, with probabilistic models linking each level in the hierarchy.  The 

second question is easier to address, and in some sense is already addressed implicitly in the work presented 

above.  Given the goal of searching for a tree-structured hierarchy of object kinds, and a sense of which 

perceptual features are characteristic of how kinds cohere, the learner just needs to perform some kind of 

hierarchical clustering on the objects it has observed in the world.  As Kemp, Perfors, and Tenenbaum 

(2004) discuss, this hierarchical clustering can be viewed as a Bayesian inference, searching for the simplest 

tree that assigns a high likelihood to the observed object features, under a probabilistic model in which 

objects that are nearby in the tree are expected to look more similar than objects that are far apart in the tree. 

The first question can be addressed by the same logic.  The learner considers different classes of structures 

that could generate a hypothesis space of word meanings, including tree-structured object-kind hierarchies 

as well as other kinds of structure. Each of these abstract organizing principles can also be scored according 

to how well it predicts the observed object features, although in practice computing this score could be quite 

difficult, as it involves summing or searching over all specific structures consistent with each class of 

structures (Kemp, Perfors, and Tenenbaum, 2004; Perfors, Kemp, and Tenenbaum, 2005).     

Our analysis of word learning focuses on what Marr (1982) called the level of computational theory.  

We have tried to elucidate the logic behind word learners’ inductive inferences, without specifying how that 

logic is implemented algorithmically in the mind or physiologically in neural hardware.  We make no claim 

that Bayesian computations are implemented exactly in the mind or brain, with explicitly represented 

probabilities.  On the contrary, it is more likely that the details of mental or neural processing correspond to 

some efficient approximation to the Bayesian computations we propose here.  We also make no claim that 

any of these computations have consciously accessible intermediate steps.  The fact that people are typically 

not aware of considering many hypotheses for a word’s meaning does not mean that the mind does not 

implicitly behave in accord with our Bayesian principles.  

Lastly, the learning mechanism we have proposed here is unlikely to be specific to word learning or 

language acquisition.  Recent research has shown that other domains of inductive learning and reasoning 

may be explained in Bayesian terms, including causal learning (Gopnik, Glymore, Sobel, Schulz, Kushnir, 
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& Danks, 2004; Griffiths & Tenenbaum,2005; Sobel, Tenenbaum, & Gopnik, 2004; Steyvers, Tenenbaum, 

Wagenmakers & Blum, 2003), category-based induction (Heit, 1998; Kemp & Tenenbaum, 2003), 

conditional reasoning (Oaksford & Chater, 1994) and covariation assessment (McKenzie, 1994; McKenzie 

& Mikkelsen, in press).  Whether word learning requires specialized mechanisms or assumptions is the 

subject of a lively debate in the field of cognitive and language development (e.g., Bloom, 2000; Behrend et 

al., 2001; Deisendruck & Bloom, 2003; Diesendruck & Markson, 2001; Waxman & Booth, 2002; Xu, Cote, 

& Baker, 2005).  Although word learning may require certain language-specific principles or structures, it is 

plausible that the inference mechanisms, as we suggest here, are domain-general.  

Conclusion 

In this work, we have taken a close-up look at only a few pieces of a big puzzle.  We have argued 

that a Bayesian approach provides a powerful computational framework for explaining how people solve the 

inductive problem of learning word meanings, by showing how the approach gives distinctive insights into 

several core phenomena of word learning as well as strong quantitative fits to behavioral data from our 

experiments with adult and child learners.  We should caution against concluding too much from the studies 

presented here.  The specific experimental tasks and models we have worked with simplify the real 

challenges that children face in so many ways, and they leave many aspects of word learning completely 

unaddressed – even if they suggest a number of promising extensions.  Yet we still think there are valuable 

lessons to be drawn, about the computational basis of word learning and cognitive development more 

generally.  

Accounts of cognitive development typically view statistical learning and sophisticated 

representational machinery as competing – or even mutually exclusive – explanations for how we come to 

know so much about the world.  Here we have presented a theoretical framework for explaining one aspect 

of development, word learning, based on the operation of powerful statistical inference mechanisms defined 

over structured mental representations. In contrast to the associative tradition, our approach has critical roles 

for conceptual hierarchies, individuated objects as distinct from word-percept correlations, and abstract 

linguistic or communicative principles.  Unlike traditional rationalist approaches, ours is at heart about 
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statistical inference, in which knowledge about word meanings can be more or less graded depending on the 

probabilistic evidence provided by different degrees of data. A fully satisfying computational model of word 

learning remains as remote as a model of general-purpose cognition, but our work suggests at least one good 

bet about what such models will have to look like.  Only a combination of sophisticated mental 

representations and sophisticated statistical inference machinery will be able to explain how adults and 

children can learn so many words, so fast and so accurately.   
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Notes 

1. There is another important approach to modeling the acquisition of word meaning, broadly within the 

associative-learning tradition, which we do not discuss here because it focuses on a different learning 

task – complementary to our focus on learning word meanings from examples.  This is the problem of 

learning the associative contexts of words from observing how those words tend to be used together in 

conversation or writing.  Statistical approaches that look for clusters of words occurring in similar 

contexts (Redington, Chater & Finch, 1998; Griffiths, Steyvers & Tenenbaum, submitted), or a latent 

space that best explains patterns of word co-occurrence (Landauer & Dumais, 1997), have recently 

produced intriguing results.  It would be of interest to see how these approaches could profitably be 

combined with the approaches we discuss here, to yield models of how word-learning draws on both 

observed examples and patterns of linguistic usage, but that is beyond the scope of the present work. 

2.  A notable exception is the cluster corresponding to trucks (T), which is barely separated from the next 

highest cluster (V) that contains the trucks plus a long yellow school bus.  Cluster V itself is fairly well-

separated from the next highest cluster, suggesting that the perceptually basic category here is not quite 

trucks but something more like “truck-shaped motor vehicles”. 

3. We should note that our use of the term “basic-level bias” differs from many uses in the literature.  

Typically it is unclear whether a putative word-learning bias, such as a “basic-level bias”, refers to a 

behavioral tendency or to an aspect of mental representation: a greater prior degree of belief in some 

concepts (e.g., basic-level kinds) as candidate word meanings. Our interest primarily concerns the latter, 

and we would like to reserve the term “bias” for that sense, but empirical studies have mostly focused 

on the former.  It is an empirical phenomenon, demonstrated in previous studies (Callanan et al., 1994; 

Waxman, 1990) as well as in our studies here, that generalization of a taxonomic label from a single 

example appears to follow a gradient falling off around the basic level.  That is, children or adults tend 

to extend a novel label almost always to new objects matching at the subordinate level, much of the time 

(between 40% and 80% in our studies) to objects matching only at the basic level, and rarely to objects 
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matching at only the superordinate level.  Instead of referring to this behavioral tendency as a “basic-

level bias”, we will refer to it as “one-shot basic-level generalization,” to distinguish it from possible 

cognitive structures that might be proposed to account for it. 

4. All correlation (r) values in this section are computed using only judgments for test items within the 

same superordinate class as the observed examples.  Participants almost never chose test items that 

crossed superordinate boundaries, and most models give these test items zero or near-zero probability of 

generalization. 

5. Figure 9b shows the median pattern of generalization over the three superordinate categories, rather than 

the mean, because the MAP generalizations are always either 0 or 1 and thus the mean is sometimes not 

representative of the model’s all-or-none predictions. 
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Figure Captions 

Figure 1.  The extensions of words that label object kind categories may overlap in a nested fashion, in 

accord with the tree-structured hierarchy of an object-kind taxonomy.  

Figure 2. The extensions of words that label object shape and substance categories may overlap in a 

cross-cutting fashion, because these two dimensions of object appearance are approximately independent.  

Figure 3. Twelve training sets of labels objects used in Experiment 1, drawn from all three domains 

(animals, vegetables, and vehicles) and all four test conditions (1-example, 3-example subordinate, 3-

example basic-level, and 3-example superordinate).   

Figure 4.  The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For 

each training set in Figure 3, this test set contains 2 subordinate matches, 2 basic-level matches, and 4 

superordinate matches.  

Figure 5. Adults’ generalization of word meanings in Experiment 1, averaged over domain.  Results are 

shown for each of four types of example set (1 example, 3 subordinate examples, 3 basic-level examples, 

and 3 superordinate examples).  Bar height indicates the frequency with which participants generalized to 

new objects at various levels.  Error bars indicate standard errors.  

Figure 6. Children’s generalization of word meanings in Experiments 2 and 3, averaged over domain. 

Results are shown for each of four types of example set (1 example, 3 subordinate examples, 3 basic-level 

examples, and 3 superordinate examples).  Bar height indicates the frequency with which participants 

generalized to new objects at various levels.  Error bars indicate standard errors. 

Figure 7. Hierarchical clustering of similarity judgments yields a taxonomic hypothesis space for 

Bayesian word learning. Letter codes refer to specific clusters (hypotheses for word meaning), as 

discussed in the text.     

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared to the 

data from adults in Experiment 1 and those from children in Experiment 3.   
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Figure 9. Predictions of two variants of the Bayesian model.  (a) Without the size principle, Bayesian 

generalization behaves like an exemplar-similarity computation.  (b) Without hypothesis averaging, 

Bayesian generalization follows an all-or-none, rule-like pattern.   

Figure 10. Predictions of four alternative, non-Bayesian models.    
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