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Abstract

People’s reactions to coincidences are often cited as an illustration of the irrationality of human

reasoning about chance. We argue that coincidences may be better understood in terms of rational

statistical inference, based on their functional role in processes of causal discovery and theory

revision. We present a formal definition of coincidences in the context ofa Bayesian framework for

causal induction: a coincidence is an event that provides support foran alternative to a currently

favored causal theory, but not necessarily enough support to accept that alternative in light of its

low prior probability. We test the qualitative and quantitative predictions of thisaccount through a

series of experiments that examine the transition from coincidence to evidence, the correspondence

between the strength of coincidences and the statistical support for causal structure, and the

relationship between causes and coincidences. Our results indicate that people can accurately

assess the strength of coincidences, suggesting that irrational conclusions drawn from coincidences

are the consequence of overestimation of the plausibility of novel causal forces. We discuss the

implications of our account for understanding the role of coincidences in theory change.
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From mere coincidences to meaningful discoveries

In the last days of August in 1854, the city of London was hit by an unusually violent

outbreak of cholera. More than 500 people died over the next fortnight,most of them in a small

region in Soho. On September 3, this epidemic caught the attention of John Snow, a physician who

had recently begun to argue against the widespread notion that cholera was transmitted by bad air.

Snow immediately suspected a water pump on Broad Street as the cause, but could find little

evidence of contamination. However, on collecting information about the locations of the cholera

victims, he discovered that they were tightly clustered around the pump. This suspicious

coincidence hardened his convictions, and the pump handle was removed. The disease did not

spread any further, furthering Snow’s (1855) argument that cholera was caused by infected water.

Observing clusters of events in the streets of London does not always result in important

discoveries. Towards the end of World War II, London came under bombardment by German V-1

and V-2 flying bombs. It was widespread popular belief that these bombs were landing in clusters,

with an unusual number of bombs landing on the poorer parts of the city (Johnson, 1981). After

the war, R. D. Clarke of the Prudential Assurance Company set out to ‘apply a statistical test to

discover whether any support could be found for this allegation’ (Clarke, 1946, p. 481). Clarke

examined 144 square miles of south London, in which 537 bombs had fallen. He divided this area

into small squares and counted the number of bombs falling in each square. If the bombs fell

uniformly over this area, then these counts should conform to the Poisson distribution. Clarke

found that this was indeed the case, and concluded that his result ‘lendsno support to the clustering

hypothesis’ (1946, p. 481), implying that people had been misled by their intuitions.1

Taken together, the suspicious coincidence noticed by John Snow and themere coincidence

that fooled the citizens of London present what seems to be a paradox for theories of human

reasoning. How can coincidences simultaneously be the source of both important scientific

discoveries and widespread false beliefs? Previous research has tended to focus on only one of
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these two faces of coincidences. Inspired by examples similar to that of Snow,2 one approach has

focused on conceptual analyses or quantitative measures of coincidences that explicate their role in

rational inference (Horwich, 1982; Schlesinger, 1991), causal discovery (Owens, 1992) and

scientific argument (Hacking, 1983). An alternative approach, inspired by examples like the

bombing of London,3 has analyzed the sense of coincidence as a prime example of shortcomings

in human understanding of chance and statistical inference (Diaconis & Mosteller, 1989; Fisher,

1937; Gilovich, 1993; Plous, 1993). Neither of these two traditions has attempted to explain how

the same cognitive phenomenon can simultaneously be the force driving human reasoning to both

its greatest heights, in scientific discovery, and its lowest depths, in superstition and other abiding

irrationalities.

In this paper, we develop a framework for understanding coincidencesas a functional

element of causal discovery. Scientific knowledge is expanded and revised through the discovery

of causal relationships that enrich or invalidate existing theories. Intuitiveknowledge can also be

described in terms of domain theories with structures that are analogous to scientific theories in

important respects (Carey, 1985; Gopnik & Meltzoff, 1997; Karmiloff-Smith, 1988; Keil, 1989;

Murphy & Medin, 1985), and these intuitive theories are grown, elaborated and revised in large

part through processes of causal discovery (Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks,

2004; Tenenbaum, Griffiths, & Niyogi, in press). We will argue that coincidences play a crucial

role in the development of both scientific and intuitive theories, as events thatprovide support for a

low-probability alternative to a currently favored causal theory. This definition can be made precise

using the mathematics of statistical inference. We use the formal language of causal graphical

models (Pearl, 2000; Spirtes, Glymour, & Schienes, 1993) to characterize relevant aspects of

intuitive causal theories, and the tools of Bayesian statistics to propose a measure of evidential

support for alternative causal theories that can be identified with the strength of a coincidence. This

approach allows us to clarify the relationship between coincidences and theory change, and to

make quantitative predictions about the strength of coincidences that can be compared with human
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judgments.

The plan of the paper is as follows. Before presenting our account, we first critique the

common view of coincidences as simply unlikely events. This analysis of coincidences is simple

and widespread, but ultimately inadequate because it fails to recognize the importance of

alternative theories in determining what constitutes a coincidence. We then present a formal

analysis of the computational problem underlying causal induction, and use this analysis to show

how coincidences may be viewed as events that provide strong but not necessarily sufficient

evidence for an alternative to a current theory. After conducting an experimental test of the

qualitative predictions of this account, we use it to make quantitative predictions about the strength

of coincidences in some of the complex settings where classic examples of coincidences occur:

coincidences in space, as in the examples of John Snow and the bombing of London, and

coincidences in date, as in the famous “birthday problem”. We conclude by returning to the

paradox of coincidences identified above, considering why coincidences often lead people astray

and discussing their involvement in theory change.

Coincidences are not just unlikely events

Upon experiencing a coincidence, many people react by thinking somethinglike ‘Wow!

What are the chances of that?’ (e.g., Falk, 1981-1982). Subjectively,coincidences are unlikely

events: we interpret our surprise at their occurrence as indicating thatthey have low probability. In

fact, it is often assumed that being surprising and having low probability areequivalent: the

mathematician Littlewood (1953) suggested that events having a probability of one in a million be

considered surprising, and many psychologists make this assumption at least implicitly (e.g.,

Slovic & Fischhoff, 1977). The notion that coincidences are unlikely events pervades literature

addressing the topic, irrespective of its origin. This belief is expressed inbooks on spirituality

(‘Regardless of the details of a particular coincidence, we sense that it istoo unlikely to have been

the result of luck or mere chance,’ Redfield, 1998, p. 14), popular books on the mathematical basis
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of everyday life (‘It is an event which seems so unlikely that it is worth tellinga story about,’

Eastaway & Wyndham, 1998, p. 48), and even the statisticians Diaconis andMosteller (1989)

considered the definition ‘a coincidence is a rare event,’ but rejected it on the grounds that ‘this

includes too much to permit careful study’ (p. 853).

The most basic version of the idea that coincidences are unlikely events refers only to the

probability of a single event. Thus, some data,d, might be considered a coincidence if the

probability ofd occurring by chance is small.4 On September 11, 2002, exactly one year after

terrorists destroyed the World Trade Center in Manhattan, the New York State Lottery “Pick 3”

competition, in which three numbers from 0-9 are chosen at random, produced the results 9-1-1

(Associated Press, September 12, 2002). This seems like a coincidence,5 and has reasonably low

probability: the three digits were uniformly distributed between 0 and 9, so the probability of such

a combination is( 1
10)3 or 1 in 1000. Ifd is a sequence of ten coinflips that are all heads, which we

will denoteHHHHHHHHHH, then its probability under a fair coin is(1
2)10 or 1 in 1024. Ifd is an

event in which one goes to a party and meets four people, all of whom are born on August 3, and

we assume birthdays are uniformly distributed, then the probability of this event is ( 1
365)4, or 1 in

17,748,900,625. Consistent with the idea that coincidences are unlikely events, these values are all

quite small.

The fundamental problem with this account is that while coincidences must in general be

unlikely events, there are many unlikely events that are not coincidences.It is easy to find events

that have the same probability, yet differ in whether we consider them a coincidence. In particular,

all of the examples cited above were analyzed as outcomes of uniform generating processes, and so

their low probability would be matched by any outcomes of the same processes with the same

number of observations. For instance, a fair coin is no more or less likely to produce the outcome

HHTHTTHTHT as the outcomeHHHHHHHHHH. Likewise, observing the lottery numbers 7-2-3

on September 11 would be no more likely than observing 9-1-1, and meeting people with birthdays

on May 14, July 8, August 21, and October 4, would be just as unlikely asany other sequence,
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including August 3, August 3, August 3, and August 3. Using several other examples of this kind,

Teigen and Keren (2003) provided empirical evidence in behavioral judgments for the weak

relationship between the surprisingness of events and their probability. For our purposes, these

examples are sufficient to establish that our sense of coincidence is not merely a result of low

probability.

We will argue that coincidences are not just unlikely events, but rather events that areless

likely under our currently favored theory of how the world works than under an alternative theory.

The September 11 lottery results, meeting four people with the same birthday, and flipping ten

heads in a row all grab our attention because they suggest the existence of hidden causal structure

in contexts where our current understanding would suggest no such structure should exist. Before

we explore this hypothesis in detail, we should rule out a more sophisticated version of the idea

that coincidences are unlikely events. The key innovation behind this definition is to move from

evaluating the probability of a single event to the probability of an event of a certain “kind”, with

coincidences being events of unlikely kinds. Hints of this view appear in experiments on

coincidences conducted by Falk (1989), who suggested that people are ‘sensitive to the extension

of the judged event’ (p. 489) when evaluating coincidences. Falk (1981-1982) also suggested that

when one hears a story about a coincidence, ‘One is probably not encoding the story with all its

specific details as told, but rather as a more general event “of that kind”’ (p. 23). Similar ideas

have been proposed by psychologists studying figural goodness andsubjective randomness (e.g.,

Garner, 1970; Kubovy & Gilden, 1991), and such an account was worked out in detail by

Schlesinger (1991), who explicitly considered coincidences in birthdays. Under this view, meeting

four people all born on August 3 is a bigger coincidence than meeting thoseborn on May 14, July

8, August 21, and October 4 because the former is of the kindall on thesameday while the latter is

of the kindall ondifferentdays. Similarly, the sequence of coinflipsHHHHHHHHHH is more of a

coincidence than the sequenceHHTHTTHTHT because the former is of the kindall outcomesthe

same while the latter is of the kindequalnumberof headsandtails; out of all 1024 sequences of
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length 10, only two are of the former kind, while there are 252 of the latter kind.

The “unlikely kinds” definition runs into several difficulties. First there are the problems of

specifying what might count as a kind of event, and which kind should be used when more than

one is applicable. Like the coinflip sequenceHHTHTTHTHT, the alternating sequence

HTHTHTHTHT falls under the kindequalnumberof headsandtails, but it appears to present

something of a coincidence while the former sequence does not. The “unlikely kinds” theory

might explain this by saying thatHTHTHTHTHT is also a member of a different kind,alternating

headsandtails, containing only two sequences out of the possible 1024. But why should this

second kind dominate? Intuitively, the fact that it is more specific seems important, but why? And

why isn’t alternation as much of a coincidence as repetition, even though thekindsall outcomes

thesame andalternatingheadsandtails are equally specific? How would we assess the degree of

coincidence for the sequenceHHHHHHHTTT? It appears more coincidental than a merely

“random” sequence likeHHTHTTHTHT, but what “kind of event” is relevant? Finally, why do we

not consider a kind likeall outcomesthatbeginHHTHTTHTHT. . . , which would predict that the

sequenceHHTHTTHTHT is in fact the most coincidental of all? The situation becomes even more

complex when we go beyond discrete events. For example, the bombing of London suggested a

coincidence based upon bomb locations, which are not easily classified intokinds.

For the “unlikely kinds” definition to work, we need to be able to identify the kinds relevant

to any contexts, including those involving continuous stimuli. The difficulty of doing this is a

consequence of not recognizing the role of alternative theories in determining what constitutes a

coincidence. The fact that certain kinds of events seem natural is a consequence of the

theory-ladenness of the observer: there is no a priori reason why any set of kinds should be favored

over any other. In the cases where definitions in terms of unlikely kinds do seem to work, it is

because the kinds being used implicitly correspond to the predictions of a reasonable set of

alternative theories. To return to the coinflipping example, kinds defined in terms of the number of

heads in a sequence implicitly correspond to considering a set of alternative theories that differ in
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their claims about the probability that a coin comes up heads, a fact that we discuss in more detail

below. Alternative theories still exist in contexts where no natural “kinds”can be found, providing

greater generality for definitions of coincidences based upon alternative theories.

Finally, even if a method for defining kinds seems clear, it is possible to find

counterexamples to the idea that coincidences are events of unlikely kinds.For instance, a common

way of explaining why a sequence likeHHHH is judged less random (and more coincidental) than

HHTT is that the former is of the kindfour heads while the latter is of the kindtwo heads,two tails

(c.f. Garner, 1970; Kubovy & Gilden, 1991). Since one is much more likelyto obtain a sequence

with two heads and two tails than a sequence with four heads when flipping a fair coin four times,

the latter seems like a bigger coincidence. The probability ofNH heads fromN trials is

Pkind(D) =
( N
NH

)

2N
, (1)

so the probability of thefour heads kind is(
4
4
)

24 = 0.0625, while the probability of thetwo heads,

two tails kind is (4
2
)

24 = 0.375. However, we can easily construct a sequence of a kind that has lower

probability thanfour heads: the reasonably randomHHHHTHTTHHHTHTHHTHTTHHH is but

one example of thefifteenheads,eighttails kind, which has probability(
23
15

)
223 = 0.0584.

Coincidence as statistical inference

In addition to the problems outlined in the previous section, the definition of coincidences as

unlikely events seems to neglect one of the key components of coincidences: their apparent

meaningfulness. This is the aspect of coincidences that makes them so interesting, and is tied to

their role in scientific discoveries. We will argue that the meaningfulness of coincidences is due to

the fact that coincidences are not just arbitrary low-probability patterns, but patterns that suggest

the existence of unexpected causal structure. One of the earliest statements of this idea appears in

Laplace (1795/1951):
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If we seek a cause wherever we perceive symmetry, it is not that we regard a

symmetrical event as less possible than the others, but, since this event ought to be the

effect of a regular cause or that of chance, the first of these suppositions is more

probable than the second. On a table we see letters arranged in this order,C o n s t a n

t i n o p l e, and we judge that this arrangement is not the result of chance, not because

it is less possible than the others, for if this word were not employed in any language

we should not suspect it came from any particular cause, but this word being in use

among us, it is incomparably more probable that some person has thus arranged the

aforesaid letters than that this arrangement is due to chance. (p. 16)

In this passage, Laplace suggested that our surprise at orderly events is a result of the inference that

these events are more likely under a process with causal structure than one based purely on chance,

we should suspect that a cause was involved.

The idea that coincidences are events that provide us with evidence for the existence of

unexpected causal structure has been developed further by a numberof authors. In the philosophy

of science, Horwich (1982) defined a coincidence as ‘an unlikely accidental correspondence

between independent facts, which suggests strongly, but in fact falsely, some causal relationship

between them’ (p. 104), and expressed this idea formally using the language of Bayesian inference,

as we do below. Similar ideas have been proposed by Bayesian statisticians,including Good

(1956, 1984) and Jaynes (2003). In cognitive science, Feldman (2004) has explored an account of

why simple patterns are surprising that is based upon the same principle, viewing events that

exhibit greater simplicity than should be expected under a “null hypothesis”as coincidences.

In the remainder of the paper, we develop a formal framework which allowsus to make this

definition of coincidences precise, and to test its quantitative predictions. Our focus is on the role

of coincidences in causal induction. Causal induction has been studied extensively in both

philosophy (e.g., Hume, 1739/1978) and psychology (e.g., Inhelder & Piaget, 1958). Detailed

reviews of some of this history are provided by Shultz (1982; Shultz & Kestenbaum, 1985) and
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White (1990). Recent research on human causal induction has focused on formal models based

upon analyses of how an agent should learn about causal relationships (e.g., Anderson, 1990;

Cheng, 1997; Griffiths & Tenenbaum, 2005; López, Cobos, Cãno, & Shanks, 1998; Steyvers,

Tenenbaum, Wagenmakers, & Blum, 2003). These formal models establish some of the

groundwork necessary for our analysis of the functional role of coincidences.

Any account of causal induction requires a means of representing hypotheses about

candidate causal structures. We will represent these hypotheses using causalgraphicalmodels

(also known as causal Bayesian networks or causal Bayes nets). Causal graphical models are a

language for representing and reasoning about causal relationshipsthat has been developed in

computer science and statistics (Pearl, 2000; Spirtes, Glymour, & Schienes, 1993). This language

has begun to play a role in theories of human causal reasoning (e.g., Danks & McKenzie, under

revision; Gopnik et al., 2004; Glymour, 1998; 2001; Griffiths & Tenenbaum, 2005; Lagnado &

Sloman, 2002; Rehder, 2003; Steyvers, Wagenmakers, Blum, & Tenenbaum, 2003; Tenenbaum &

Griffiths, 2001, 2003; Waldmann & Martignon, 1998), and several theories of human causal

induction can be expressed in terms of causal graphical models (Griffiths& Tenenbaum, 2005;

Tenenbaum & Griffiths, 2001).

A causal graphical model represents the causal relationships among a set of variables using

a graph in which variables are nodes and causation is indicated with arrows. This graphical

structure has implications for the probability of observing particular values for those variables, and

for the consequences of interventions on the system (see Pearl, 2000,or Griffiths & Tenenbaum,

2005, for a more detailed introduction). A variety of algorithms exist for learning the structure of

causal graphical models, based upon either reasoning from a pattern of statistical dependencies

(e.g., Spirtes et al., 1993) or methods from Bayesian statistics (e.g., Heckerman, 1998). We will

pursue the latter approach, treating theories as generators of causal graphical models: recipes for

constructing a set of causal graphical models that describes the possible causal relationships

among variables in a given situation. Theories thus specify the hypothesis spaces and prior
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probabilities that are used in Bayesian causal induction. We develop this idea formally elsewhere

(Griffiths, 2005; Griffiths et al., 2004; Griffiths, & Tenenbaum, 2005; Tenenbaum & Griffiths,

2003; Tenenbaum et al., in press; Tenenbaum & Niyogi, 2003), but willuse it relatively informally

in this paper.

These tools provide the foundations of our approach to coincidences. In this section, we use

a Bayesian approach to causal induction to develop an account of whatmakes an event a

coincidence, and to delineate the difference between “mere” and “suspicious” coincidences. We

then provide a more detailed formal analysis of one simple kind of coincidence– coincidences in

coinflips – indicating how this account differs from the idea that coincidences are unlikely events.

The section ends by identifying the empirical predictions made by this account,which are tested in

the remainder of the paper.

Whatmakesacoincidence?

Assume that a learner has datad, and a set of hypotheses,h, each being a theory about the

system that produced that data. Before seeing any data, the learner assignsprior probabilities of

P (h) to these hypotheses. Theposterior probability of any hypothesish after seeingd can be

evaluated using Bayes’ rule,

P (h | d) =
P (d |h)P (h)

∑

h P (d |h)P (h)
, (2)

whereP (d |h), known as thelikelihood, specifies the probability of the datad being generated by

the system represented by hypothesish. In the case where there are just two hypotheses,h1 and

h0, we can express the relative degree of belief inh1 after seeingd using theposteriorodds,

P (h1 | d)

P (h0 | d)
=

P (d |h1)

P (d |h0)

P (h1)

P (h0)
, (3)

which follows directly from Equation 2. The posterior odds are determined by two factors: the

likelihood ratio, which indicates the support thatd provides in favor ofh1 overh0, and theprior
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odds, which express the a priori plausibility ofh1 as compared toh0. If we take the logarithm of

Equation 3, we obtain

log
P (h1 | d)

P (h0 | d)
= log

P (d |h1)

P (d |h0)
+ log

P (h1)

P (h0)
, (4)

in which the log likelihood ratio and the log prior odds combine additively to give the log posterior

odds.

To make this analysis more concrete, consider the specific example of evaluating whether a

new form of genetic engineering influences the sex of rats. The treatmentis tested through a series

of experiments in which female rats receive a prenatal injection of a chemical,and the sex of their

offspring is recorded at birth. In the formal schema above,h1 refers to the theory that injection of

the chemical influences sex, andh0 refers to the theory that injection and sex are independent.

These two theories generate the causal graphical modelsGraph 1 andGraph 0 shown in Figure 1.

UnderGraph 0, the probability that a rat is male should be0.5, while underGraph 1, rats injected

with the chemical have some other probability of being male. Imagine that in the experimental test,

the first ten rats were all born male. These data,d, would provide relatively strong support for the

existence of a causal relationship, such a relationship seems a priori plausible, and as a

consequence you might be inclined to conclude that the relationship exists.

Insert Figure 1 about here

Now contrast this with a different case of causal induction. A friend insists that she

possesses the power of psychokinesis. To test her claim, you flip a coin infront of her while she

attempts to influence the outcome. You are evaluating two hypotheses:h1 is the theory that her

thoughts can influence the outcome of the coinflip, whileh0 is the theory that her thoughts and the

coinflip are independent. As in the previous case, these theories generate the causal graphical

modelsGraph 1 andGraph 0 shown in Figure 1. The first ten flips are all heads. The likelihood
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ratio for these data,d, provides just as much support for a causal relationship as in the genetic

engineering example, but the existence of such a relationship has lower prior probability. As a

consequence, you might conclude that she does not possess psychicpowers, and that the evidence

to the contrary provided by the coinflips was just a coincidence.

Coincidences arise when there is a conflict between the evidence an event provides for a

theory and our prior beliefs about the plausibility of that theory. More precisely, a coincidence is

an event that provides support for an alternative to a current theory, but not enough support to

convince us to accept that alternative. This definition can be formalized using the Bayesian

machinery introduced above. Assume thath0 denotes the current theory entertained by a learner,

andh1 is an alternative postulating the existence of a richer causal structure or novel causal force.

In many cases of causal induction, such as establishing whether a chemical influences the sex of

rats, we learn about causal relationships that seem relatively plausible,and the likelihood ratio and

prior odds in favor ofh1 are not dramatically in conflict. A coincidence produces a likelihood ratio

in favor ofh1 that is insufficient to overwhelm the prior odds againsth1, resulting in middling

posterior odds. The likelihood ratio provides a measure of thestrength of a coincidence, indicating

how much support the event provides forh1. Under this definition, the strongest coincidences can

only be obtained in settings where the prior odds are equally strongly against h1. Thus, like the test

of psychokinesis, canonical coincidences typically involve data that produce a high likelihood ratio

in favor of an alternative theory in a context where the current theory isstrongly entrenched.

Mereandsuspiciouscoincidences

Up to this point, we have been relatively loose about our treatment of the term

“coincidence”, relying on the familiar phenomenology of surprise associated with these events.

However, when people talk about coincidences, they do so in two quite different contexts. The first

is in dismissing an event as “just a coincidence”, something that is surprisingbut ultimately

believed to be the work of chance. We will refer to these events asmerecoincidences. The second
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context in which people talk about coincidences is when an event begins torender an alternative

theory plausible. For example, Hacking’s (1983) analysis of the “argument from coincidence”

focuses on this sense of coincidence, as does the treatment of coincidences in the study of vision in

humans and machines (Barlow, 1985; Binford, 1981; Feldman, 1997; Knill & Richards, 1996;

Witkin & Tenenbaum, 1983). We will refer to these events assuspiciouscoincidences. This

distinction raises an interesting question: what determines whether a coincidence is mere or

suspicious?

Under the account of coincidences outlined above, events can make a transition from

coincidence to evidence as the posterior odds in favor ofh1 increase. Since being considered a

coincidence requires that the posterior odds remain middling, an event ceases being a coincidence

and simply becomes evidence if the posterior odds increase. Considerationof the effects of the

posterior odds also allows us to accommodate the difference between mere and suspicious

coincidences. It is central to our definition of a mere coincidence that it bean event that ultimately

results in believingh0 overh1. Consequently, the posterior odds must be low. In a suspicious

coincidence, we are left uncertain as to the true state of affairs, and aredriven to investigate further.

This corresponds to a situation in which the posterior odds do not favor either hypothesis strongly,

being around1 (or 0, for log posterior odds). The relationship between mere coincidences,

suspicious coincidences, and unambiguous evidence forh1 is illustrated schematically in Figure 2.

Insert Figure 2 about here

As indicated in Equations 3 and 4, the posterior odds in favor ofh1 increase if either the

prior odds or the likelihood ratio increases. Such changes can thus result in a transition from

coincidence to evidence, as illustrated in Figure 2. An example of the former was provided above:

ten male rats in a row seems like evidence in the context of a genetic engineeringexperiment, but

ten heads in a row is mere coincidence in a test of psychokinesis, where theprior odds are smaller.
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Tests of psychokinesis can also be used to illustrate how a change in the likelihood ratio can

produce a transition from mere coincidence, through suspicious coincidence, to evidence: ten

heads in a row is a mere coincidence, but twenty might begin to raise suspicions about your

friend’s powers, or the fairness of the coin. At ninety heads in a row you might, like Guildenstern

in Stoppard’s (1967) play, begin entertaining the possibility of divine intervention, having

relatively unambiguous evidence that something out of the ordinary is takingplace.

Coincidencesin coinflips

We have informally discussed several examples involving flipping a coin. Here, we will

make these examples precise, using some tools from Bayesian statistics. This analysis helps to

clarify how our framework relates to the idea that coincidences are eventsof unlikely kinds.

Imagine that we have two possible theories about the efficacy of psychokinesis. One theory,

h0, stipulates that there can be no relationship between thinking about a coin, and whether the coin

comes up heads. Under this theory, the probability that a coin comes up heads is always0.5. The

other theory,h1, stipulates that some people can influence the outcome of a coin toss by focussing

their mind appropriately, and specifies the probability of the coin coming up heads under such

influence using a parameterω. Given one person and one coin, each of these theories generates one

causal graphical model:h0 generatesGraph 0, while h1 generatesGraph 1. Assume that the data,

d, consists ofN trials in the presence of somebody concentrating on a coin, of whichNH trials

produce heads. Sinceh0 asserts that these outcomes are all the result of chance,P (d |h0) is just
(

N
NH

)

0.5N . EvaluatingP (d |h1) requires making assumptions about the parameterω.

If we assume thatω = 0.9, indicating that we expect that a coin will come up heads far more

often when it is being influenced by psychic powers,P (d |h1) would be0.9NH 0.1NT .

Consequently, a sequence likeHHHH would result in a likelihood ratioP (d |h1)

P (d |h0)
of

(

0.9
0.5

)4 ≈ 10.5,

favoringh1, while a sequence likeHHTT would result in a likelihood ratio of0.920.12

0.54 ≈ 0.13,

favoringh0. Thus,HHHH would constitute more of a coincidence thanHHTT, since it provides
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more evidence for the low-probability theory that psychic powers exist.

The assumption that a coin will come up heads 90% of the time in the presence of apsychic

makes a very specific assertion about the nature of psychic powers. More generally, we might

believe that psychics have the ability to influence the probabilty that a coin comes up heads, but not

have strong beliefs about the degree or direction of that influence. Thiscan be expressed by

definining adistribution over values ofω associated withh1, p(ω |h1). In the Appendix we show

that if it is assumed thatω is uniformly distributed between0 and1, we obtain the likelihood ratio

P (d |h1)

P (d |h0)
=

2N

( N
NH

)(N + 1)
, (5)

which increasingly favorsh1 asNH deviates fromN/2. This expression can be rewritten as

P (d |h1)

P (d |h0)
=

1

Pkind(d)(N + 1)
,

wherePkind(d) is defined in Equation 1, being the probability of a sequence of the same “kind” as

d, where kinds of sequence are differentiated by the number of heads in the sequence.

Consequently, the support forh1, and the strength of the coincidence associated withd, will

increase as the probability of a sequence of the same kind asd decreases. This is consistent with

the “unlikely kinds” account of coincidences. This observation revealswhy it is possible to

construct examples that are broadly consistent with the “unlikely kinds” account of coincidences:

it approximates the Bayesian solution to this problem.

Despite this connection, the Bayesian account overcomes many of the difficulties that limit

the “unlikely kinds” account of coincidences. First, it provides a principled treatment of which

kinds will be relevant to evaluating coincidences, and how they should be scored. This is a

consequence of formulating the problem as a comparison of alternative causal theories: the

relevant kinds of events are determined by the kinds of alternative causal theories that the observer

implicitly considers. In our analysis of coinflipping, the kinds are differentiated by the number of
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heads in a sequence becauseh1 andh0 differ in the probabilities with which they predict a coin

will produce heads. Considering other theories about possible causalmechanisms would lead to

effectively considering other kinds of events, with prior probabilities proportional to the

plausibility of the causal theories that generate those event kinds. For instance, the event-kind

alternatingheadsandtails could be relevant because one could imagine how some kind of causal

mechanism might produce such a pattern of events, although it may be harder to imagine (and thus

receive a lower prior probability) than a mechanism that generates repeating sequences of

coinflips. The event-kindall outcomesthatbeginHHTHTTHTHT. . . would almost never be

considered, or would receive a very low prior probability, because it ishard to imagine an

alternative causal theory that would produce just sequences of this form.

More generally, sinceh1 andh0 are defined in terms of probability distributions, the

Bayesian account extends naturally to continuous stimuli, as we will demonstrate later in the paper,

unlike the “unlikely kinds” account. The formulation of the comparison of these hypotheses as a

Bayesian inference also implicitly solves the problems with multiple kinds, and removes other

technical problems. For example, the appearance of the(N + 1) term in the denominator of

Equation 5 corrects for the fact that there are many more kinds of longer sequences when kinds are

differentiated by the number of heads. This is the issue that made it possible for a sequence of the

kind fifteenheads,eighttails to be less likely than a sequence of the kindfour heads. Under

Equation 5, the former provides weaker support forh1 than the latter, as there are 24 kinds of

sequence of length 23, and only 5 kinds of sequence of length 4.

Empiricalpredictions

Having given a precise definition of what constitutes a coincidence, we can evaluate how

well this definition accords with human judgments. The Bayesian account presented above makes

three clear empirical predictions. First, an event will be considered a coincidence when the

likelihood ratio in favor of an alternative theory,h1, is insufficient to overwhelm the prior odds
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against it. If either the likelihood ratio or the prior odds increase, it will ultimatelycome to be

considered not a coincidence, but simply evidence for that theory. We test this prediction in

Experiment 1. A second prediction is that the likelihood ratio in favor ofh1 should indicate the

strength of a coincidence. We extend our account to some of the more complex settings that have

featured in arguments about the rationality of the human sense of coincidence, and assess the

adequacy of the likelihood ratio in favor ofh1 as a measure of the strength of coincidences in

Experiments 2 and 3. Finally, our account predicts that assessing the strength of a coincidence is

equivalent to assessing the evidence for a causal relationship. We testthis prediction in

Experiments 4 and 5.

The transition from coincidence to evidence

‘Well, Watson, what do you make of this?’ asked Holmes, after a long pause.

‘It is an amazing coincidence.’

‘A coincidence! Here is one of the three men whom we had named as possible

actors in this drama, and he meets a violent death during the very hours whenwe

know that that drama was being enacted. The odds are enormous againstits being

coincidence. No figures could express them. No, my dear Watson, the two events are

connected –must be connected. It is for us to find the connection.’

Sir Arthur Conan Doyle (1986a),Theadventureof thesecondstain, p. 909.

What seems like a coincidence to one person can be considered compelling evidence by

another.6 In the analysis given above, whether an event is a coincidence or simply evidence for an

alternative theory comes down to whether it ultimately justifies believing in that theory, the result

of an interaction between likelihood ratio and prior (see Figure 2). Holmes and Watson could thus

differ in their construal of a violent death if they differed in the probabilitieswith which they

thought such an event might arise independently or as the result of a connection to their case, or if

they differed in the prior probability they assigned to the existence of such aconnection.
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Experiment 1 was designed to examine this transition from coincidence to evidence. The

experiment used the two scenarios mentioned in our discussion of mere and suspicious

coincidences – genetic engineering and psychokinesis – to assess whether people’s designation of

events as a mere coincidence or evidence is affected by changes in the likelihood ratio and prior

odds. If an event is judged “just a coincidence” when it provides insufficient support to overcome

the prior, we should expect to see events with higher likelihood ratios considered a mere

coincidence when people are evaluating claims about psychokinesis. More specifically, if people’s

assessment of an event as a coincidence or evidence is based upon theposterior probability ofh1,

we should expect to see a negative correlation between this posterior probability and the proportion

of people who consider an event a coincidence. Since these predictionsrely upon a subtle

interaction between likelihood ratio and prior, they are inconsistent with accounts of coincidences

that do not incorporate both of these components, such as the definition ofcoincidences as events

of unlikely kinds.

Experiment 1

Method

Participants. Participants were 101 undergraduates, participating for course credit. Of these

participants, 24 were assigned to thepsychokinesis,posterior condition, 20 to thegenetics,

posterior condition, 28 to thepsychokinesis,coincidence condition, and 29 to thegenetics,

coincidence condition.

Stimuli. Two basic cover stories were constructed that would allow the same datato be

presented in different contexts. The data consisted of a table of frequencies that showed how many

times a heads or tails (males or females) were produced from 100 trials. These data showed 8 trials

on which 47, 51, 55, 59, 63, 70, 87, and 99 heads (males) were obtained. Participants receiving the

psychokinesis cover story saw:
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A group of scientists investigating paranormal phenomena have conducteda series of

experiments testing people who claim to possess psychic powers. All of these people

say that they have psychokinetic abilities: they believe that they can influence the

outcome of a coin toss. The scientists tested this claim by flipping a fair coin 100

times in front of each person as they focus their psychic energies. Under normal

circumstances, a fair coin produces heads and tails with equal probability.The results

of these experiments are shown below: the identities of the people are concealed with

subject numbers, but you are given the number of times the coin came up heads or

tails while that person was focusing their psychic energies.

while those receiving thegenetics cover story saw:

A group of scientists investigating genetic engineering have conducted a series of

experiments testing drugs that influence the development of rat fetuses. All of these

drugs are supposed to affect the sex chromosome: they are intended to affect whether

rats are born male or female. The scientists tested this claim by producing 100 baby

rats from mothers treated with the drugs. Under normal circumstances, male and

female rats are equally likely to be born. The results of these experiments areshown

below: the identities of the drugs are concealed with numbers, but you are given the

number of times male or female rats were produced by mothers treated with each drug.

These cover stories were presented with the data in a short questionnaire, together with further

instructions on how to respond to the stimuli.

Procedure. Each participant received a questionnaire listing the eight target data sets in one

of two random orders. Orthogonal to the manipulation of the cover story, participants either

received theposterior or thecoincidence instructions. Theposterior instructions for the

psychokinesis condition were:
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For each of the lines below, please rate HOW LIKELY you think it is that the person

has psychic powers, taking into account the results of the experiment. Usea scale

from 1 to 10, where 1 indicates NOT AT ALL LIKELY and 10 indicates

EXTREMELY LIKELY.

Likewise, the instructions for thegenetics condition were:

For each of the lines below, please rate HOW LIKELY you think it is that the drug

affects the sex of rats, taking into account the results of the experiment. Use a scale

from 1 to 10, where 1 indicates NOT AT ALL LIKELY and 10 indicates

EXTREMELY LIKELY.

The eight sets of frequencies were accompanied by lines on which participants could write their

responses. Thecoincidence instructions for thepsychokinesis condition asked people to choose

between a mere coincidence and evidence:

For each of the lines below, please decide whether you think the results forthat person

are JUST A COINCIDENCE, or COMPELLING EVIDENCE for them having

psychic powers, by checking either the COINCIDENCE or the EVIDENCEbox.

Similarly, the instructions for thegenetics condition were:

For each of the lines below, please decide whether you think the results areJUST A

COINCIDENCE, or COMPELLING EVIDENCE for that drug influencing the sex

chromosome, by checking either the COINCIDENCE or the EVIDENCE box.

The eight sets of frequencies were listed with checkboxes to allow participants to indicate their

responses.

ResultsandDiscussion

One participant in thegenetics condition and two in thepsychokinesis condition appeared to

reverse the rating scale, and were eliminated from the analysis. The resultsare shown in Figure 3.
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Theposterior ratings were subjected to a two-way between-within ANOVA examining the effects

of condition (psychokinesis,genetics) and varying frequency. There was a main effect of condition

(F (1, 39) = 9.30, MSE = 13.10, p < .01), a main effect of frequency (F (7, 273) = 91.60,

MSE = 3.31, p < .0001), and an interaction between the two (F (7, 273) = 7.86, MSE = 3.31,

p < .0001). As can be seen from the figure, the rated probability of the conclusion went up as

frequency increased, but did so earlier for thegenetics than thepsychokinesis condition. The same

analysis was performed for thecoincidence assessments, showing a main effect of condition

(F (1, 55) = 18.78, MSE = 0.18, p < .0001), a main effect of frequency (F (7, 385) = 99.01,

MSE = 0.08, p < .0001), and an interaction between the two (F (7, 385) = 39, MSE = 0.08,

p < .0001). These results are due to a similar pattern of effects: the proportion of cases classified

as coincidences decreased as the frequency increased, but earlierfor thegenetics than the

psychokinesis condition.

Insert Figure 3 about here

As predicted, there was a close correspondence between the proportion of cases classified as

a mere coincidence and the mean posterior probability of the regular generating process, with a

linear correlation ofr = −0.98. In fact, points that are equivalent in posterior probability are also

equivalent in the proportion of cases that were classified as coincidences. Examining Figure 3

closely, it can be seen that 87 heads and 63 males produce the same resultsin both graphs, as do 63

heads and 59 males, and 99 heads and 70 males. This relationship holds despite the fact that

responses were binary in one condition and continuous in the other, and obtained from completely

different participants.

The assumption that there is a threshold on the posterior odds that determineswhether an

event is a coincidence or evidence, as indicated in Figure 2, suggests that these judgments might be
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modeled using a sigmoid (logistic) function of the posterior odds,

P (“evidence”| d) =
1

1 + exp
{

−g log P (h1 | d)

P (h0 | d)
− b

} , (6)

whereg is the gain of the sigmoid, andb is the bias. Asg→∞, this becomes a step function at the

pointb. We will assume thatg = 1 andb = 0, meaning thatP (“evidence”| d) is equal toP (h1 | d).

Since the likelihood ratioP (d |h1)

P (d |h0)
is given by Equation 5, we can estimate the prior odds for each

participant by fitting the sigmoid function to their responses, and thus obtain theprior P (h1).

In thecoincidence condition, all but one of the participants responded in a fashion consistent

with thresholding the posterior odds. It was thus simple to find the value of the prior odds for each

participant that maximizes the probability of their responses as predicted by Equation 6. This

results in a model fit for each participant, and the quality of these fits can be seen from the mean

model predictions shown in the upper panel of Figure 3. The median valuesof P (h1) for the

psychokinesis andgenetics conditions were were0.0004 and0.23 respectively.

A similar procedure can be used to estimate the prior odds directly from the posterior

probabilities provided by the participants in theposterior condition. Again fitting a sigmoid

function for each participant, this time relative to the squared error, we obtain the fits shown in the

lower panel of Figure 3. People’s more extreme probability judgments can beseen to be more

conservative than those predicted by our Bayesian model, consistent withprevious research (e.g.,

Edwards, 1968). However, this procedure yields similar median values for P (h1): 0.0011 in the

psychokinesis condition and0.20 in thegenetics condition. Contrary to previous results illustrating

deficits in the ability to combine likelihood ratios with prior odds (e.g., Kahneman & Tversky,

1972), people seem quite accurate in assessing the posterior probabilitiesof causal relationships.

This may be a consequence of using priors that are derived from extended experience, rather than

base-rates provided in an experimental scenario (Evans, Handley, Over, & Perham, 2002).

The results of this experiment are consistent with the predictions of our Bayesian account of
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coincidences. Data that provided the same support forh1 were judged to be coincidences if

presented as the results of a test of psychokinesis, and evidence if presented as the results of a test

of genetic engineering. The proportion of people who considered an event a coincidence showed a

direct correspondence to the posterior probability, with the difference between the two conditions

resulting from a difference in the prior probability of a causal relationship. Assuming that people

are accurately evaluating the likelihood ratio in favor ofh1 allows us to assess the values of these

prior beliefs, which are consistent across experimental procedures and with our intuitions about the

efficacy of psychic powers and genetic engineering.

The strength of coincidences

Experiment 1 suggests that the basic constituents of our definition of coincidences are

correct: that events are considered a coincidence when they provide support for an alternative

theory that is insufficient to convince us of its truth. We can now examine these constituents more

carefully. Under this account of coincidences, the likelihood ratio indicates the strength of a

coincidence, with higher likelihood ratios indicating more compelling coincidences. In the analysis

given in the previous section, we assumed that the likelihood ratio given in Equation 5 accurately

captured people’s assessment of the support thatd gave forh1 overh0. Whether people’s

assessment of the strength of coincidences corresponds to the likelihoodratio in favor ofh1 more

generally is an empirical question.

In exploring this question, we have the opportunity to examine people’s assessment of

coincidences in more realistic settings. The simplicity of coinflipping makes it an effective

example with which to explore formal models, but real coincidences, such as the bombing of

London, often involve more complex data and more elaborate theories. In these cases, detecting a

coincidence does not just involve recognizing an unusual pattern, butdoing so despite the presence

of some observations that do not express that pattern. These sophisticated inductive inferences

have parallels in other aspects of cognition. For example, many problems thatarise in cognitive
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development have exactly this character, requiring a child to notice a regularity that is expressed in

only a subset of the data. One such case is word learning: young children are able to learn the

relationship between the use of words and the appearance of the objects they identify, despite the

fact that only about 70% of the uses of a word by a parent occur whenthe child is attending to the

relevant object (Collins, 1977; Harris, Jones, & Grant, 1983).

We examined people’s judgments about the strength of coincidences from two different

kinds of data: spatial data, consisting of the locations of bombs, and temporal data, concerning the

dates of birthdays. These two cases have connections to two of the most prominent examples that

are used to argue for the irrationality of human reasoning about coincidences: the bombing of

London and the “birthday problem”. In each case, we investigated how well show that people’s

assessment of the strength of coincidences corresponds with the rational predictions of the

Bayesian account developed above.

Coincidences in space

John Snow’s inference to the cause of the Broad Street cholera outbreak and the mistaken

beliefs of the populace during the bombing of London were both based upon coincidences in space

– clusters in the locations of patients and bombs respectively. We will focus on coincidences that

arise from patterns of bombing, looking at a measure of the strength of coincidences based upon

two simple theories of bombing. Under the first theory,h0, each bomb has its own target at a

locationLi. Under the second theory,h1, the target of each bomb is determined probabilistically:

with probabilityα, the bomb is aimed at a common target at a locationLc; with probability1 − α,

the bomb has its own target, at a locationLi. We will assume that the point at which a bomb

explodes has a Gaussian distribution around the location of its target, with covariance matrixΣ,

and that targets are distributed uniformly throughout the region in which bombs fall,R.

The theoryh0 generates only one causal graphical model, denotedGraph 0 in Figure 4. In

this model, each bomb has a single target, and the points at which the bombs explode are
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independent. UsingXi to indicate the point at which theith bomb explodes,d = {x1, . . . , xNB
}

whereNB is the number of bombs. In the Appendix we show that the probability that a bomb

lands in a particular location underh0 is approximately uniform overR, as illustrated

schematically in Figure 5, with the likelihood forh0 being

P (d |h0) ≈
(

1

|R |

)NB

, (7)

where |R | is the area ofR.

Insert Figure 4 about here

Insert Figure 5 about here

The theoryh1 generates2NB causal graphical models, corresponding to each partition of

NB bombs into two sets, one in which each bomb has a unique target and one in which each bomb

shares a common target. Two causal graphical models generated by this theory with NB = 6 are

shown in Figure 4. EvaluatingP (d |h1) requires summing over all of these different causal

models, a procedure that is discussed in the Appendix. Evaluating this probability is facilitated by

the fact thath1 implies that eachXi is drawn from amixture of a uniform and a Gaussian, giving

P (d |Σ, p, `c) =

NB
∏

i=1

[P (xi |Li→Xi)P (Li→Xi |α) + P (X |Σ, `c, Lc→Xi)P (Lc→Xi |α)]

=

NB
∏

i=1

1 − α

|R | + α φΣ(xi, `c),

whereP (Li→Xi |α) is the probability thatbi has a unique target,P (Lc→Xi |α) is the probability

thatbi shares the common target, andφΣ(xi, `C) is the probability ofxi under a Gaussian
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distribution with meaǹ c and covariance matrixΣ. Each of these possibilities implies a different

distribution forXi, being uniform and Gaussian respectively, and their probabilities provide the

weights with which these distributions are mixed, being1 − α andα respectively. The resulting

mixture distribution is illustrated schematically in Figure 5. ComputingP (d |h1) reduces to the

problem of computing the marginal probability of data under a mixture distribution, a problem that

has been studied extensively in Bayesian statistics (e.g., Emond, Raftery, &Steele, 2001).

Equation 7 and the procedure described in the Appendix provide us with themeans of

computingP (d |h0) andP (d |h1), the basic constituents of the likelihood ratio indicating the

support that datad provide forh1. Experiment 2 was designed to investigate how well this quantity

predicts people’s assessment of the strength of coincidences in bombing.Participants were

informed thath0 was in fact the correct account of the data, meaning that any support for h1 would

constitute a coincidence. Under the Bayesian model outlined above, people’s assessment of the

strength of coincidences should be strongly affected by the properties of the datad. In particular,

the statistical evidence in favorh1 will be increased by the number of bombs that appear in a

cluster, in both absolute and relative numbers. The location and size of the cluster should have

weaker effects. We constructed a set of stimuli that varied along these dimensions, and examined

whether people’s judgments of the strength of coincidences demonstrated the predicted sensitivity

to these statistical properties.

Experiment 2

Method

Participants. Participants were 235 undergraduates, participating for course credit.

Stimuli. Stimuli were 12 images containing points at different locations within a 10 by10

square, ranging from -5 to 5 in two directions. No markers on the axes indicated this scale, but we

provide the information to give meaning to the parameters listed below. Nine of these stimuli were

generated from a mixture of a uniform and a Gaussian distribution, with parameters selected to
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span four different dimensions – number of points, proportion of points within the cluster, location

of the cluster, and spread of the cluster.

The basic values of the parameters used in generating the stimuli wereNB = 50, α = 0.3,

`c =

[

3

3

]

, andΣ =

[

1

2
0

0 1

2

]

, which were varied systematically to produce the range of stimuli

described above. The parameter values used to generate these stimuli aregiven in Table 1. The

other three stimuli were generated by sampling 50 points from the uniform distribution. All 12

images are shown in Figure 6, with repetition of the stimulus embodying the basic parameter

values accounting for the presence of 15 images in the Figure. The stimuli were delivered in a

questionnaire.

Insert Table 1 about here

Procedure. Participants completed the questionnaire as part of a bookletof other short

psychology experiments. Each participant saw all 12 images, in one of six random orders. The

instructions on the questionnaire read as follows:

During World War II, the city of London was hit repeatedly by German bombs. While

the bombs were found to be equally likely to fall in any part of London, people in the

city believed otherwise.

Each of the images below shows where bombs landed in a particular part of

London for a given month, with a single point for each bomb. On the lines at the

bottom of the page corresponding to each image, please rate HOW BIG A

COINCIDENCE the distribution of bombs seems to you. Use a scale from 1 to 10,

where 1 means ‘Very small (or no) coincidence’, and 10 means ‘Very bigcoincidence’.

The images were labelled with alphabetical letters, and correspondingly labelled lines were

provided at the bottom of the questionnaire for responses.
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ResultsandDiscussion.

The mean responses are shown in Figure 6. Planned comparisons were computed for each

of the manipulated variables, with statistically significant outcomes for number (F = 22.89,

p < .0001), proportion (F = 10.18, p < .0001), and spread (F = 12.03, p < .0001), and a

marginally significant effect of location (F = 2.0, p = 0.14). The differences observed among

responses to the three sets of points generated from the uniform distribution were not statistically

significant (F = 0.41, p = 0.66). All planned comparisons haddf = 2, 2574, andMSE = 6.21.

Insert Figure 6 about here

Values ofP (d |h1)

P (d |h0)
were computed for each image using the method outlined in the

Appendix. The predictions of the Bayesian model are shown in Figure 6. The ordinal correlation

between the raw statistical evidence and the responses wasρ = 0.965. The values shown in the

figure are a result of the transformationy = sign(x)abs(x)γ for x = log P (d |h1)

P (d |h0)
andγ = 0.32,

which gave a linear correlation ofr = 0.981.7 People’s assessment of the strength of coincidences

shows a remarkably close correspondence to the predictions of this Bayesian account. The main

discrepancy is an overestimate of the effect of strength of coincidence for the stimulus with the

least spread. This may have been a consequence of the fact that the dots indicating the bomb

locations overlapped in this image, making it difficult for participants to estimate thenumber of

bombs landing in the cluster.

Coincidences in date

How often have you been surprised to discover that two people share thesame birthday?

Matching birthdays are a canonical form of coincidence, and are oftenused to demonstrate errors

in human intuitions about chance. The “birthday problem” – evaluating the number of people that

need to be in a room to provide a 50% chance of two sharing the same birthday– is a common
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topic in introductory statistics classes, since students are often surprised todiscover that the answer

is only 23 people. In general, the number of people required to have a 50%chance of a match on a

variable withk alternatives is approximately
√

k, since there are(NP

2 ) ≈ N2
P opportunities for a

match betweenNP people. Using a set of problems of this form that varied ink, Matthews and

Blackmore (1995) found that people expectNP to increase linearly withk, explaining why such

problems produce surprising results. Diaconis and Mosteller (1989) argued that many coincidences

are of similar form to the birthday problem, and that people’s faulty intuitions about such problems

are one source of errors in reasoning about coincidences.

In this section, we will examine how people evaluate coincidences in date, through a novel

“birthday problem”: assessing how big a coincidence it would be to meet a group of people with a

particular set of birthdays. In contrast with the tasks that have been used to argue that coincidences

are an instance of human irrationality, this is not an objective probability judgment. It is a

subjective response, asking people to express their intuitions. In many ways, this is a more natural

task than assessing the probability of an event. It is also, under our characterization of the nature of

coincidences, a more useful one: knowing the probability of an very specific event, such as

meeting people with certain birthdays, is generally less useful than knowing how much evidence it

provides for the theory that a causal process was responsible for bringing that event about. By

examining the structure of these subjective responses, we have the opportunity to understand the

principles that guide them.

Imagine you went to a party, and met people with a set of birthdays such as{August 3,

August 3, August 3, August 3}. Assume we have two possible theories that could explain this

event. One theory,h0, asserts that the presence of people at the party is independent of their

birthday. This theory generates one causal graphical model for any number of peopleNP , which is

denotedGraph 0 in Figure 7. The other theory,h1, suggests that, with probabilityα, the presence

of a person at the party was dependent upon that person’s birthday.As with the theory of bombing

presented above, this theory generates2NP causal graphical models forNP people, consisting of
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all partitions of those people into subsets whose presence either dependsor does not depend upon

their birthday. Figure 7 shows two causal graphical models generated byh1 with NP = 6. A

priori, h0 seems far more likely thanh1, so a set of birthdays that provides support for

h1 constitutes a coincidence.

Insert Figure 7 about here

The datad in this setting consists of the birthdays of the people encountered at the party.

Since only the people present at the party can be encountered, these areconditional data. IfBi

indicates the birthday of theith person andPi indicates the presence of that person at the party, our

data are the values ofBi conditioned onPi being positive for alli. Underh0, Bi andPi are

independent andBi is drawn uniformly from the set of 365 days in the year, as illustrated in Figure

8, so we have

P (d |h0) =

(

1

365

)N+

P

, (8)

whereN+
P is the number of people who are present at the party.

Insert Figure 8 about here

EvaluatingP (d |h1) is slightly more complicated, due to the possible dependence ofBi on

Pi and the functional form of that dependence. We need to specify how people’s birthdays

influenced their presence at the party. A simple assumption is that there is a “filter” set of

birthdays,B, and only people whose birthdays fall within that set can be present. As afirst step

towards evaluatingP (d |h1), we can consider the probability ofd conditioned on a particular filter.

There are two possibilities for the component of the causal structure that corresponds to each

person: with probability1 − p, Bi andPi are independent, and with probabilityα, Bi andPi are
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dependent. IfBi andPi are independent, the probability ofBi conditioned onPi is just the

unconditional probability ofBi, which is uniform over{1, . . . , 365}. If Bi andPi are dependent,

the distribution ofBi conditioned onPi is uniform over the setB, sincePi has constant probability

whenBi ∈ B and zero probability otherwise. It follows that the probability distribution foreach

Bi conditioned onPi being positive is a mixture of two uniform distributions, and

P (d | B) =

N+

P
∏

i=1

[

1 − α

365
+ I(bi ∈ B)

α

| B |

]

, (9)

whereI(·) is an indicator function that takes the value 1 when its argument is true and 0 otherwise,

and | B | is the number of dates inB. The nature of this mixture distribution is illustrated

schematically in Figure 8.

We can use Equation 9 to computeP (d |h1). If we define a prior,P (B) on filtersB, we have

P (d |h1) =
∑

B

P (d | B)P (B). (10)

The extent to which a set of birthdays will provide support forh1 will thus be influenced by the

choice ofP (B). We want to define a prior that identifies a relatively intuitive set of filters that

might be applied to a set of birthdays to determine the presence of people at aparty. An

enumeration of such regularities might be: falling on the same day, falling on adjacent days, being

from the same calendar month, having the same calendar date (e.g., January17, March 17,

September 17, December 17), and being otherwise close in date. With 365 days in the year, these

five categories identify a total of 11,358 different filtersB: 365 consisting of a single day in the

year, 365 consisting of neighboring days, 12 consisting of calendar months, 31 consisting of

specific days of the month, and 10,585 having to do with general proximity in date (from 3-31

days). This is not intended to be an exhaustive set of the kinds of regularities one could find in

birthdays, but is a simple choice for the values thatB could take on that allows us to test the
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predictions of the model. Given this set, we will define a prior,P (B), by taking a uniform

distribution over the filters in the first four categories, and giving all 10,585 filters in the fifth

category as much weight as a single filter in one of the first four. Equation 10 can then be evaluated

numerically by explicitly summing over all of these possibilities.

The second term in Equation 9 has an important implication: the influence of a filter B on

the assessment of a coincidence decreases as that filter admits more dates.Thus, while the set

{August 3, August 3, August 3, August 3} consists of birthdays that all occur in August, the major

contribution to the support forh1 having been responsible for producing this outcome is the fact

that all four birthdays fall on the same day. This sensitivity to the size of the filterB is equivalent to

the “size principle” that plays a key role in Bayesian models of concept learning and generalization

(Tenenbaum, 1999a; 1999b; Tenenbaum & Griffiths, 2001). The filtering procedure by which

people come to be present at the party underh1 is one means of deriving this size principle.

We can use Equations 8 and 10 to compute the likelihood ratioP (d |h1)

P (d |h0)
for any set of

birthdays. Experiment 3 compared this likelihood ratio with human ratings of the strength of

coincidence for different sets of birthdays. The key prediction is that sets of birthdays correspnding

to small filters will constitute strong coincidences.

Experiment 3

Method

Participants. Participants were 93 undergraduates, participating for course credit.

Stimuli. Stimuli were sets of dates, chosen to allow assessment of the degree ofcoincidence

associated with some of the regularities enumerated above. Fourteen potential relationships

between birthdays were examined, using two choices of dates. The sets ofdates included: 2, 4, 6,

and 8 apparently unrelated birthdays for which each date was chosen from a different month, 2

birthdays on the same day, 2 birthdays in 2 days across a month boundary,4 birthdays on the same

day, 4 birthdays in one week across a month boundary, 4 birthdays in the same calendar month, 4
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birthdays with the same calendar dates, and 2 same day, 4 same day, and 4 same date with an

additional 4 unrelated birthdays, as well as 4 same week with an additional 2 unrelated birthdays.

These dates were delivered in a questionnaire. One of the two choices ofdates, in the order

specified above, was:

February 25, August 10

February 11, April 6, June 24, September 17

January 23, February 2, April 9, July 12, October 17, December 5

February 22, March 6, May 2, June 13, July 27, September 21, October 18, December 11

May 18, May 18

September 30, October 1

August 3, August 3, August 3, August 3

June 27, June 29, July 1, July 2

January 2, January 13, January 21, January 30

January 17, April 17, June 17, November 17

January 12, March 22, March 22, July 19, October 1, December 8

January 29, April 26, May 5, May 5, May 5, May 5, September 14, November 1

February 12, April 6, May 6, June 27, August 6, October 6, November 15, December 22

March 12, April 28, April 30, May 2, May 4, August 18

Procedure. Participants completed the questionnaire as part of a bookletof other short

psychology experiments. Each participant saw one choice of dates, with the regularities occurring

in one of six random orders. The instructions on the questionnaire read as follows:

All of us have experienced surprising events that make us think ‘Wow, what a

coincidence’. One context in which we sometimes encounter coincidences isin

finding out about people’s birthdays. Imagine that you are introduced tovarious

groups of people. With each group of people, you discuss your birthdays. Each of the
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lines below gives the birthdays of one group, listed in calendar order.

Please rate how big a coincidence the birthdays of each group seem to you. Use a

scale from 1 to 10, where 1 means ‘Very small (or no) coincidence’, and10 means

‘Very big coincidence’.

The sets of dates were then given on separate lines, in calendar order within each line, with a space

beside each set for a response.

ResultsandDiscussion

The mean responses for the different stimuli are shown in Figure 9. The birthdays differed

significantly in their judged coincidentalness (F (13, 1196) = 185.55, MSE = 3.35, p < .0001).

The figure also shows the predictions of the Bayesian model. The ordinal correlation between the

likelihood ratio P (d |h1)

P (d |h0)
and the human judgments wasρ = 0.921. The values shown in the Figure

were obtained usingγ = 0.60, and produced a linear correlation ofr = 0.958.

The predictions of the Bayesian model correspond closely to people’s judgments of the

strength of coincidences. Each of the parts of this model – the size principle, the set of filters, and

the prior over filtersP (B) – contributes to this performance. Figure 9 illustrates the contributions

of these different components: the panel labelled “Without sizes” showsthe effect of removing the

size principle; “UniformP (B)” shows the effect of removingP (B); and “Unit weights” shows the

effect of removing both of these elements of the model and simply giving equal weight to each

filter B consistent withBi. We will discuss how each of these modifications reduces the fit of the

model to the data, but the basic message is clear: simply specifying a set of regularities is not

sufficient to explain people’s judgments. The model explains many of the subtleties of people’s

performance on this task as the result of rational statistical inference.

Insert Figure 9 about here
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The “Without sizes” model shown in Figure 9 replaces theα
| B | term in Equation 9 with just

p, removing the effect of the size principle. The model fit is significantly worse, with a rank-order

correlation ofρ = 0.12, andγ = 1.00 giving a linear correlation ofr = −0.079. The worse fit of

this model illustrates the importance of the size of the extension of the judged event in determining

the strength of a coincidence, consistent with Falk’s (1981-1982; 1989) results. This effect can be

seen most clearly by examining the stimuli that consist of four dates:{August 3, August 3, August

3, August 3} is more of a coincidence than{January 17, April 17, June 17, November 17}, which

is in turn more of a coincidence than{January 2, January 13, January 21, January 30}. This

ordering is consistent with the size of the regularities they express: a set of four birthdays falling

on August 3 cover only one date, August 3, while there are 12 dates covered by the set

corresponding to dates falling on the 17th day of the month, and 31 dates covered by the set

corresponding to dates in January.

The size of the extension of the set is not the only factor influencing the predictions of the

Bayesian model. While the size ofB is important in determiningP (d |h1), the priorP (B) also has

a large effect. In the basic model,P (B) gives less weight to the extremely large number of

regularities corresponding to intervals of between 3 and 31 days. The importance of this prior over

sets is illustrated by the “UniformP (B)” model, which gives equal probability to all of the filters

B. This model gives too much weight to the filters that correspond to intervals of dates, resulting in

a fit of ρ = 0.776, andr = 0.806 with γ = 0.80. The main error made by this model is not

predicting the apparent equivalence of{January 17, April 17, June 17, November 17} and{June

27, June 29, July 1, July 2}, despite the fact that the former is of size 12 and the latter of size 7. In

the basic model, the effect of the sizes of the regularities is overwhelmed byP (B), corresponding

to the fact that dates falling within seven days over a month boundary is not aparticularly salient

regularity.

The effects of the size principle andP (B) interact in producing the good performance of the

basic Bayesian model. These two factors determine which regularities influence the strength of a
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coincidence. Simply having a sensible set of filters provides no guaranteeof a good model of

coincidence judgments. This can be seen in the “Unit weights” model, in which all filters B are

given unit weight, removing the size principle and using a uniform priorP (B). The model gives a

fit of ρ = 0.099, andr = 0.158 with γ = 0.002. In this model, the major contributors to the

strength of a coincidence are the number of dates and their proximity.

The main discrepancy between the basic Bayesian model and the data is the ordering of the

random dates. The model predicts that the longer lists of unrelated dates should be considered less

of a coincidence, while people seem to believe the opposite. To explore this curious effect further,

we conducted a second survey with a separate group of 73 undergraduates, showing them a subset

of 8 of the 14 stimuli used in the experiment that included the four sets of random dates. The

participants were asked to rate the strength of the coincidences, as before, and to state why they

gave the rating they did. Of the 73 participants, 49 did not identify any kind ofpattern in the

random dates, 23 noted a regularity, and one gave a high rating becauseof a match with her own

birthday. The regularity identified by the 23 subjects had to do with the fact that the “random”

birthdays were suspiciously evenly spaced throughout the year, not overlapping at all in month or

date. This slight discrepancy is thus due to the fact that people are sensitive to regularities that

were not included in our simple model.

Causes and coincidences

Experiments 2 and 3 show that the likelihood ratio in favor ofh1 is a good predictor of

people’s assessment of the strength of coincidences, as predicted by our account of coincidences.

Since this likelihood ratio is intended to measure the evidence for a theory, a further prediction of

our account is that the strength of coincidences should correlate with the strength of evidence for

that theory in contexts where a causal relationship is more plausible. To testthis hypothesis, we

conducted two experiments using stimuli with the same statistical structure as thoseused in

Experiments 2 and 3, but explicitly asking people to make judgments about the probability that a
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hidden cause was present. Our account predicts that people’s judgment of the evidence for causal

structure should correspond to their assessments of the strength of coincidences.

Experiment 4

Method

Participants.

Participants were 156 undergraduates, participating for course credit.

Stimuli.

The stimuli were those used in Experiment 2.

Procedure.

The experimental procedure was identical to that used in Experiment 2, except participants

were provided with a different set of instructions. The instructions changed the context from one in

which they were explicitly evaluating the strength of coincidences to one in which they were

evaluating the evidence in favor of a hidden cause. The instructions readas follows:

A researcher in Madagascar is studying the effects of environmental resources on the

location of lemur colonies. She has studied twelve different parts of Madagascar, and

is trying to establish which areas show evidence of being affected by the distribution

of resources in order to decide where she should focus her research. Each of the

images below shows the locations of lemur colonies in one of the areas the researcher

has studied. For each image, please rate HOW LIKELY you think it is that there is

some underlying cause influencing the places where the lemurs choose to live. Use a

scale from 1 to 10, where 1 means ‘very UNLIKELY to have an underlyingcause’,

and 10 means ‘very LIKELY to have an underlying cause’.
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ResultsandDiscussion

As in Experiment 2, planned comparisons were computed for each of the manipulated

variables, with statistically significant outcomes for number (F = 54.91, p < .0001), proportion

(F = 54.27, p < .0001), location (F = 13.07, p < .0001) and spread (F = 51.10, p < .0001) The

differences observed among responses to the three sets of points generated from the uniform

distribution were not statistically significant (F = 0.64, p = 0.47). All planned comparisons had

df = 2, 1705, andMSE = 3.11. The mean responses are shown in Figure 10, together with the

mean responses from Experiment 2. The two sets of responses are extremely similar, with a linear

correlation ofr = 0.995 and a rank-order correlation ofρ = 0.993.

Insert Figure 10 about here

Experiment 5

Method

Participants.

Participants were 120 undergraduates, participating for course credit.

Stimuli.

The stimuli were those used in Experiment 3.

Procedure.

The experimental procedure was identical to that used in Experiment 3, except participants

were provided with a different set of instructions. The instructions changed the context from one in

which they were explicitly evaluating the strength of coincidences to one in which they were

evaluating the evidence in favor of a hidden cause. The instructions readas follows:
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A parcel-shipping company has been keeping meticulous records on the habits of its

customer base over the past year. For each customer who sent more thanone package,

the company recorded the date on which each of those packages was sent. The

company’s marketing department is trying to figure out why different customers

shipped packages when they did. They believe that for some customers, there is some

underlying cause, reason, or occasion common to some of their shipments that

explains why those packages were sent on the particular days that they were. In

contrast, for other customers, each package sent was independent of the others, with

no common underlying cause, reason, or occasion. The shipping company would like

to identify those customers whose shipments had an underlying cause, in order to offer

them special discounts in the future.

The dates on which several customers sent packages are shown in calendar order

below. Each set of dates corresponds to one customer’s record of shipments for the

year; each date corresponds to a single shipment by that customer. For each customer,

please rate HOW LIKELY you think it is that there is some underlying cause, reason

or occasion responsible for SOME OF their shipments. The alternative is that all the

customer’s shipments are independent, and none of them have a common cause. Use a

scale from 1 to 10, where 1 means ‘very UNLIKELY some shipments have an

underlying cause’, and 10 means ‘very LIKELY some shipments have an underlying

cause’.

ResultsandDiscussion

As in Experiment 3, there was an overall effect of the set of dates, (F (13, 1547) = 36.53,

MSE = 10.55, p < .0001). The mean responses are shown in Figure 11, plotted against the mean

responses from Experiment 3. The overall pattern of responses is very similar in the two

experiments, with a linear correlation ofr = 0.927 and an ordinal correlation ofρ = 0.903.
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The only stimuli that deviate from the otherwise strong linear relationship between the

results of the two experiments are C and D, which both contain a regularity together with several

unrelated dates. This difference may have been a result of less willingness to accept partial

regularities as indicating the presence of an underlying cause when reasoning about packages. We

evaluated this hypothesis by examining the consequences of changing the assumptions about the

distribution ofα, the proportion of dates that should be drawn from the regularity, in our Bayesian

model. Assuming a uniform distribution overα, as was done for the birthday data from

Experiment 3, results in a linear correlation between model and data ofr = 0.840 with γ = 0.59.

If instead we assume thatα is drawn from a distribution that is peaked near1, we obtain a better fit

to the data. For example, assuming thatα follows a Beta(9.99,0.01) distribution, which has a mean

atα = 0.999, givesr = 0.916 with γ = 1. This is consistent with people having a stronger

expectation that a causal relationship would affect all dates in the case ofthe packages.

Insert Figure 11 about here

General Discussion

We defined a coincidence as an event that provides evidence for an alternative to a current

theory, but not enough evidence to convince us to accept that alternative. More formally, a

coincidence is an event where the posterior odds in favor of a hypothesis h1 over our current

beliefsh0 remain middling as the consequence of a high likelihood ratio and low prior odds. This

definition makes three predictions: that an event can transform from a coincidence to unambiguous

evidence for an alternative theory as the prior odds or likelihood ratio increase; that the likelihood

ratio indicates the strength of a coincidence; and that the strength of a coincidence should be the

same as the amount of evidence that an event provides in favor of that alternative theory. Our

experiments support these predictions. In Experiment 1, people’s interpretation of an event as
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coincidence or evidence was directly affected by manipulating the prior odds and likelihood ratios

of different stimuli. In Experiments 2 and 3, the likelihood ratios associated withdifferent kinds of

structure embedded in noise predicted people’s judgments about the strength of coincidences. In

Experiments 4 and 5, these judgments correlated almost perfectly with people’s assessments of the

evidence an event provided for a particular theory.

We began this paper by observing an apparent paradox associated withcoincidences: that

the same events seem to be involved in both our most grievous errors of reasoning, and our greatest

causal discoveries. Our account of coincidences provides some insight into this paradox. Under

our definition, coincidences provide an opportunity to make a discovery that is inconsistent with

our current account of how the world works. The low prior odds in favor of h1 indicates that this

theory is rendered implausible by the remainder of a learner’s knowledge,while the high

likelihood ratio suggests thath1 should be taken seriously. The ultimate outcome of accepting the

conclusion suggested by a coincidence depends on the truth of one’s current theory. If one’s

current theory is true, then one will be led to a false conclusion. If one’scurrent theory is false,

then one might make a significant discovery.

Formulated in these terms, it becomes clear that the utility of attending to coincidences

depends upon the state of our knowledge. If our understanding of the world is accurate, then

coincidences can only be false alarms: cases where events that arise bychance provide support for

an alternative theory,h1. Our susceptibility to being misled by coincidences is thus partly a

consequence of our success in causal discovery making one of the major sources of clues

redundant. For anybody with a less accurate account of how the world works than a modern adult,

such as an early scientist or a young child, coincidences are a rich source of information as to how

a theory might be revised, and should be given great attention. This account also explains why

many of the most compelling coincidences, such as the September 11 lottery results, are associated

with mysticism. Sinceh0 represents the sum of our knowledge of nature,h1 will have to postulate

the existence of a supernatural force.
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When combined with the results of our experiments, this view of coincidences provides the

opportunity to gain a deeper understanding of their role in both false conclusions and meaningful

discoveries. In the remainder of the paper, we will discuss these two aspects of coincidences more

detail, considering the implications of our results for claims about human rationality, and how

coincidences play a role in theory change.

Thelocusof humanirrationality

‘Singular coincidence, Holmes. Very smart of you to notice it, but rather uncharitable

to suggest that it was cause and effect.’

Sir Arthur Conan Doyle (1986b),Theadventureof thedyingdetective, p. 396.

In the Bayesian approach to causal induction outlined in this paper, causal inferences are the

result of combining two kinds of information: the evidence that the particular datad provide for a

theory; and the a priori plausibility of the existence of that structure. These two kinds of

information are expressed by the likelihood ratio and the prior odds in Equations 3 and 4. Under

this approach, three factors could lead to errors in evaluating the existence of causal structure:

failing to evaluate the evidence provided by a particular event, failing to accurately assess the

plausibility of the suggested theory, or failing to combine these two sources ofinformation

appropriately. Using this framework, we can ask which of these factors isresponsible for the false

conclusions about causal structure that people sometimes reach when they experience

coincidences.

The results of the experiments presented above can be used to identify the locus of human

irrationality with respect to coincidences. Experiment 1 showed that peoplecould integrate prior

knowledge with statistical evidence appropriately in evaluating coincidences. Experiments 2 and 3

(as well as Experiments 4 and 5) indicate that people are very good at assessing the support that an

event provides for a theory: the likelihood ratio in favor ofh1 gave a remarkably good fit to human

judgments. Thus, of the three factors that could lead to errors, one remains. Our results suggest
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that when people are led to believe theories that are false, they do so as a consequence of

over-estimating theapriori plausibility of those theories, as reflected in the prior odds.

The suggestion that people can accurately assess the evidence that a set of events provides

for a theory is consistent with some of the ideas that appear in the literature onjudgment and

decision making. Tversky and Koehler (1994) argued that many of the irrational aspects of

people’s probability judgments can be understood by viewing these judgmentsas reflecting the

support that a set of observations provide for a particular hypothesis. In order to use this

information, people have to be able to actually compute some measure of support. While various

measures have been suggested, a Bayesian measure of support similar toour measure of evidence

has been found to provide reasonable results on at least some cognitivetasks (Koehler, White, &

Grondin, 2003). This is consistent with the results of Experiments 2 and 3 (and Experiments 4 and

5). However, accurately assessing the support for a theory does not guarantee a valid conclusion

about the truth of that theory, just as accurate results from a statistical analysis do not guarantee a

valid conclusion. Reaching the right conclusion requires having well-calibrated priors.

One suggestive hypothesis as to why people might over-estimate the a prioriplausibility of

certain theories comes from developmental psychology. Gopnik and Meltzoff (1997) argue that the

scientific behavior of adults is an extension of the capacity for causal discovery that is essential for

the cognitive development of children. It is quite understandable that children might be willing to

believe the theories suggested by coincidences, since they are surrounded by events that really do

involve novel causal relationships. Small children are justified in being conspiracy theorists, since

their world is run by an inscrutable and all-powerful organization possessing secret

communications and mysterious powers – a world of adults, who act by a system of rules that

children gradually master as they grow up. If our scientific capacities reallyare for solving these

childhood mysteries, then our disposition to believe in the existence of unexpected causal

relationships might lag behind our current state of knowledge, leading us tosee causes where none

exist.
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Further opportunities for erroneous inferences are provided by cases where suspicious

coincidences are not tested through further investigation. If we examine the contexts in which

coincidences lead people to false beliefs, we see that many of them involve situations where it is

hard to conduct convincing experiments that invalidate a hypothetical causal relationship.

Synchronicity, extrasensory perception, and other paranormal forces are all quite slippery subjects

of investigation, for which it is challenging to construct compelling experimental tests (e.g.,

Diaconis, 1978). The bombing of London involved a similarly untestable hypothesis, compounded

by the fear and uncertainty associated with being under attack. The caseswhere coincidences have

resulted in rational discoveries, in science and detective stories, are allcases where a coincidence

suggests a hypothesis which can be established through further investigation. Without this kind of

detailed investigation, all but the most compelling coincidences should be treated as nothing more

than suspicious.

Eventsandnon-events

‘Is there any point to which you would wish to draw my attention?’

‘To the curious incident of the dog in the night-time.’

‘The dog did nothing in the night-time.’

‘That was the curious incident,’ remarked Sherlock Holmes.

Sir Arthur Conan Doyle (1986b),SilverBlaze, p. 472.

Traditional explanations of why certain coincidental events, such as meeting an

acquaintance in a distant place, should not be considered surprising focus on the fact that when we

experience such events, we tend not to consider all of the other moments atwhich such an event

could have occurred, but did not. This explanation is based upon the ideathat coincidences are

unlikely events: once the large number of opportunities for an improbable event to occur are taken

into account, the probability that it would occur on any one of them becomes quite high, and thus

we should not be surprised when such an event occurs. Our Bayesian framework can clarify this
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argument. In particular, it can be used to distinguish between two propertiesof events that are

conflated in these traditional explanations: being surprising, and justifyingthe conclusion that a

causal relationship exists.

Assume that in addition to the eventd, we have a set of “non-events”d∗, which are more

probable under the theoryh0 than under the theoryh1. In our Bayesian framework, these

non-events should influence the assessment ofd as a coincidence by affecting the prior odds.

Throughout the rest of the paper, we have described the prior odds as reflecting theapriori

plausibility of an alternative theory. However, judgments areapriori only in the sense that they

describe people’s beliefs without knowledge ofd – they will still be informed by all other available

evidence. The prior odds used in a Bayesian inference reflect the prior probability of two

hypotheses, taking into account all sources of evidence other than the data that is being considered

in that inference. Thus, if the other evidence that is available isd∗, the posterior odds in favor of

h1 will be

P (h1 | d, d∗)

P (h0 | d, d∗)
=

P (d |h1)

P (d |h0)

P (h1 | d∗)
P (h0 | d∗)

(11)

whered andd∗ are assumed to be independent, conditioned onh1 or h0.

Comparing Equation 11 with Equation 3, the key difference is that the non-events,d∗, are

taken into account in determining the prior odds when such information is available. Sinced∗ is

more consistent withh0 thanh1, the prior odds in favor ofh1 will be decreased. Under our

definition of a coincidence, the event associated withd will still be considered a coincidence,

provided the likelihood ratio in favor ofh1 is sufficiently high. However, takingd∗ into account

will result in a significant decrease in the posterior odds. Thus, the influence of many unfulfilled

opportunities for an event to occur is not to decrease its potential to be surprising, but to lessen the

extent to which one should believe that the suggested causal relationship actually exists.

In the previous section, we argued that our results suggest that human irrationality

concerning coincidences could be localized in miscalibrated prior odds. The importance of
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non-events in determining these prior odds provides another explanation for why they might be

miscalibrated. Detecting non-events – that is, being aware of all of the moments when an event

fails to occur – requires significantly more effort than noticing that an event actually took place.

Under-estimating the number of such non-events would lead to an overly permissive prior

probability in favor of theories that predict novel causal structure. Thus, one reason why many

people reach less rational conclusions as a result of coincidences thanthose drawn by Sherlock

Holmes may be that, unlike Holmes, most of us fail to notice when dogs do not bark in the

night-time.

Coincidencesandtheorychange

Many cognitive scientists have suggested that the growth and organizationof knowledge can

be understood by examining similar processes in scientific theories (Carey,1985; Gopnik &

Meltzoff, 1997; Karmiloff-Smith, 1988; Keil, 1989; Murphy & Medin, 1985). One of the major

problems that arises in this “theory theory” is understanding the process of theory change. The

formal analyses we have presented in this chapter have characterized coincidences as involving

data that provide support for a theory that has low a priori probability. Coincidences thus constitute

an opportunity to discover that one’s current theory of how the world works is false. This

characterization of coincidences suggests that they may play an important role in theory change,

similar to the role of “anomalies” in accounts of scientific discovery in philosophy of science.

The theory theory draws extensively upon work in philosophy of science, and in particular

upon Kuhn’s (1970) analysis of science in terms of a succession of scientific revolutions. One of

the major topics of Kuhn’s work is the factors contributing to scientific discovery and subsequent

theoretical change. Principal among these factors is the growing awareness of “anomalies,” with

Kuhn (1970) claiming that ‘discovery commences with the awareness of anomaly, i.e., with the

recognition that nature has somehow violated the paradigm-induced expectations that govern

normal science’ (p. 52). Kuhn (1970) argued that the process of discovery often follows a
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particular course:

Initially, only the anticipated and usual are experienced even under circumstances

where anomaly is later to be observed. Further acquaintance, however,does result in

awareness of something wrong or does relate the effect to something that has gone

wrong before. That awareness of anomaly opens a period in which conceptual

categories are adjusted until the initially anomalous has become the anticipated. At

this point the discovery has been completed. (p. 64)

Anomalies can also be responsible for large-scale theoretical change, inducing a crisis that is

resolved by the development of a new theory. However, Kuhn (1970) noted that ‘if an anomaly is

to evoke crisis, it must usually be more than just an anomaly’ (p. 82).

Anomalous scientific results can be of two kinds. The strongest kind of anomaly is an event

that is impossible under a particular scientific theory, having zero probability. Such an event

contributes infinite evidence against the theory, and suggests that it should be replaced. However,

most anomalies are of a different kind: events that are improbable under atheory. Salmon (1990)

suggested that a Bayesian approach to comparing theories might be consistent with Kuhn’s

characterization of theory change. Salmon characterized an anomaly as ‘a phenomenon that

appears to have a small, possibly zero, likelihood given that theory’ (1990, p. 193). This assertion

is similar to the claim that coincidences are unlikely events, defining anomalies only in terms of

their probability under the current theory and not considering alternatives. Just as we can construct

cases in which events are equally unlikely but not equally coincidental, we can construct cases in

which events are equally unlikely but not equally anomalous. A full account of anomalies needs to

compare this likelihood with some alternative, as in our account of coincidences.

The consistency of Salmon’s (1990) statistical definition of an anomaly with theaccounts

that appear in the literature on coincidences suggests that there may be somecorrespondence

between the two notions. Kuhn’s informal characterization of anomalies is very similar to our

intuition behind our formal definition of coincidences: anomalies are patternsof results that
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suggest a structure not predicted by the current theory, which can come to motivate theoretical

change once sufficient evidence mounts. Kuhn’s (1970, p. 64) description of the process by which

anomalies lead to discoveries bears a remarkable similarity to the process by which mere

coincidences become suspicious. Initially, a few surprising coincidenceswill be dismissed as the

result of chance. However, as one comes to consider the possibility of other processes being

involved, and as the number of coincidences increases, the evidence provided by this set of events

begins to promote suspicions. Further exploration of the source of these events might reveal an

unexpected causal relationship. Once one is aware of this relationship, the events that were

previously coincidences become anticipated, and merely provide further evidence for a known

relationship. Likewise, the statement that crises are provoked by anomaliesthat are not just

anomalies expresses the same sentiment as our notion of suspicious coincidences – in order to

result in a change in beliefs, a coincidence must be more than just a coincidence.

Conclusion

Coincidences pose an intriguing paradox, playing key roles both in significant discoveries

and in propagating false beliefs. Resolving this paradox requires going beyond the common idea

that coincidences are just unlikely events, and considering their relationship to causality. We have

argued that coincidences are events that naturally arise in the process of causal induction,

providing support for an alternative to a current theory, but not enough support to convince us to

accept that alternative. We encounter coincidences when our data provide evidence that goes

against our expectations, and are central to the process of making new discoveries. By attending to

coincidences, we have the opportunity to discover that our beliefs are false, and to develop more

accurate theories. Our sensitivity to coincidences is not just a source ofcurious tales and irrational

conclusions – it is one of the cognitive capacities that makes causal discovery possible, both in

science and everyday life.
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Appendix

Bayesiancoinflipping

If d is a sequence ofN coinflips producingNH heads, thenP (d |h0) =
(

N
NH

)

(1
2)N . To

compute,P (d |h1), we need to define a prior distribution onω, the probability that a given flip

comes up heads underh1. If we define a prior distributionP (ω |h1), then we can compute

P (d |h1) =

∫ 1

0
P (d |ω, h1)P (ω |h1) dω

=

∫ 1

0

(

N
NH

)

ωNH (1 − ω)N−NH P (ω |h1) dω. (12)

One possibility is to takeP (ω |h1) to be a Beta(r,s) distribution over the range[0, 1], with

P (ω |h1) =
Γ(r + s)

Γ(r)Γ(s)
ωr−1(1 − ω)s−1,

whereΓ(r) =
∫ ∞
0 xr−1 exp{−x} is the generalized factorial function, withΓ(r) = (r − 1)! for

integer values ofr. Substituting this distribution into Equation 12, we obtain

P (d |h1) =
(

N
NH

) Γ(r + s)

Γ(r)Γ(s)

∫ 1

0
ωNH+r−1(1 − ω)N−NH+s−1dω

=
(

N
NH

) Γ(r + s)

Γ(r)Γ(s)

Γ(NH + r)Γ(N − NH + s)

Γ(N + r + s)
.

In the case wherer = s = 1, corresponding to a uniform distribution over values ofω between0

and1, this reduces to

P (d |h1) =
1

N + 1
,

from which it follows that the likelihood ratio in favor ofh1 is

P (d |h1)

P (d |h0)
=

2N

( N
NH

)(N + 1)
,
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which increasingly favorsh1 asNH deviates fromN/2.

EvaluatingBayesfactorsfor bombing

Underh0, each bomb has its own target, and targets are distributed uniformly over the

regionR. The location at which a bomb lands follows a Gaussian distribution, with the mean

being the target of the bomb and a covariance matrixΣ. UsingXi to indicate the location of the

ith bomb andLi to indicate the location of theith target, we have

P (xi |h0) =

∫

R
P (xi | `i)P (`i) d`i

=

∫

R
φΣ(xi, `i)

1

|R | d`i

≈ 1

|R | ,

wherexi is the value taken byXi, `i is the value taken byLi, andφΣ(x, `) is the value of the

multivariate Gaussian density with mean` and covariance matrixΣ at pointx. The approximation

in the last line is a consequence of the fact that if`i is near the boundary ofR, some of the mass of

P (xi | `i) will fall outsideR, making values ofxi near the boundary slightly less likely. This effect

will be negligible ifR is large relative toΣ, soP (xi |h0) is well approximated by a uniform

distribution overR. Consequently, withd consisting of the locations ofNB bombs,

d = {x1, . . . , xNB
}, we have

P (d |h0) =

(

1

|R |

)NB

,

since the locations of the bombs are assumed to be independent.

Underh1, the target of each bomb is determined probabilistically: with probabilityα, the

bomb is aimed at a common target at a locationLc; with probability1 − α, the bomb has its own

target, at a locationLi. ComputingP (d |h1) for d = {x1, . . . xNB
} requires evaluating

P (d |h1) =

2NB−1
∑

i=0

[
∫

R

∫

P (d |Σ, `c,Graph i)P (Σ)P (`c) dΣ d`c

]
∫ 1

0

P (Graph i |α)P (α) dα.
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we will explain how this sum can be computed evaluating the bracketed term forGraph2NB − 1,

in which allXi are drawn from a single Gaussian distribution, summing over the mean`c and

covarianceΣ, and then discussing how the result can be generalized. More details on the kind of

computations performed in this section can be found in Minka (2001).

We will assume a uniform prior oǹc, with P (`c) = 1/ |R | for `c ∈ R, and an inverse

Wishart prior onΣ with parametersI, k, whereI is thed-dimensional identity matrix. Under this

prior,

P (Σ) =
1

ckd |Σ | (k+d+1)/2
exp{−1

2
tr(Σ−1)},

whereckd = 2kd/2πd(d−1)/4
∏d

j=1 Γ((k + 1 − j)/2) andΓ is the standard gamma function (e.g.,

Boas, 1983). GivenΣ and`c, we have

P (d |Σ, `c, Graph 2NB − 1) =
1

| 2πΣ |NB/2
exp{−1

2

NB
∑

i=1

(xi − `c)
T
Σ

−1(xi − `c)}

=
1

| 2πΣ |NB/2
exp{−NB

2
(x̄ − `c)

T
Σ

−1(x̄ − `c) −
1

2
tr(SΣ

−1)},

wherex̄ is 1
NB

∑

xi andS =
∑NB

i=1(xi − x̄)(xi − x̄)T .

Using these definitions, we can express our integral as

P (d |Graph 2NB − 1) =

∫

R

∫

P (X |Σ, `c, Graph 2NB − 1)P (Σ)P (`c) dΣ d`c

=
1

|R | ckd(2π)dNB/2

∫

1

|Σ | (NB+k+d+1)/2
exp{−1

2
tr((S + I)Σ−1)}

[
∫

R
exp{NB

2
(x̄ − `c)

T
Σ

−1(x̄ − `C)} d`c

]

dΣ.

The bracketed integrand has the form of a Gaussian. The result is upper bounded by

| 2πΣ/NB | 1/2, with the tightness of the bound increasing with the size ofR relative toΣ/NB.
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This reduces the outer integral to

P (d |Graph 2NB − 1) ≈ 1

|R | ckd(2π)d(NB−1)/2N
d/2
B

∫

1

|Σ | (NB+k+d)/2
exp{−1

2
tr((S + I)Σ−1)} dΣ

=
1

|R |πd(NB−1)/2N
d/2
B |S + I | (NB+k−1)/2

d
∏

j=1

Γ((NB + k − j)/2)

Γ((k + 1 − j)/2)
, (13)

where the result follows from the fact that the integrand has the form of an inverse Wishart

distribution. The expression given in Equation 13 is a measure of the “Gaussianity” of d: it is the

probability ofd being produced from some Gaussian distribution, assessed under the priors

specified oǹ c andΣ.

This result can be extended to allow us to evaluate the probability ofd under any other

graph. For each graph, theXi can be partitioned into two sets: those that have their own target and

those that share the common target. TheXi that have their own target each have probability1|R | .

The probability of theXi that share a target can be computed using Equation 13.

The integral overα is straightforward to evaluate. TakingP (α) to be uniform over[0, 1], the

probability of Graphi, in whichN+
B bombs share a common target andN−

B bombs have their own

targets, is

P (Graph i) =

∫ 1

0
P (Graph i |α)P (α) dα

=

∫ 1

0
αN+

B (1 − α)N−

B dα

=
Γ(N+

B + 1)Γ(N−
B + 1)

Γ(NB + 2)
, (14)

following a similar analysis to that given above for coinflipping.

Combining the values ofP (d |Graph i) obtained via Equation 13 with withP (Graph i)

from Equation 14, we need only evaluate the sum over the2NB possible graph structures. This can

be done by Monte Carlo simulation. The results shown in Figure 6 were computed using a form of

importance sampling designed for finding the Bayes factors of mixture distributions (Emond,
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Raftery, & Steele, 2001). The model predictions shown in the figure use 100,000 samples and

k = 4.
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Footnotes

1Clarke’s investigations were later introduced to a broader audience by Feller (1968).

2Such examples abound. In considering the apparent rotation of stars about the Earth,

Aristotle viewed the coincidence between the rate of motion and the distance traversed as evidence

for the existence of a single celestial sphere (Franklin, 2001, pp. 133-134). Halley would never

have discovered his comet without noticing the surprising regularity in the paths and dates in a

table of orbits (Cook, 1998; Hughes, 1990; Yeomans, 1991). Semmelweis might not have

developed his theory of contagion without noting the similarity in the symptoms of a doctor

injured during an autopsy and those of patients in his ward (Hempel, 1966).Perrin’s (1913/1990)

argument for the objective reality of molecules was based upon the suspiciously similar estimates

of Avogadro’s number produced by several quite different methods of measuring molecular

magnitudes (Hacking, 1983).

3Again there are many examples. Diaconis and Mosteller (1989), Gilovich (1993), Hardy,

Harvie, and Koestler (1973), and Plous (1993) all present a number of surprising coincidences that

ultimately seem to be simply the work of chance.

4In general, we will use upper-case letters to indicate random variables, and lower-case letters

to indicate the values taken on by those variables. Here,d is a value of the random variableD.

5Indeed, many people sought explanations other than chance: the authorities responsible for

the New York lottery were sufficiently suspicious that they initiated an internalinvestigation, and

the St Petersburg Times quoted one psychologist as saying that ‘It couldbe that, collectively, the

people in New York caused those lottery numbers to come up 9-1-1. . . If enough people all are

thinking the same thing, at the same time, they can cause events to happen’ (DeGregory,

September 24, 2002).

6Coincidences played an important role in the “logical” method of deduction endorsed by

Sherlock Holmes, with the notion appearing in 13 of his 60 published cases. Holmes was

frequently able to solve mysteries by refusing to dismiss events as mere coincidences.
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7We will use this non-linear scaling transformation wherever we convert a log likelihood

ratio into predictions of human judgments, to accommodate the possibility that log likelihood ratio

should not be mapped linearly onto the rating scale used in the experiment. Theparameter of the

transformation,γ, will be selected to maximize the fit between model and data. The same

non-linear function was used by Griffiths and Tenenbaum (2005) to map log likelihood ratios to

causal judgments.
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Table 1
ParametersUsedin GeneratingtheStimuli for Experiment2.

Property Parameters
Number NB = 20 NB = 50 NB = 200

Proportion α = 0.5 α = 0.3 α = 0.1

Location `c =

[

−3
−3

]

`c =

[

0
0

]

`c =

[

3
3

]

Spread Σ =

[

2 0
0 2

]

Σ =

[

1
2 0
0 1

2

]

Σ =

[

1
5 0
0 1

5

]
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Figure Captions

Figure 1.Causal graphical models characterizing the relationship between two variables.C

indicates the presence of a cause – injection of a chemical, or the thoughts ofa psychic – andE the

manifestation of the effect – a rat being born male, or a coin coming up heads. In Graph 0, cause

and effect are unrelated. InGraph 1, the cause influences the effect.

Figure 2.The transition from coincidence to evidence can occur as a result of an increase in either

the likelihood ratio or the prior odds. Between mere coincidences and evidence are suspicious

coincidences, for which the posterior odds become high enough that it seems possible thath1

could actually be true.

Figure 3.Results of Experiment 1. The upper panel shows the proportion of cases judged to be

coincidences in thecoincidence condition, and the lower panel shows the mean responses in the

posterior condition. Dotted lines show model predictions, obtained by estimatingprior

probabilities for each participant.

Figure 4.Causal graphical models generated by theories of bombing.Li indicates the location of

theith target,Xi indicates the point at which theith bomb explodes, andLc is the location of a

target common to a subset of the bombs.

Figure 5.Distributions overXi, the location of theith bomb, under theoriesh0 andh1. Underh0,

the distribution is uniform over the region of interestR, in this case a square indicating the city of

London. Underh1, the distribution is a mixture of a uniform distribution and a Gaussian regularity

centered on the location of the common target,`c. Here, the Gaussian is illustrated schematically

using a circle.

Figure 6.Results of Experiment 2. Each line shows the three stimuli used to test the effects of

manipulating one of the statistical properties of the stimulus, together with the mean judgments of
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strength of coincidences from human participants and the predictions of theBayesian model. Error

bars show one standard error, and letters label the different stimuli.

Figure 7.Causal graphical models generated by theories of birthdays.Bi indicates the birthday of

theith person, andPi indicates their presence at a party.

Figure 8.Distributions overBi, the birthday of theith person, given their presence at a party

(Pi = 1) under theoriesh0 andh1. Underh0, the birthday is chosen from a uniform distribution

over days of the year. Underh1, the birthday is chosen from a mixture of a uniform distribution

and a regularity, a uniform distribution over some subset of the year. Theparticular subset is

determined by the filter setB, which in this case corresponds to all birthdays in August.

Figure 9.The leftmost panel shows the mean judgment of the strength of coincidencesfrom human

participants in Experiment 3. Error bars indicating one standard error in either direction are shown

in the upper right hand corner of the panel. The second panel shows the predictions of the

Bayesian model, the third shows the consequences of removing the size principle, and the third

shows the consequences of using a uniform prior on filters,P (B). The fifth panel shows the

combined effects of these two omissions, illustrating the performance of the model when each

filter B contributes equally toP (d |h1).

Figure 10.Results of Experiment 4. The scatterplot indicates the close relationship between the

mean ratings of the likelihood of an underlying cause behind lemur colony locations and the mean

ratings of the size of a coincidence in bomb locations, using the same locations as stimuli. The

letters indicate which stimulus was used, under the key from Figure 6.

Figure 11.Results of Experiment 5. The scatterplot indicates the close relationship between the

mean ratings of the likelihood of an underlying cause behind a set of package shipments and the

mean ratings of the size of a coincidence in a set of birthdays, using the samedates as stimuli. The
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letters indicate which stimulus is plotted, using the key from Figure 9.
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