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Abstract

People’s reactions to coincidences are often cited as an illustration ofatienality of human
reasoning about chance. We argue that coincidences may be bettestood in terms of rational
statistical inference, based on their functional role in processes sékdiscovery and theory
revision. We present a formal definition of coincidences in the contexBayesian framework for
causal induction: a coincidence is an event that provides suppa@nfalternative to a currently
favored causal theory, but not necessarily enough support épatitat alternative in light of its
low prior probability. We test the qualitative and quantitative predictions ofabé®unt through a
series of experiments that examine the transition from coincidence to egidbaorrespondence
between the strength of coincidences and the statistical support f@ saugture, and the
relationship between causes and coincidences. Our results indicatedpét pan accurately
assess the strength of coincidences, suggesting that irrational donsldsawn from coincidences
are the consequence of overestimation of the plausibility of novel causals. We discuss the

implications of our account for understanding the role of coincidencesoryichange.
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From mere coincidences to meaningful discoveries

In the last days of August in 1854, the city of London was hit by an uallisuiolent
outbreak of cholera. More than 500 people died over the next fortmghdt of them in a small
region in Soho. On September 3, this epidemic caught the attention of Jotw&pbysician who
had recently begun to argue against the widespread notion that chalettsansmitted by bad air.
Snow immediately suspected a water pump on Broad Street as the causmylddind little
evidence of contamination. However, on collecting information about theitmsaof the cholera
victims, he discovered that they were tightly clustered around the pump. dgp&ous
coincidence hardened his convictions, and the pump handle was remdeedis€ase did not
spread any further, furthering Snow’s (1855) argument that cheles caused by infected water.

Observing clusters of events in the streets of London does not alesyl in important
discoveries. Towards the end of World War Il, London came under bodmbent by German V-1
and V-2 flying bombs. It was widespread popular belief that these borabeslanding in clusters,
with an unusual number of bombs landing on the poorer parts of the citpgdah1981). After
the war, R. D. Clarke of the Prudential Assurance Company set oyppdy‘a statistical test to
discover whether any support could be found for this allegation’ (€latR46, p. 481). Clarke
examined 144 square miles of south London, in which 537 bombs had fakedivided this area
into small squares and counted the number of bombs falling in each squdwebbmbs fell
uniformly over this area, then these counts should conform to the Poiggdbution. Clarke
found that this was indeed the case, and concluded that his result Hersigport to the clustering
hypothesis’ (1946, p. 481), implying that people had been misled by theitiomtstl

Taken together, the suspicious coincidence noticed by John Snow ame:tbecoincidence
that fooled the citizens of London present what seems to be a paradirefwies of human
reasoning. How can coincidences simultaneously be the source of bothtamigcientific

discoveries and widespread false beliefs? Previous research tad terfocus on only one of
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these two faces of coincidences. Inspired by examples similar to that of Sooe approach has
focused on conceptual analyses or quantitative measures of coioetdirat explicate their role in
rational inference (Horwich, 1982; Schlesinger, 1991), causebdé&ry (Owens, 1992) and

scientific argument (Hacking, 1983). An alternative approach, ingjpyeexamples like the

bombing of Londor? has analyzed the sense of coincidence as a prime example of shortcomings
in human understanding of chance and statistical inference (Diaconissteller, 1989; Fisher,

1937; Gilovich, 1993; Plous, 1993). Neither of these two traditions hasptéesl to explain how

the same cognitive phenomenon can simultaneously be the force drivingnlmeasoning to both

its greatest heights, in scientific discovery, and its lowest depths, ingiijper and other abiding
irrationalities.

In this paper, we develop a framework for understanding coincideaxagunctional
element of causal discovery. Scientific knowledge is expanded aisdethrough the discovery
of causal relationships that enrich or invalidate existing theories. Intlitiogvledge can also be
described in terms of domain theories with structures that are analogouserttifectheories in
important respects (Carey, 1985; Gopnik & Meltzoff, 1997; Karmilaffith, 1988; Keil, 1989;
Murphy & Medin, 1985), and these intuitive theories are grown, elabdrand revised in large
part through processes of causal discovery (Gopnik, GlymouglS8bhulz, Kushnir, & Danks,
2004; Tenenbaum, Griffiths, & Niyogi, in press). We will argue that cidiecces play a crucial
role in the development of both scientific and intuitive theories, as eventprihatle support for a
low-probability alternative to a currently favored causal theory. Thidi®n can be made precise
using the mathematics of statistical inference. We use the formal languagesai graphical
models (Pearl, 2000; Spirtes, Glymour, & Schienes, 1993) to charactetevant aspects of
intuitive causal theories, and the tools of Bayesian statistics to proposesamed evidential
support for alternative causal theories that can be identified with thegsiref a coincidence. This
approach allows us to clarify the relationship between coincidences amy ttteange, and to

make quantitative predictions about the strength of coincidences thaeaamipared with human
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judgments.

The plan of the paper is as follows. Before presenting our accountrstefitique the
common view of coincidences as simply unlikely events. This analysis of cencas is simple
and widespread, but ultimately inadequate because it fails to recognize theamge of
alternative theories in determining what constitutes a coincidence. We tesernpia formal
analysis of the computational problem underlying causal induction, amthissanalysis to show
how coincidences may be viewed as events that provide strong butcessagily sufficient
evidence for an alternative to a current theory. After conducting peraxental test of the
qualitative predictions of this account, we use it to make quantitative prediciioout the strength
of coincidences in some of the complex settings where classic examples ciflevices occur:
coincidences in space, as in the examples of John Snow and the bombiogdzfii, and
coincidences in date, as in the famous “birthday problem”. We concludetbgning to the
paradox of coincidences identified above, considering why coincideniten lead people astray

and discussing their involvement in theory change.

Coincidences are not just unlikely events

Upon experiencing a coincidence, many people react by thinking soméditterigvow!
What are the chances of that?’ (e.g., Falk, 1981-1982). Subjectoghgidences are unlikely
events: we interpret our surprise at their occurrence as indicatinghénahave low probability. In
fact, it is often assumed that being surprising and having low probabilitgguizvalent: the
mathematician Littlewood (1953) suggested that events having a probabilibeoh@ million be
considered surprising, and many psychologists make this assumptiontatpkstly (e.g.,
Slovic & Fischhoff, 1977). The notion that coincidences are unlikelyepervades literature
addressing the topic, irrespective of its origin. This belief is expresskeddks on spirituality
(‘Regardless of the details of a particular coincidence, we sense thébdt isilikely to have been

the result of luck or mere chance, Redfield, 1998, p. 14), populak®on the mathematical basis
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of everyday life (‘It is an event which seems so unlikely that it is worth telargjory about,
Eastaway & Wyndham, 1998, p. 48), and even the statisticians Diaconiasteller (1989)
considered the definition ‘a coincidence is a rare event, but rejectedtiteogrounds that ‘this
includes too much to permit careful study’ (p. 853).

The most basic version of the idea that coincidences are unlikely evéats oaly to the
probability of a single event. Thus, some datamight be considered a coincidence if the
probability ofd occurring by chance is smdllon September 11, 2002, exactly one year after
terrorists destroyed the World Trade Center in Manhattan, the New Yor& Stétery “Pick 3”
competition, in which three numbers from 0-9 are chosen at random, prddiue results 9-1-1
(Associated Press, September 12, 2002). This seems like a coincriandéias reasonably low
probability: the three digits were uniformly distributed between 0 and 9, sortimpility of such
a combination is{%)i” or 1in 1000. Ifd is a sequence of ten coinflips that are all heads, which we
will denoteHHHHHHHHHH, then its probability under a fair coin (%)10 or 1in 1024. Ifd is an
event in which one goes to a party and meets four people, all of whonoameoh August 3, and
we assume birthdays are uniformly distributed, then the probability of thid @%)4, orlin
17,748,900,625. Consistent with the idea that coincidences are unlikelisetieese values are all
quite small.

The fundamental problem with this account is that while coincidences mustiergl be
unlikely events, there are many unlikely events that are not coincideli¢ggasy to find events
that have the same probability, yet differ in whether we consider them aideirce. In particular,
all of the examples cited above were analyzed as outcomes of uniformatjageprocesses, and so
their low probability would be matched by any outcomes of the same procegbagbevsame
number of observations. For instance, a fair coin is no more or less likelpthupe the outcome
HHTHTTHTHT as the outcomelHHHHHHHHH. Likewise, observing the lottery numbers 7-2-3
on September 11 would be no more likely than observing 9-1-1, and meetiptepeith birthdays

on May 14, July 8, August 21, and October 4, would be just as unlikeingother sequence,
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including August 3, August 3, August 3, and August 3. Using séwaher examples of this kind,
Teigen and Keren (2003) provided empirical evidence in behaviorghpeats for the weak
relationship between the surprisingness of events and their probabilitpuFpurposes, these
examples are sufficient to establish that our sense of coincidence is redy meesult of low
probability.

We will argue that coincidences are not just unlikely events, but ratieste that aréess
likely under our currently favored theory of how the world works thademan alternative theory.
The September 11 lottery results, meeting four people with the same birthdalipaing ten
heads in a row all grab our attention because they suggest the existéndden causal structure
in contexts where our current understanding would suggest no suictuse should exist. Before
we explore this hypothesis in detail, we should rule out a more sophisticatgdvef the idea
that coincidences are unlikely events. The key innovation behind thiste®firs to move from
evaluating the probability of a single event to the probability of an event eftaia “kind”, with
coincidences being events of unlikely kinds. Hints of this view appear ieraxgnts on
coincidences conducted by Falk (1989), who suggested that peegkeasitive to the extension
of the judged event’ (p. 489) when evaluating coincidences. Falk (1982) also suggested that
when one hears a story about a coincidence, ‘One is probably nodiegcthe story with all its
specific details as told, but rather as a more general event “of that k{pd23). Similar ideas
have been proposed by psychologists studying figural goodnessibjettive randomness (e.g.,
Garner, 1970; Kubovy & Gilden, 1991), and such an account wakegloout in detail by
Schlesinger (1991), who explicitly considered coincidences in birthdayder this view, meeting
four people all born on August 3 is a bigger coincidence than meeting bosaeon May 14, July

8, August 21, and October 4 because the former is of theddirah the sameday while the latter is

of the kindall ondifferentdays. Similarly, the sequence of coinflidsiHHHHHHHH is more of a

coincidence than the sequertdB THTTHTHT because the former is of the kiadl outcomeghe

same while the latter is of the kirejualnumberof headsandtails; out of all 1024 sequences of
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length 10, only two are of the former kind, while there are 252 of the latter. kind

The “unlikely kinds” definition runs into several difficulties. First there #re problems of
specifying what might count as a kind of event, and which kind shouldskd when more than
one is applicable. Like the coinflip sequertlde THTTHTHT, the alternating sequence

HTHTHTHTHT falls under the kindequalnumberof headsandtails, but it appears to present

something of a coincidence while the former sequence does not. The ‘lyiKikds” theory
might explain this by saying th&t THTHTHTHT is also a member of a different kinditernating
headsandtails, containing only two sequences out of the possible 1024. But whydttus
second kind dominate? Intuitively, the fact that it is more specific seems inmpdotg why? And
why isn’t alternation as much of a coincidence as repetition, even thouddindteall outcomes

thesame andilternatingheadsandtails are equally specific? How would we assess the degree of

coincidence for the sequene#{HHHHHTTT? It appears more coincidental than a merely
“random” sequence likel[HTHTTHTHT, but what “kind of event” is relevant? Finally, why do we

not consider a kind likall outcomeghatbeginHHTHTTHTHT. . ., which would predict that the

sequenc&HTHTTHTHT is in fact the most coincidental of all? The situation becomes even more
complex when we go beyond discrete events. For example, the bombingdbéhsuggested a
coincidence based upon bomb locations, which are not easily classifiddridto

For the “unlikely kinds” definition to work, we need to be able to identify the Rinelevant
to any contexts, including those involving continuous stimuli. The difficulty ehgahis is a
consequence of not recognizing the role of alternative theories imdeiag what constitutes a
coincidence. The fact that certain kinds of events seem natural issagoence of the
theory-ladenness of the observer: there is no a priori reason whseaf kinds should be favored
over any other. In the cases where definitions in terms of unlikely kindgelm $o work, it is
because the kinds being used implicitly correspond to the predictions of@naale set of
alternative theories. To return to the coinflipping example, kinds definedrirstef the number of

heads in a sequence implicitly correspond to considering a set of altertiaivries that differ in
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their claims about the probability that a coin comes up heads, a fact that eusslie more detalil
below. Alternative theories still exist in contexts where no natural “kiredst be found, providing
greater generality for definitions of coincidences based upon altegrtatories.

Finally, even if a method for defining kinds seems clear, it is possible to find
counterexamples to the idea that coincidences are events of unlikely kimdsistance, a common
way of explaining why a sequence likkHHH is judged less random (and more coincidental) than

HHTT is that the former is of the kinfbur heads while the latter is of the kirtebo headsfwo tails

(c.f. Garner, 1970; Kubovy & Gilden, 1991). Since one is much more liteelybtain a sequence
with two heads and two tails than a sequence with four heads when flippimgcaifafour times,
the latter seems like a bigger coincidence. The probability gfheads fromV trials is

kind(D) = oN 1)

so the probability of théour heads kind is%) = 0.0625, while the probability of théwo heads,
two tails kind is%} = 0.375. However, we can easily construct a sequence of a kind that has lower
probability tharfour heads: the reasonably randdAHHHTHTTHHHTHTHHTHTTHHH is but

one example of théfteenheadsegighttails kind, which has probabilit@ = 0.0584.

Coincidence as statistical inference

In addition to the problems outlined in the previous section, the definition of ick@nces as
unlikely events seems to neglect one of the key components of coincid¢heespparent
meaningfulness. This is the aspect of coincidences that makes them satintgrand is tied to
their role in scientific discoveries. We will argue that the meaningfulnessio€itiences is due to
the fact that coincidences are not just arbitrary low-probability patt&utpatterns that suggest
the existence of unexpected causal structure. One of the earliest stt@fihis idea appears in

Laplace (1795/1951).
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If we seek a cause wherever we perceive symmetry, it is not that vaedreg
symmetrical event as less possible than the others, but, since this evahtwbg the
effect of a regular cause or that of chance, the first of these sitjg is more
probable than the second. On a table we see letters arranged in thisodest an
tinopl e, and we judge that this arrangement is not the result of chance, canidse
it is less possible than the others, for if this word were not employed in agyéaye
we should not suspect it came from any particular cause, but this veand i use
among us, it is incomparably more probable that some person has thugeattae

aforesaid letters than that this arrangement is due to chance. (p. 16)

In this passage, Laplace suggested that our surprise at orderbg &varresult of the inference that
these events are more likely under a process with causal structure thaaged purely on chance,
we should suspect that a cause was involved.

The idea that coincidences are events that provide us with evidencefexigtence of
unexpected causal structure has been developed further by a nofaloghors. In the philosophy
of science, Horwich (1982) defined a coincidence as ‘an unlikely antidlcorrespondence
between independent facts, which suggests strongly, but in fadiyfadsene causal relationship
between them’ (p. 104), and expressed this idea formally using the lamgf&ayesian inference,
as we do below. Similar ideas have been proposed by Bayesian statisiictdunding Good
(1956, 1984) and Jaynes (2003). In cognitive science, Feldm&d)2@s explored an account of
why simple patterns are surprising that is based upon the same principl®yievents that
exhibit greater simplicity than should be expected under a “null hypothasisbincidences.

In the remainder of the paper, we develop a formal framework which allmte make this
definition of coincidences precise, and to test its quantitative predictiamsfoCus is on the role
of coincidences in causal induction. Causal induction has been studétsizely in both
philosophy (e.g., Hume, 1739/1978) and psychology (e.qg., Inhelder §eBi4958). Detailed

reviews of some of this history are provided by Shultz (1982; Shultz & Késtem, 1985) and
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White (1990). Recent research on human causal induction has ébongermal models based
upon analyses of how an agent should learn about causal relatistislgp Anderson, 1990;
Cheng, 1997; Griffiths & Tenenbaum, 200%ez, Cobos, G, & Shanks, 1998; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003). These formal models estatishaf the
groundwork necessary for our analysis of the functional role ofaidences.

Any account of causal induction requires a means of representirgghgges about

candidate causal structures. We will represent these hypothesgsassalgraphicaimodels

(also known as causal Bayesian networks or causal Bayes netsal@gaphical models are a
language for representing and reasoning about causal relatiotisaifpegs been developed in
computer science and statistics (Pearl, 2000; Spirtes, Glymour, & Schi&88). This language
has begun to play a role in theories of human causal reasoning (e.gs RaikKenzie, under
revision; Gopnik et al., 2004; Glymour, 1998; 2001; Griffiths & Tenanha2005; Laghado &
Sloman, 2002; Rehder, 2003; Steyvers, Wagenmakers, Blum, & Tanenl2003; Tenenbaum &
Griffiths, 2001, 2003; Waldmann & Martignon, 1998), and severalribe@f human causal
induction can be expressed in terms of causal graphical models (Gréfiteaenbaum, 2005;
Tenenbaum & Griffiths, 2001).

A causal graphical model represents the causal relationships amengfavariables using
a graph in which variables are nodes and causation is indicated with affbigggraphical
structure has implications for the probability of observing particular valoethbse variables, and
for the consequences of interventions on the system (see Pearl @ @Xfiths & Tenenbaum,
2005, for a more detailed introduction). A variety of algorithms exist fomizay the structure of
causal graphical models, based upon either reasoning from a pdtteatistical dependencies
(e.g., Spirtes et al., 1993) or methods from Bayesian statistics (e.qg., Heaket998). We will
pursue the latter approach, treating theories as generators of ceafgasicgl models: recipes for
constructing a set of causal graphical models that describes thelpassilsal relationships

among variables in a given situation. Theories thus specify the hypotipesissand prior
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probabilities that are used in Bayesian causal induction. We develop thifodwrally elsewhere
(Griffiths, 2005; Griffiths et al., 2004; Griffiths, & Tenenbaum, 2008n&nbaum & Griffiths,
2003; Tenenbaum et al., in press; Tenenbaum & Niyogi, 2003), butisdllit relatively informally
in this paper.

These tools provide the foundations of our approach to coincidenté#ssisection, we use
a Bayesian approach to causal induction to develop an account ohvelkas an event a
coincidence, and to delineate the difference between “mere” and “susgicoincidences. We
then provide a more detailed formal analysis of one simple kind of coincideno@cidences in
coinflips — indicating how this account differs from the idea that coincidsrme unlikely events.
The section ends by identifying the empirical predictions made by this acashict) are tested in

the remainder of the paper.

Whatmakesa coincidence?

Assume that a learner has ddtaand a set of hypotheséds, each being a theory about the

system that produced that data. Before seeing any data, the leasiggrsasior probabilities of

P(h) to these hypotheses. Thesterior probability of any hypothesisafter seeingl can be

evaluated using Bayes’ rule,
P(d|h)P(h)

S, P(d| h)P(h) @)

P(h|d) =

whereP(d | h), known as thdikelihood, specifies the probability of the daideing generated by
the system represented by hypothdsitn the case where there are just two hypothelseand

ho, we can express the relative degree of beligfjirafter seeingl using theposteriorodds,

P(hi|d) _ P(d]h1) P(h) 3
P(ho|d)  P(d|ho) P(ho)’

which follows directly from Equation 2. The posterior odds are determineevb factors: the

likelihood ratio, which indicates the support théprovides in favor ofi; overhg, and theprior
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odds, which express the a priori plausibility/of as compared tbg. If we take the logarithm of

Equation 3, we obtain

P(hi|d) . P(d|h) P(h)
'8 B d) = % Pldlh) % Plho)’

(4)

in which the log likelihood ratio and the log prior odds combine additively to gieddly posterior
odds.

To make this analysis more concrete, consider the specific example oftevgwhether a
new form of genetic engineering influences the sex of rats. The treaistested through a series
of experiments in which female rats receive a prenatal injection of a cheraighthe sex of their
offspring is recorded at birth. In the formal schema abayeagfers to the theory that injection of
the chemical influences sex, ahglrefers to the theory that injection and sex are independent.
These two theories generate the causal graphical métealsh 1 andGraph 0 shown in Figure 1.
UnderGraph 0, the probability that a rat is male should @&, while underGraph 1, rats injected
with the chemical have some other probability of being male. Imagine that in tlesimgntal test,
the first ten rats were all born male. These ddtayould provide relatively strong support for the
existence of a causal relationship, such a relationship seems a prigiigidgaand as a

consequence you might be inclined to conclude that the relationship exists.

Insert Figure 1 about here

Now contrast this with a different case of causal induction. A friend iasigat she
possesses the power of psychokinesis. To test her claim, you flip a doimirof her while she
attempts to influence the outcome. You are evaluating two hypothesésthe theory that her
thoughts can influence the outcome of the coinflip, whijés the theory that her thoughts and the
coinflip are independent. As in the previous case, these theories tgetileraausal graphical

modelsGraph 1 andGraph 0 shown in Figure 1. The first ten flips are all heads. The likelihood



From coincidences to discoveries 14

ratio for these dataj, provides just as much support for a causal relationship as in the genetic
engineering example, but the existence of such a relationship has laaepmbability. As a
consequence, you might conclude that she does not possess gswhbis, and that the evidence
to the contrary provided by the coinflips was just a coincidence.

Coincidences arise when there is a conflict between the evidence arpewédes for a
theory and our prior beliefs about the plausibility of that theory. Moreipedy, a coincidence is
an event that provides support for an alternative to a current thiemryot enough support to
convince us to accept that alternative. This definition can be formalidag tiee Bayesian
machinery introduced above. Assume thgtdenotes the current theory entertained by a learner,
andh; is an alternative postulating the existence of a richer causal structuoyelrcausal force.
In many cases of causal induction, such as establishing whether a chierffueances the sex of
rats, we learn about causal relationships that seem relatively plaiagilol¢he likelihood ratio and
prior odds in favor of:; are not dramatically in conflict. A coincidence produces a likelihood ratio
in favor of hy that is insufficient to overwhelm the prior odds agailastresulting in middling

posterior odds. The likelihood ratio provides a measure o$trength of a coincidence, indicating

how much support the event provides far. Under this definition, the strongest coincidences can
only be obtained in settings where the prior odds are equally strongly againkhus, like the test
of psychokinesis, canonical coincidences typically involve data thalymea high likelihood ratio

in favor of an alternative theory in a context where the current themstyasgly entrenched.

Mereandsuspiciousoincidences

Up to this point, we have been relatively loose about our treatment of the term
“coincidence”, relying on the familiar phenomenology of surprise astetiaith these events.
However, when people talk about coincidences, they do so in two quiezeliff contexts. The first
is in dismissing an event as “just a coincidence”, something that is surpbaingtimately

believed to be the work of chance. We will refer to these eventsaascoincidences. The second
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context in which people talk about coincidences is when an event begiesder an alternative
theory plausible. For example, Hacking’s (1983) analysis of the “argtifn@m coincidence”
focuses on this sense of coincidence, as does the treatment of coaesdeithe study of vision in
humans and machines (Barlow, 1985; Binford, 1981; Feldman, 199;&Richards, 1996;

Witkin & Tenenbaum, 1983). We will refer to these eventsaspicioucoincidences. This

distinction raises an interesting question: what determines whether a coiceigamere or
suspicious?

Under the account of coincidences outlined above, events can makesiidrafrom
coincidence to evidence as the posterior odds in favay aficrease. Since being considered a
coincidence requires that the posterior odds remain middling, an evesgisceeaing a coincidence
and simply becomes evidence if the posterior odds increase. Considerfteneffects of the
posterior odds also allows us to accommodate the difference between rdesgspicious
coincidences. It is central to our definition of a mere coincidence thatahkmsent that ultimately
results in believingyy overh,. Consequently, the posterior odds must be low. In a suspicious
coincidence, we are left uncertain as to the true state of affairs, antliaea to investigate further.
This corresponds to a situation in which the posterior odds do not favar diyipothesis strongly,
being around (or 0, for log posterior odds). The relationship between mere coincidences,

suspicious coincidences, and unambiguous evidende frillustrated schematically in Figure 2.

Insert Figure 2 about here

As indicated in Equations 3 and 4, the posterior odds in favar dhcrease if either the
prior odds or the likelihood ratio increases. Such changes can thusinegtransition from
coincidence to evidence, as illustrated in Figure 2. An example of the forameprovided above:
ten male rats in a row seems like evidence in the context of a genetic enginegoergment, but

ten heads in a row is mere coincidence in a test of psychokinesis, whegrgdhedds are smaller.
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Tests of psychokinesis can also be used to illustrate how a change in theolilckfitio can
produce a transition from mere coincidence, through suspicious contgd® evidence: ten
heads in a row is a mere coincidence, but twenty might begin to raise suspationt your
friend’s powers, or the fairness of the coin. At ninety heads in a rawmgight, like Guildenstern
in Stoppard’s (1967) play, begin entertaining the possibility of divine irtetion, having

relatively unambiguous evidence that something out of the ordinary is takicg.

Coincidenceén coinflips

We have informally discussed several examples involving flipping a coire, ke will
make these examples precise, using some tools from Bayesian statisticsdljsssahelps to
clarify how our framework relates to the idea that coincidences are evkatdikely kinds.

Imagine that we have two possible theories about the efficacy of psymsik. One theory,
ho, stipulates that there can be no relationship between thinking about a diwhether the coin
comes up heads. Under this theory, the probability that a coin comes up isedday.5. The
other theoryh, stipulates that some people can influence the outcome of a coin toss bgifgcus
their mind appropriately, and specifies the probability of the coin coming ugsh@&ader such
influence using a parameter Given one person and one coin, each of these theories generates on
causal graphical modek generatesiraph 0, while h; generate§iraph 1. Assume that the data,
d, consists ofV trials in the presence of somebody concentrating on a coin, of wkjghrials
produce heads. Sindg asserts that these outcomes are all the result of ch#&tde s) is just
(AJ,VH) 0.5 . EvaluatingP(d | h1) requires making assumptions about the parameter

If we assume that = 0.9, indicating that we expect that a coin will come up heads far more
often when it is being influenced by psychic poweP$d | k1) would be0.9V# 0.1V,
Consequently, a sequence likeiHH would result in a likelihood ratid;% of (%)4 ~ 10.5,
favoring b1, while a sequence likelHTT would result in a likelihood ratio o?% ~ 0.13,

favoring hy. Thus,HHHH would constitute more of a coincidence thdHATT, since it provides
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more evidence for the low-probability theory that psychic powers exist.

The assumption that a coin will come up heads 90% of the time in the presenpsyaftac
makes a very specific assertion about the nature of psychic powers.ddnerally, we might
believe that psychics have the ability to influence the probabilty that a coinscomkeeads, but not
have strong beliefs about the degree or direction of that influence c@ihibe expressed by
definining adistribution over values ab associated with, p(w | h1). In the Appendix we show

that if it is assumed that is uniformly distributed betweetmand1, we obtain the likelihood ratio

P@|h) 2V
Pldho) ~ ()N +1) ©)

which increasingly favoré, as Ny deviates fromV/2. This expression can be rewritten as

P(d| ) 1

P(d’ho) - Pkind(d)(N + 1)’

whereFyjng(d) is defined in Equation 1, being the probability of a sequence of the same' ‘dénd
d, where kinds of sequence are differentiated by the number of heads sedjuence.
Consequently, the support fag, and the strength of the coincidence associated ayitill

increase as the probability of a sequence of the same kiddlasreases. This is consistent with
the “unlikely kinds” account of coincidences. This observation rewshigit is possible to
construct examples that are broadly consistent with the “unlikely kinds3watt of coincidences:

it approximates the Bayesian solution to this problem.

Despite this connection, the Bayesian account overcomes many of thaltdé&dhat limit
the “unlikely kinds” account of coincidences. First, it provides a pritedgreatment of which
kinds will be relevant to evaluating coincidences, and how they shoulddred This is a
consequence of formulating the problem as a comparison of alternatisal¢heories: the
relevant kinds of events are determined by the kinds of alternativeldhesaies that the observer

implicitly considers. In our analysis of coinflipping, the kinds are differeéatey the number of
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heads in a sequence becahsa@ndh differ in the probabilities with which they predict a coin
will produce heads. Considering other theories about possible acaeshlanisms would lead to
effectively considering other kinds of events, with prior probabilitiegprtional to the
plausibility of the causal theories that generate those event kinds. Eandes the event-kind

alternatingheadsandtails could be relevant because one could imagine how some kind of causal

mechanism might produce such a pattern of events, although it may be twmik@gine (and thus
receive a lower prior probability) than a mechanism that generatestirgpeaquences of

coinflips. The event-kindll outcomeghatbeginHHTHTTHTHT. .. would almost never be

considered, or would receive a very low prior probability, becausehidiid to imagine an
alternative causal theory that would produce just sequences of this fo

More generally, sincé; andh, are defined in terms of probability distributions, the
Bayesian account extends naturally to continuous stimuli, as we will demtnistier in the paper,
unlike the “unlikely kinds” account. The formulation of the comparison ofélfegotheses as a
Bayesian inference also implicitly solves the problems with multiple kinds, and resraiter
technical problems. For example, the appearance dfthe 1) term in the denominator of
Equation 5 corrects for the fact that there are many more kinds of loegeesaces when kinds are
differentiated by the number of heads. This is the issue that made it possilalaéquence of the

kind fifteenheadsgighttails to be less likely than a sequence of the Kimar heads. Under

Equation 5, the former provides weaker support/fpthan the latter, as there are 24 kinds of

sequence of length 23, and only 5 kinds of sequence of length 4.

Empiricalpredictions

Having given a precise definition of what constitutes a coincidence, weduate how
well this definition accords with human judgments. The Bayesian accowsgmezl above makes
three clear empirical predictions. First, an event will be considered &ideince when the

likelihood ratio in favor of an alternative theory,, is insufficient to overwhelm the prior odds



From coincidences to discoveries 19

against it. If either the likelihood ratio or the prior odds increase, it will ultimatelyne to be
considered not a coincidence, but simply evidence for that theory. $¥/ie prediction in
Experiment 1. A second prediction is that the likelihood ratio in favato$hould indicate the
strength of a coincidence. We extend our account to some of the more coseftiags that have
featured in arguments about the rationality of the human sense of coinejderttassess the
adequacy of the likelihood ratio in favor &f as a measure of the strength of coincidences in
Experiments 2 and 3. Finally, our account predicts that assessing thgtbtod a coincidence is
equivalent to assessing the evidence for a causal relationship. Weisgatediction in

Experiments 4 and 5.

Thetransition from coincidence to evidence

‘Well, Watson, what do you make of this?’ asked Holmes, after a long pause

‘It is an amazing coincidence.’

‘A coincidence! Here is one of the three men whom we had named as possible
actors in this drama, and he meets a violent death during the very hoursnghen
know that that drama was being enacted. The odds are enormous égdiesig
coincidence. No figures could express them. No, my dear Watson, thevéntsere

connected -must be connected. It is for us to find the connection.’

Sir Arthur Conan Doyle (1986aJhe adventureof the secondstain, p. 909.

What seems like a coincidence to one person can be considered compatiegoe by
anothef In the analysis given above, whether an event is a coincidence or simigbnee for an
alternative theory comes down to whether it ultimately justifies believing in thatyhthe result
of an interaction between likelihood ratio and prior (see Figure 2). Holmés\atson could thus
differ in their construal of a violent death if they differed in the probabilitiéth which they
thought such an event might arise independently or as the result ohaa@mn to their case, or if

they differed in the prior probability they assigned to the existence of saonmection.
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Experiment 1 was designed to examine this transition from coincidence toeeidéhe
experiment used the two scenarios mentioned in our discussion of merasmcdsus
coincidences — genetic engineering and psychokinesis — to assesemgaiple’s designation of
events as a mere coincidence or evidence is affected by changes in lihed#eatio and prior
odds. If an event is judged “just a coincidence” when it provides figeft support to overcome
the prior, we should expect to see events with higher likelihood ratios cnesich mere
coincidence when people are evaluating claims about psychokinesis.d@decifically, if people’s
assessment of an event as a coincidence or evidence is based upostérmr probability of,
we should expect to see a negative correlation between this posteiabiity and the proportion
of people who consider an event a coincidence. Since these predieipngpon a subtle
interaction between likelihood ratio and prior, they are inconsistent withuexts@f coincidences
that do not incorporate both of these components, such as the definitomoifdences as events

of unlikely kinds.

Experiment 1

Method

Participants. Participants were 101 undergraduates, participatinguimecoredit. Of these

participants, 24 were assigned to fhsychokinesisposterior condition, 20 to thgenetics,

posterior condition, 28 to thgsychokinesisgoincidence condition, and 29 to tigenetics,

coincidence condition.

Stimuli. Two basic cover stories were constructed that would allow the samé&odaga

presented in different contexts. The data consisted of a table of fieisethat showed how many
times a heads or tails (males or females) were produced from 100 trialse Taesshowed 8 trials
on which 47, 51, 55, 59, 63, 70, 87, and 99 heads (males) were atht&aeticipants receiving the

psychokinesis cover story saw:
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A group of scientists investigating paranormal phenomena have condustgies of
experiments testing people who claim to possess psychic powers. All ef peeple
say that they have psychokinetic abilities: they believe that they can inéubac
outcome of a coin toss. The scientists tested this claim by flipping a fair coin 100
times in front of each person as they focus their psychic energies.rdodmal
circumstances, a fair coin produces heads and tails with equal probaHilgyesults
of these experiments are shown below: the identities of the people areatesheéth
subject numbers, but you are given the number of times the coin came dpdrea

tails while that person was focusing their psychic energies.
while those receiving thgenetics cover story saw:

A group of scientists investigating genetic engineering have conductetka sé
experiments testing drugs that influence the development of rat fetubes tifese
drugs are supposed to affect the sex chromosome: they are intendtttovaiether
rats are born male or female. The scientists tested this claim by producing@b0 b
rats from mothers treated with the drugs. Under normal circumstances, ndale an
female rats are equally likely to be born. The results of these experimerdb@sm
below: the identities of the drugs are concealed with numbers, but youvarethe

number of times male or female rats were produced by mothers treated withreagch d

These cover stories were presented with the data in a short questiotogéter with further

instructions on how to respond to the stimuli.

Procedure. Each participant received a questionnaire listing the eigbt thata sets in one
of two random orders. Orthogonal to the manipulation of the cover starticjpants either

received theosterior or theoincidence instructions. Thgosterior instructions for the

psychokinesis condition were:
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For each of the lines below, please rate HOW LIKELY you think it is that theqre
has psychic powers, taking into account the results of the experimena &tsde
from 1 to 10, where 1 indicates NOT AT ALL LIKELY and 10 indicates

EXTREMELY LIKELY.
Likewise, the instructions for thgenetics condition were:

For each of the lines below, please rate HOW LIKELY you think it is that thegdr
affects the sex of rats, taking into account the results of the experimenta bisale
from 1 to 10, where 1 indicates NOT AT ALL LIKELY and 10 indicates

EXTREMELY LIKELY.

The eight sets of frequencies were accompanied by lines on which pantisipould write their
responses. Theoincidence instructions for thesychokinesis condition asked people to choose

between a mere coincidence and evidence:

For each of the lines below, please decide whether you think the resultatqerson
are JUST A COINCIDENCE, or COMPELLING EVIDENCE for them having

psychic powers, by checking either the COINCIDENCE or the EVIDENGE.

Similarly, the instructions for thgenetics condition were:

For each of the lines below, please decide whether you think the results &fleA
COINCIDENCE, or COMPELLING EVIDENCE for that drug influencingelsex

chromosome, by checking either the COINCIDENCE or the EVIDENCE box.

The eight sets of frequencies were listed with checkboxes to allow partisipaindicate their

responses.

ResultsandDiscussion

One participant in thgenetics condition and two in thpgsychokinesis condition appeared to

reverse the rating scale, and were eliminated from the analysis. The @gu$isown in Figure 3.
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The posterior ratings were subjected to a two-way between-within ANOVA exaqihia effects

of condition fpsychokinesisgenetics) and varying frequency. There was a main effect of condition

(F(1,39) =9.30, MSE = 13.10, p < .01), a main effect of frequency{(7,273) = 91.60,

MSE = 3.31, p < .0001), and an interaction between the two((, 273) = 7.86, M SE = 3.31,

p < .0001). As can be seen from the figure, the rated probability of the concluséon wp as
frequency increased, but did so earlier for gemetics than thpsychokinesis condition. The same
analysis was performed for tlwincidence assessments, showing a main effect of condition
(F(1,55) = 18.78, MSE = 0.18, p < .0001), a main effect of frequency{(7, 385) = 99.01,
MSE = 0.08, p < .0001), and an interaction between the two((’, 385) = 39, M SE = 0.08,

p < .0001). These results are due to a similar pattern of effects: the proportiorse$ céassified

as coincidences decreased as the frequency increased, butfeathemgenetics than the

psychokinesis condition.

Insert Figure 3 about here

As predicted, there was a close correspondence between the propdrtases classified as
a mere coincidence and the mean posterior probability of the regular tjaggreocess, with a
linear correlation of = —0.98. In fact, points that are equivalent in posterior probability are also
equivalent in the proportion of cases that were classified as coing@geBzamining Figure 3
closely, it can be seen that 87 heads and 63 males produce the sameandstigyraphs, as do 63
heads and 59 males, and 99 heads and 70 males. This relationship hpitks thesfact that
responses were binary in one condition and continuous in the otherpgaided from completely
different participants.

The assumption that there is a threshold on the posterior odds that detewhgtlegr an

event is a coincidence or evidence, as indicated in Figure 2, suggedtsetsa judgments might be
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modeled using a sigmoid (logistic) function of the posterior odds,

. 1
P(“evidence”

d) = (6)

P(hy|d) ’
L+ exp {_g 98 Bihola) ~ b}

whereg is the gain of the sigmoid, artdis the bias. Ag)— oo, this becomes a step function at the

pointb. We will assume thag = 1 andb = 0, meaning thaf(“evidence”

d) is equal toP(hq | d).
Since the likelihood rati% is given by Equation 5, we can estimate the prior odds for each
participant by fitting the sigmoid function to their responses, and thus obtapritreP (k).

In the coincidence condition, all but one of the participants responded in a fasbitsistent
with thresholding the posterior odds. It was thus simple to find the value ofitveqalds for each
participant that maximizes the probability of their responses as predicteduatién 6. This
results in a model fit for each participant, and the quality of these fits caedvefeom the mean
model predictions shown in the upper panel of Figure 3. The median vaiugs:,) for the

psychokinesis andenetics conditions were wepe)004 and0.23 respectively.

A similar procedure can be used to estimate the prior odds directly from therjpos
probabilities provided by the participants in thesterior condition. Again fitting a sigmoid
function for each participant, this time relative to the squared error, wéndig fits shown in the
lower panel of Figure 3. People’s more extreme probability judgments caedreto be more
conservative than those predicted by our Bayesian model, consistemresibus research (e.qg.,
Edwards, 1968). However, this procedure yields similar median valueg3(fg ): 0.0011 in the

psychokinesis condition artd20 in thegenetics condition. Contrary to previous results illustrating

deficits in the ability to combine likelihood ratios with prior odds (e.g., Kahneman é&r3ky,
1972), people seem quite accurate in assessing the posterior probatifilitzesal relationships.
This may be a consequence of using priors that are derived fromdedexxperience, rather than
base-rates provided in an experimental scenario (Evans, Handley, &Rerham, 2002).

The results of this experiment are consistent with the predictions of owdayaccount of
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coincidences. Data that provided the same supportfovere judged to be coincidences if
presented as the results of a test of psychokinesis, and evidencedhfed as the results of a test
of genetic engineering. The proportion of people who consideredent awoincidence showed a
direct correspondence to the posterior probability, with the differert@den the two conditions
resulting from a difference in the prior probability of a causal relationshfisuming that people
are accurately evaluating the likelihood ratio in favor.gfallows us to assess the values of these
prior beliefs, which are consistent across experimental procedndesith our intuitions about the

efficacy of psychic powers and genetic engineering.

The strength of coincidences

Experiment 1 suggests that the basic constituents of our definition of ceiroed are
correct: that events are considered a coincidence when they prayggers for an alternative
theory that is insufficient to convince us of its truth. We can now examine thasstituents more
carefully. Under this account of coincidences, the likelihood ratio indéctte strength of a
coincidence, with higher likelihood ratios indicating more compelling coincidencghe analysis
given in the previous section, we assumed that the likelihood ratio givenuaten 5 accurately
captured people’s assessment of the supportithate forh; overhy. Whether people’s
assessment of the strength of coincidences corresponds to the likeldtmoih favor of; more
generally is an empirical question.

In exploring this question, we have the opportunity to examine people’'samgsat of
coincidences in more realistic settings. The simplicity of coinflipping makes itfantefe
example with which to explore formal models, but real coincidences, sutfesbombing of
London, often involve more complex data and more elaborate theories.sk ¢thses, detecting a
coincidence does not just involve recognizing an unusual patterdging so despite the presence
of some observations that do not express that pattern. These sopddstiziuctive inferences

have parallels in other aspects of cognition. For example, many problensidein cognitive
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development have exactly this character, requiring a child to notice a rizgtiteat is expressed in
only a subset of the data. One such case is word learning: young chétzeble to learn the
relationship between the use of words and the appearance of the obggcidahtify, despite the
fact that only about 70% of the uses of a word by a parent occur Wieechild is attending to the
relevant object (Collins, 1977; Harris, Jones, & Grant, 1983).

We examined people’s judgments about the strength of coincidences frodifferent
kinds of data: spatial data, consisting of the locations of bombs, and tehdjateaconcerning the
dates of birthdays. These two cases have connections to two of the mshent examples that
are used to argue for the irrationality of human reasoning about coircadethe bombing of
London and the “birthday problem”. In each case, we investigated hdvshav that people’s
assessment of the strength of coincidences corresponds with the Irptiediations of the

Bayesian account developed above.

Coincidencesin space

John Snow’s inference to the cause of the Broad Street cholera dutbréddhe mistaken
beliefs of the populace during the bombing of London were both basadagincidences in space
— clusters in the locations of patients and bombs respectively. We will fatasiacidences that
arise from patterns of bombing, looking at a measure of the strength afideirces based upon
two simple theories of bombing. Under the first thedry, each bomb has its own target at a
locationL;. Under the second theory;, the target of each bomb is determined probabilistically:
with probability «, the bomb is aimed at a common target at a locafigrwith probability 1 — «,
the bomb has its own target, at a locatibn We will assume that the point at which a bomb
explodes has a Gaussian distribution around the location of its target, wahaowe matrix:,
and that targets are distributed uniformly throughout the region in which bdatibRR.

The theoryhy generates only one causal graphical model, den@ieghh 0 in Figure 4. In

this model, each bomb has a single target, and the points at which the bomldeexigo



From coincidences to discoveries 27

independent. Using; to indicate the point at which thigh bomb explodes] = {x1,...,zn,}
whereNp is the number of bombs. In the Appendix we show that the probability that a bomb
lands in a particular location undgg is approximately uniform oveR, as illustrated
schematically in Figure 5, with the likelihood fég being

P(d| ho) ~ <|71z‘> o W

where | R | is the area oR.

Insert Figure 4 about here

Insert Figure 5 about here

The theoryh; generate@V5 causal graphical models, corresponding to each partition of
Np bombs into two sets, one in which each bomb has a unique target and one lneabitbomb
shares a common target. Two causal graphical models generated by ¢injs\viith Nz = 6 are
shown in Figure 4. Evaluating(d | h1) requires summing over all of these different causal
models, a procedure that is discussed in the Appendix. Evaluating thidhilityhia facilitated by

the fact thath, implies that eachX; is drawn from amixture of a uniform and a Gaussian, giving

Np
P(d|Z,p,te) = []P(xilLi=Xi)P(Li—X;|a)+ P(X |2, le, Le—X;)P(Le—X; | )]

whereP(L;— X | «) is the probability thab; has a unique targeb)(L.— X | «) is the probability

thatb; shares the common target, apgh(z;, £¢) is the probability ofr; under a Gaussian
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distribution with mearf. and covariance matriX. Each of these possibilities implies a different
distribution for X;, being uniform and Gaussian respectively, and their probabilities prdkiz
weights with which these distributions are mixed, being « anda respectively. The resulting
mixture distribution is illustrated schematically in Figure 5. Computi{d | 41 ) reduces to the
problem of computing the marginal probability of data under a mixture distribugigmoblem that
has been studied extensively in Bayesian statistics (e.g., Emond, RaftStge&, 2001).
Equation 7 and the procedure described in the Appendix provide us witheghas of
computingP(d | ho) andP(d | hy ), the basic constituents of the likelihood ratio indicating the
support that datd provide forh,. Experiment 2 was designed to investigate how well this quantity
predicts people’s assessment of the strength of coincidences in borRaitigipants were
informed thathy was in fact the correct account of the data, meaning that any sugpast fvould
constitute a coincidence. Under the Bayesian model outlined above, jsegdessment of the
strength of coincidences should be strongly affected by the propeftilee datad. In particular,
the statistical evidence in favay will be increased by the number of bombs that appear in a
cluster, in both absolute and relative numbers. The location and size diitiercshould have
weaker effects. We constructed a set of stimuli that varied along thesaslons, and examined
whether people’s judgments of the strength of coincidences demonstratpeetlicted sensitivity

to these statistical properties.

Experiment 2

Method

Participants. Participants were 235 undergraduates, participatinguimecoredit.

Stimuli. Stimuli were 12 images containing points at different locations within a 1T0by
square, ranging from -5 to 5 in two directions. No markers on the axesitedi¢his scale, but we
provide the information to give meaning to the parameters listed below. Nines# #tienuli were

generated from a mixture of a uniform and a Gaussian distribution, withredeas selected to
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span four different dimensions — number of points, proportion of poiittimthe cluster, location
of the cluster, and spread of the cluster.
The basic values of the parameters used in generating the stimuliVyete 50, o = 0.3,

=[] ianam - |

described above. The parameter values used to generate these stigiviealie Table 1. The

o N=

] , Which were varied systematically to produce the range of stimuli

n= O

other three stimuli were generated by sampling 50 points from the unifornbdisdn. All 12
images are shown in Figure 6, with repetition of the stimulus embodying the baameter
values accounting for the presence of 15 images in the Figure. The stinraldelvered in a

guestionnaire.

Insert Table 1 about here

Procedure. Participants completed the questionnaire as part of a bajoddber short
psychology experiments. Each participant saw all 12 images, in one @rgibom orders. The

instructions on the questionnaire read as follows:

During World War 11, the city of London was hit repeatedly by German bartkile
the bombs were found to be equally likely to fall in any part of London, peopthe
city believed otherwise.

Each of the images below shows where bombs landed in a particular part of
London for a given month, with a single point for each bomb. On the lineseat th
bottom of the page corresponding to each image, please rate HOW BIG A
COINCIDENCE the distribution of bombs seems to you. Use a scale from 1,to 10

where 1 means ‘Very small (or no) coincidence’, and 10 means ‘Vergdiigcidence’.

The images were labelled with alphabetical letters, and correspondingliethbees were

provided at the bottom of the questionnaire for responses.
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ResultsandDiscussion.

The mean responses are shown in Figure 6. Planned comparisonowgrated for each
of the manipulated variables, with statistically significant outcomes for nuniber 22.89,
p < .0001), proportion ¢ = 10.18, p < .0001), and spread{ = 12.03, p < .0001), and a
marginally significant effect of locationf{ = 2.0, p = 0.14). The differences observed among
responses to the three sets of points generated from the uniform distrilagiie not statistically

significant ' = 0.41, p = 0.66). All planned comparisons hatf = 2,2574, andM SE = 6.21.

Insert Figure 6 about here

Values of% were computed for each image using the method outlined in the
Appendix. The predictions of the Bayesian model are shown in Figuré& ofidinal correlation
between the raw statistical evidence and the responses was965. The values shown in the

figure are a result of the transformatigr= sign(x)abgxz)” for x = log % and~ = 0.32,

which gave a linear correlation of= 0.981.7 People’s assessment of the strength of coincidences
shows a remarkably close correspondence to the predictions of thisiBayecount. The main
discrepancy is an overestimate of the effect of strength of coincidendled stimulus with the

least spread. This may have been a consequence of the fact thatsledittating the bomb

locations overlapped in this image, making it difficult for participants to estimateuh#er of

bombs landing in the cluster.

Coincidencesin date

How often have you been surprised to discover that two people shasarteebirthday?
Matching birthdays are a canonical form of coincidence, and are ufied to demonstrate errors
in human intuitions about chance. The “birthday problem” — evaluating the euailpeople that

need to be in a room to provide a 50% chance of two sharing the same birtliglaycommon
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topic in introductory statistics classes, since students are often surpridisddoer that the answer
is only 23 people. In general, the number of people required to have abafte of a match on a
variable withk alternatives is approximatelyk, since there ar(;Z;’P) ~ N2 opportunities for a
match betweeVp people. Using a set of problems of this form that varied,iMatthews and
Blackmore (1995) found that people exp@&t to increase linearly witht, explaining why such
problems produce surprising results. Diaconis and Mosteller (198@dittpat many coincidences
are of similar form to the birthday problem, and that people’s faulty intuitiomsiasuch problems
are one source of errors in reasoning about coincidences.

In this section, we will examine how people evaluate coincidences in dategtheonovel
“birthday problem”: assessing how big a coincidence it would be to meeiwgpgf people with a
particular set of birthdays. In contrast with the tasks that have beentasegue that coincidences
are an instance of human irrationality, this is not an objective probability judgrites a
subjective response, asking people to express their intuitions. In marsy thié is a more natural
task than assessing the probability of an event. It is also, under owratlaration of the nature of
coincidences, a more useful one: knowing the probability of an venrifspevent, such as
meeting people with certain birthdays, is generally less useful than knowimgrtuch evidence it
provides for the theory that a causal process was responsiblergiriyg that event about. By
examining the structure of these subjective responses, we have theéunitydo understand the
principles that guide them.

Imagine you went to a party, and met people with a set of birthdays sufphuagist 3,
August 3, August 3, August}3 Assume we have two possible theories that could explain this
event. One theory,, asserts that the presence of people at the party is independent of their
birthday. This theory generates one causal graphical model foranper of peopleVp, which is
denotedGraph 0 in Figure 7. The other theor¥, , suggests that, with probability, the presence
of a person at the party was dependent upon that person’s birthgdayith the theory of bombing

presented above, this theory generat®s causal graphical models f&¥p people, consisting of
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all partitions of those people into subsets whose presence either depatwks not depend upon
their birthday. Figure 7 shows two causal graphical models generatedwith Np = 6. A
priori, hy seems far more likely that,, so a set of birthdays that provides support for

hi constitutes a coincidence.

Insert Figure 7 about here

The datad in this setting consists of the birthdays of the people encountered at the party
Since only the people present at the party can be encountered, taesaditional data. 113;
indicates the birthday of thith person and; indicates the presence of that person at the party, our
data are the values @; conditioned onP; being positive for ali. Underhq, B; andP; are
independent and; is drawn uniformly from the set of 365 days in the year, as illustrated in Eigur

8, so we have

1\ Nr
Pl = (555) ®

whereN;,r is the number of people who are present at the party.

Insert Figure 8 about here

EvaluatingP(d | h1) is slightly more complicated, due to the possible dependenék oh
P; and the functional form of that dependence. We need to specify hoplgig birthdays
influenced their presence at the party. A simple assumption is that therelisid St of
birthdays,3, and only people whose birthdays fall within that set can be presentfifst step
towards evaluating’(d | k1), we can consider the probability dfconditioned on a particular filter.
There are two possibilities for the component of the causal structuredirasponds to each

person: with probability — p, B; and P; are independent, and with probability B; and P; are
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dependent. I1B; and P; are independent, the probability 8f conditioned onp; is just the
unconditional probability oB3;, which is uniform ovef1,...,365}. If B; andP; are dependent,
the distribution ofB; conditioned onP; is uniform over the seB, sinceP; has constant probability
whenB; € B and zero probability otherwise. It follows that the probability distributiongach

B; conditioned onP; being positive is a mixture of two uniform distributions, and

d|t3=1:[[365+1b ezs’)ﬁ 9)

wherel(-) is an indicator function that takes the value 1 when its argument is true andrivisthe
and | B| is the number of dates 8. The nature of this mixture distribution is illustrated
schematically in Figure 8.

We can use Equation 9 to compu®éd | hy). If we define a priorP(B) on filters 5, we have
P(d|hy) ZPd!B (10)

The extent to which a set of birthdays will provide supportdgmwill thus be influenced by the
choice of P(B). We want to define a prior that identifies a relatively intuitive set of filters tha
might be applied to a set of birthdays to determine the presence of peopgbaidy.aAn
enumeration of such regularities might be: falling on the same day, fallingjenead days, being
from the same calendar month, having the same calendar date (e.g., Jahudarch 17,
September 17, December 17), and being otherwise close in date. With 36hdhe year, these
five categories identify a total of 11,358 different filté#s365 consisting of a single day in the
year, 365 consisting of neighboring days, 12 consisting of calendathsidil consisting of
specific days of the month, and 10,585 having to do with general proximitytén(fam 3-31
days). This is not intended to be an exhaustive set of the kinds of régadane could find in

birthdays, but is a simple choice for the values #haiuld take on that allows us to test the
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predictions of the model. Given this set, we will define a pridf}3), by taking a uniform
distribution over the filters in the first four categories, and giving all 19 figers in the fifth
category as much weight as a single filter in one of the first four. Equali@ad then be evaluated
numerically by explicitly summing over all of these possibilities.

The second term in Equation 9 has an important implication: the influence ofrafiite
the assessment of a coincidence decreases as that filter admits mor& lalasesvhile the set
{August 3, August 3, August 3, Augus} 8onsists of birthdays that all occur in August, the major
contribution to the support fdr; having been responsible for producing this outcome is the fact
that all four birthdays fall on the same day. This sensitivity to the size ofltlee 8 is equivalent to
the “size principle” that plays a key role in Bayesian models of conceptileguand generalization
(Tenenbaum, 1999a; 1999b; Tenenbaum & Griffiths, 2001). Theiffigigarocedure by which
people come to be present at the party urides one means of deriving this size principle.

We can use Equations 8 and 10 to compute the likelihood %%% for any set of
birthdays. Experiment 3 compared this likelihood ratio with human ratings otteegth of
coincidence for different sets of birthdays. The key prediction is thstaf birthdays correspnding

to small filters will constitute strong coincidences.

Experiment 3
Method
Participants. Participants were 93 undergraduates, participating fagecotedit.

Stimuli. Stimuli were sets of dates, chosen to allow assessment of the degradflence

associated with some of the regularities enumerated above. Fourteen poddatianships
between birthdays were examined, using two choices of dates. The skettesfincluded: 2, 4, 6,
and 8 apparently unrelated birthdays for which each date was chasemfdifferent month, 2
birthdays on the same day, 2 birthdays in 2 days across a month bouhdatirdays on the same

day, 4 birthdays in one week across a month boundary, 4 birthdays iantealendar month, 4
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birthdays with the same calendar dates, and 2 same day, 4 same day, ereldagawith an
additional 4 unrelated birthdays, as well as 4 same week with an additiomaé2ted birthdays.
These dates were delivered in a questionnaire. One of the two choidatesf in the order

specified above, was:

February 25, August 10
February 11, April 6, June 24, September 17
January 23, February 2, April 9, July 12, October 17, December 5
February 22, March 6, May 2, June 13, July 27, September 21, Qct8h®ecember 11
May 18, May 18
September 30, October 1
August 3, August 3, August 3, August 3
June 27, June 29, July 1, July 2
January 2, January 13, January 21, January 30
January 17, April 17, June 17, November 17
January 12, March 22, March 22, July 19, October 1, December 8
January 29, April 26, May 5, May 5, May 5, May 5, September 14, Ndwer 1
February 12, April 6, May 6, June 27, August 6, October 6, NoveribeDecember 22

March 12, April 28, April 30, May 2, May 4, August 18

Procedure. Participants completed the questionnaire as part of a bofoddber short
psychology experiments. Each participant saw one choice of dates, withghlarities occurring

in one of six random orders. The instructions on the questionnaire ssfatl@vs:

All of us have experienced surprising events that make us think ‘Wowat @h
coincidence’. One context in which we sometimes encounter coincidenices is
finding out about people’s birthdays. Imagine that you are introducedrtous

groups of people. With each group of people, you discuss your birthdzach of the
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lines below gives the birthdays of one group, listed in calendar order.
Please rate how big a coincidence the birthdays of each group seem tdsma
scale from 1 to 10, where 1 means ‘Very small (or no) coincidence’ l&ndeans

‘Very big coincidence’.

The sets of dates were then given on separate lines, in calendar agttdaramch line, with a space

beside each set for a response.

ResultsandDiscussion

The mean responses for the different stimuli are shown in Figure 9. iftheldys differed
significantly in their judged coincidentalneds((3, 1196) = 185.55, M.SE = 3.35, p < .0001).

The figure also shows the predictions of the Bayesian model. The ordirrelation between the
likelihood ratio% and the human judgments was= 0.921. The values shown in the Figure
were obtained using = 0.60, and produced a linear correlation:of= 0.958.

The predictions of the Bayesian model correspond closely to peoplgmjeicts of the
strength of coincidences. Each of the parts of this model — the size printtiplset of filters, and
the prior over filtersP(B) — contributes to this performance. Figure 9 illustrates the contributions
of these different components: the panel labelled “Without sizes” stiwsvsffect of removing the
size principle; “UniformP ()" shows the effect of removing(B); and “Unit weights” shows the
effect of removing both of these elements of the model and simply giving acpight to each
filter B consistent withB;. We will discuss how each of these modifications reduces the fit of the
model to the data, but the basic message is clear: simply specifying a sgulafries is not

sufficient to explain people’s judgments. The model explains many of tHeetab of people’s

performance on this task as the result of rational statistical inference.

Insert Figure 9 about here
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The “Without sizes” model shown in Figure 9 replaces% term in Equation 9 with just
p, removing the effect of the size principle. The model fit is significantly wowgth a rank-order
correlation ofp = 0.12, andy = 1.00 giving a linear correlation of = —0.079. The worse fit of
this model illustrates the importance of the size of the extension of the judgetliewketermining
the strength of a coincidence, consistent with Falk’s (1981-1982;)1@88lts. This effect can be
seen most clearly by examining the stimuli that consist of four ddi&sgust 3, August 3, August
3, August 3 is more of a coincidence thgdanuary 17, April 17, June 17, Novemben 1#hich
is in turn more of a coincidence thgdanuary 2, January 13, January 21, Januaky BBis
ordering is consistent with the size of the regularities they express: afeeirdirthdays falling
on August 3 cover only one date, August 3, while there are 12 datesambby the set
corresponding to dates falling on the 17th day of the month, and 31 dateseddwy the set
corresponding to dates in January.

The size of the extension of the set is not the only factor influencing titkgbians of the
Bayesian model. While the size Bfis important in determinind®(d | 1), the priorP(5) also has
a large effect. In the basic modét(B) gives less weight to the extremely large number of
regularities corresponding to intervals of between 3 and 31 days. Thetamperof this prior over
sets is illustrated by the “Uniforn®?(3)” model, which gives equal probability to all of the filters
B. This model gives too much weight to the filters that correspond to intertdistes, resulting in
afit of p = 0.776, andr = 0.806 with v = 0.80. The main error made by this model is not
predicting the apparent equivalence{danuary 17, April 17, June 17, Novemben Bahd{June
27, June 29, July 1, July}2despite the fact that the former is of size 12 and the latter of size 7. In
the basic model, the effect of the sizes of the regularities is overwhelmé&g®y, corresponding
to the fact that dates falling within seven days over a month boundary ispastiaularly salient
regularity.

The effects of the size principle a®{ 5) interact in producing the good performance of the

basic Bayesian model. These two factors determine which regularities icdltie& strength of a
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coincidence. Simply having a sensible set of filters provides no guarahéegood model of
coincidence judgments. This can be seen in the “Unit weights” model, in whititeas B are
given unit weight, removing the size principle and using a uniform pfigf). The model gives a
fit of p = 0.099, andr = 0.158 with v = 0.002. In this model, the major contributors to the
strength of a coincidence are the number of dates and their proximity.

The main discrepancy between the basic Bayesian model and the data iddtiegof the
random dates. The model predicts that the longer lists of unrelated datéd ble considered less
of a coincidence, while people seem to believe the opposite. To explorautiosig effect further,
we conducted a second survey with a separate group of 73 undaatgadshowing them a subset
of 8 of the 14 stimuli used in the experiment that included the four sets obrantdtes. The
participants were asked to rate the strength of the coincidences, as,lsfdrto state why they
gave the rating they did. Of the 73 patrticipants, 49 did not identify any kinghti€rn in the
random dates, 23 noted a regularity, and one gave a high rating bexdaus®atch with her own
birthday. The regularity identified by the 23 subjects had to do with the factitedrandom”
birthdays were suspiciously evenly spaced throughout the yearyadapping at all in month or
date. This slight discrepancy is thus due to the fact that people are gemsitegularities that

were not included in our simple model.

Causes and coincidences

Experiments 2 and 3 show that the likelihood ratio in favoh pfs a good predictor of
people’s assessment of the strength of coincidences, as predicted d&gcount of coincidences.
Since this likelihood ratio is intended to measure the evidence for a theomgharfprediction of
our account is that the strength of coincidences should correlate witkrémgth of evidence for
that theory in contexts where a causal relationship is more plausible. Toitebypothesis, we
conducted two experiments using stimuli with the same statistical structure asuHeubin

Experiments 2 and 3, but explicitly asking people to make judgments aboutahahplity that a
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hidden cause was present. Our account predicts that people’s jutightiee evidence for causal

structure should correspond to their assessments of the strength afleates.
Experiment 4
Method

Participants.

Participants were 156 undergraduates, participating for course credit.

Stimuli.

The stimuli were those used in Experiment 2.

Procedure.

The experimental procedure was identical to that used in Experiment@pieparticipants
were provided with a different set of instructions. The instructions gedithe context from one in
which they were explicitly evaluating the strength of coincidences to one inhvihey were

evaluating the evidence in favor of a hidden cause. The instructionasdfatiows:

A researcher in Madagascar is studying the effects of environmestalnges on the
location of lemur colonies. She has studied twelve different parts of Mestag, and
is trying to establish which areas show evidence of being affected by tinédimn
of resources in order to decide where she should focus her rbsé&zch of the
images below shows the locations of lemur colonies in one of the areas thectese
has studied. For each image, please rate HOW LIKELY you think it is that leer
some underlying cause influencing the places where the lemurs choose tddiv a
scale from 1 to 10, where 1 means ‘very UNLIKELY to have an underlgiagse’,

and 10 means ‘very LIKELY to have an underlying cause’.
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ResultsandDiscussion

As in Experiment 2, planned comparisons were computed for each of thputaad
variables, with statistically significant outcomes for numidér 54.91, p < .0001), proportion
(F = 54.27, p < .0001), location ¢ = 13.07, p < .0001) and spread{’ = 51.10, p < .0001) The
differences observed among responses to the three sets of pointatgdreom the uniform
distribution were not statistically significank’(= 0.64, p = 0.47). All planned comparisons had
df =2,1705, andM SE = 3.11. The mean responses are shown in Figure 10, together with the
mean responses from Experiment 2. The two sets of responses @maytsimilar, with a linear

correlation ofr = 0.995 and a rank-order correlation pf= 0.993.

Insert Figure 10 about here

Experiment 5

Method

Participants.

Participants were 120 undergraduates, participating for course credit.

Stimuli.

The stimuli were those used in Experiment 3.

Procedure.

The experimental procedure was identical to that used in Experiment&pieparticipants
were provided with a different set of instructions. The instructions gedithe context from one in
which they were explicitly evaluating the strength of coincidences to one inhvihey were

evaluating the evidence in favor of a hidden cause. The instructionasdfatiows:
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A parcel-shipping company has been keeping meticulous records onlite dfats
customer base over the past year. For each customer who sent mooad¢haackage,
the company recorded the date on which each of those packages wakhsen
company’s marketing department is trying to figure out why different coste
shipped packages when they did. They believe that for some custoneesigisome
underlying cause, reason, or occasion common to some of their shipments tha
explains why those packages were sent on the particular days thateneylw
contrast, for other customers, each package sent was indepehtfenbthers, with
no common underlying cause, reason, or occasion. The shipping cgmpaid like
to identify those customers whose shipments had an underlying causeeiri@offer
them special discounts in the future.

The dates on which several customers sent packages are showmitecaleder
below. Each set of dates corresponds to one customer’s recoripofesits for the
year; each date corresponds to a single shipment by that customeadrariestomer,
please rate HOW LIKELY you think it is that there is some underlying cagsesan
or occasion responsible for SOME OF their shipments. The alternativet iglklize
customer’s shipments are independent, and none of them have a comreenldse a
scale from 1 to 10, where 1 means ‘very UNLIKELY some shipments have an
underlying cause’, and 10 means ‘very LIKELY some shipments havederlying

cause’.

ResultsandDiscussion

As in Experiment 3, there was an overall effect of the set of dafgd,3 1547) = 36.53,
MSE =10.55, p < .0001). The mean responses are shown in Figure 11, plotted against the mean
responses from Experiment 3. The overall pattern of responsesyisivdglar in the two

experiments, with a linear correlation of= 0.927 and an ordinal correlation of = 0.903.
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The only stimuli that deviate from the otherwise strong linear relationship leetive
results of the two experiments are C and D, which both contain a regularittheygeith several
unrelated dates. This difference may have been a result of less willmtgmascept partial
regularities as indicating the presence of an underlying cause whemiegsbout packages. We
evaluated this hypothesis by examining the consequences of changirsgtimepions about the
distribution ofc, the proportion of dates that should be drawn from the regularity, in aye&ian
model. Assuming a uniform distribution over as was done for the birthday data from
Experiment 3, results in a linear correlation between model and date-df.840 with v = 0.59.

If instead we assume thatis drawn from a distribution that is peaked néawe obtain a better fit
to the data. For example, assuming thdbllows a Beta$.99,0.01) distribution, which has a mean
ata = 0.999, givesr = 0.916 with v = 1. This is consistent with people having a stronger

expectation that a causal relationship would affect all dates in the céise packages.

Insert Figure 11 about here

General Discussion

We defined a coincidence as an event that provides evidence for araéite to a current
theory, but not enough evidence to convince us to accept that alternistbre formally, a
coincidence is an event where the posterior odds in favor of a hypsthesver our current
beliefshg remain middling as the consequence of a high likelihood ratio and low prior. ddhis
definition makes three predictions: that an event can transform fronmeidence to unambiguous
evidence for an alternative theory as the prior odds or likelihood ratie#se; that the likelihood
ratio indicates the strength of a coincidence; and that the strength of adssine should be the
same as the amount of evidence that an event provides in favor of tiragéite theory. Our

experiments support these predictions. In Experiment 1, people’srietatipn of an event as
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coincidence or evidence was directly affected by manipulating the prics add likelihood ratios
of different stimuli. In Experiments 2 and 3, the likelihood ratios associateddifférent kinds of
structure embedded in noise predicted people’s judgments about thalswéngincidences. In
Experiments 4 and 5, these judgments correlated almost perfectly with eapée'ssments of the
evidence an event provided for a particular theory.

We began this paper by observing an apparent paradox associatembinitidences: that
the same events seem to be involved in both our most grievous errorsohieg, and our greatest
causal discoveries. Our account of coincidences provides somatiirgtig this paradox. Under
our definition, coincidences provide an opportunity to make a discoverystiveconsistent with
our current account of how the world works. The low prior odds irofadf 7, indicates that this
theory is rendered implausible by the remainder of a learner’s knowledgle, the high
likelihood ratio suggests that should be taken seriously. The ultimate outcome of accepting the
conclusion suggested by a coincidence depends on the truth of oneatdheory. If one’s
current theory is true, then one will be led to a false conclusion. If anaient theory is false,
then one might make a significant discovery.

Formulated in these terms, it becomes clear that the utility of attending to coine&lenc
depends upon the state of our knowledge. If our understanding ofdHd is accurate, then
coincidences can only be false alarms: cases where events that atisarog provide support for
an alternative theoryy;. Our susceptibility to being misled by coincidences is thus partly a
consequence of our success in causal discovery making one of thesmajoes of clues
redundant. For anybody with a less accurate account of how the workdswhan a modern adult,
such as an early scientist or a young child, coincidences are a riotesoiunformation as to how
a theory might be revised, and should be given great attention. Thigrtcalso explains why
many of the most compelling coincidences, such as the September 11 lottdty, re®e associated
with mysticism. Sincéy, represents the sum of our knowledge of natarewill have to postulate

the existence of a supernatural force.
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When combined with the results of our experiments, this view of coincidemogglps the
opportunity to gain a deeper understanding of their role in both false caonkiand meaningful
discoveries. In the remainder of the paper, we will discuss these twotagdecoincidences more
detail, considering the implications of our results for claims about human rétioad how

coincidences play a role in theory change.

Thelocusof humanirrationality

‘Singular coincidence, Holmes. Very smart of you to notice it, but rathehantable

to suggest that it was cause and effect.’

Sir Arthur Conan Doyle (1986b},headventureof thedying detective, p. 396.

In the Bayesian approach to causal induction outlined in this paper,l¢caiesances are the
result of combining two kinds of information: the evidence that the particidtadprovide for a
theory; and the a priori plausibility of the existence of that structure. & hes kinds of
information are expressed by the likelihood ratio and the prior odds in Easadiand 4. Under
this approach, three factors could lead to errors in evaluating the ex@sbéoausal structure:
failing to evaluate the evidence provided by a particular event, failing toratady assess the
plausibility of the suggested theory, or failing to combine these two sourdafoomation
appropriately. Using this framework, we can ask which of these factoesonsible for the false
conclusions about causal structure that people sometimes reach whexjpleeience
coincidences.

The results of the experiments presented above can be used to identifgubh®fdiuman
irrationality with respect to coincidences. Experiment 1 showed that peopld integrate prior
knowledge with statistical evidence appropriately in evaluating coincideBoggriments 2 and 3
(as well as Experiments 4 and 5) indicate that people are very goodeasagsthe support that an
event provides for a theory: the likelihood ratio in favorigfgave a remarkably good fit to human

judgments. Thus, of the three factors that could lead to errors, one rer@ainsesults suggest
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that when people are led to believe theories that are false, they do soasegjaence of
over-estimating thapriori plausibility of those theories, as reflected in the prior odds.

The suggestion that people can accurately assess the evidence thateveats provides
for a theory is consistent with some of the ideas that appear in the literatjudgment and
decision making. Tversky and Koehler (1994) argued that many of thigoinal aspects of
people’s probability judgments can be understood by viewing these judgaserdgfiecting the
support that a set of observations provide for a particular hypotHesisder to use this
information, people have to be able to actually compute some measure oftsWhie various
measures have been suggested, a Bayesian measure of support sioutantasure of evidence
has been found to provide reasonable results on at least some coggrskggKoehler, White, &
Grondin, 2003). This is consistent with the results of Experiments 2 anald3Ha&periments 4 and
5). However, accurately assessing the support for a theory dogsia@ntee a valid conclusion
about the truth of that theory, just as accurate results from a statistalglsémndo not guarantee a
valid conclusion. Reaching the right conclusion requires having well+edét priors.

One suggestive hypothesis as to why people might over-estimate the gfaimibility of
certain theories comes from developmental psychology. Gopnik and M€t287) argue that the
scientific behavior of adults is an extension of the capacity for causaludisgthat is essential for
the cognitive development of children. It is quite understandable thatrehildight be willing to
believe the theories suggested by coincidences, since they are slatddmnevents that really do
involve novel causal relationships. Small children are justified in beingpicacy theorists, since
their world is run by an inscrutable and all-powerful organization peisgsecret
communications and mysterious powers — a world of adults, who act by arsgételes that
children gradually master as they grow up. If our scientific capacities raadljor solving these
childhood mysteries, then our disposition to believe in the existence of uctexpeausal
relationships might lag behind our current state of knowledge, leadingseetoauses where none

exist.
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Further opportunities for erroneous inferences are provided saslsere suspicious
coincidences are not tested through further investigation. If we exanmeneotitexts in which
coincidences lead people to false beliefs, we see that many of them initalyons where it is
hard to conduct convincing experiments that invalidate a hypotheticahlcalationship.
Synchronicity, extrasensory perception, and other paranormadame all quite slippery subjects
of investigation, for which it is challenging to construct compelling experimeesss (e.g.,
Diaconis, 1978). The bombing of London involved a similarly untestable tmgsis, compounded
by the fear and uncertainty associated with being under attack. Thewlhsescoincidences have
resulted in rational discoveries, in science and detective stories, aasal where a coincidence
suggests a hypothesis which can be established through further intiestid&lithout this kind of
detailed investigation, all but the most compelling coincidences should bedi@satething more

than suspicious.

Eventsandnon-events

‘Is there any point to which you would wish to draw my attention?’
‘To the curious incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’

‘That was the curious incident,’ remarked Sherlock Holmes.

Sir Arthur Conan Doyle (1986b%gilver Blaze, p. 472.

Traditional explanations of why certain coincidental events, such as rgestin
acquaintance in a distant place, should not be considered surprisitmgyda the fact that when we
experience such events, we tend not to consider all of the other momeviightsuch an event
could have occurred, but did not. This explanation is based upon théhigieeoincidences are
unlikely events: once the large number of opportunities for an improbabl® év occur are taken
into account, the probability that it would occur on any one of them becowmigsftjgh, and thus

we should not be surprised when such an event occurs. Our Bayesiaework can clarify this
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argument. In particular, it can be used to distinguish between two propef&éesnts that are
conflated in these traditional explanations: being surprising, and justifiygaxgonclusion that a
causal relationship exists.

Assume that in addition to the evefitwe have a set of “non-eventg*, which are more
probable under the theofy, than under the theork; . In our Bayesian framework, these
non-events should influence the assessmeititasfa coincidence by affecting the prior odds.
Throughout the rest of the paper, we have described the prior sdédlecting the priori
plausibility of an alternative theory. However, judgmentsapeiori only in the sense that they
describe people’s beliefs without knowledgedof they will still be informed by all other available
evidence. The prior odds used in a Bayesian inference reflect theppoioability of two
hypotheses, taking into account all sources of evidence other thaatdéhdt is being considered
in that inference. Thus, if the other evidence that is availab#é,ithe posterior odds in favor of
hy will be

P(h|d,d*) _ P(d|hi) P(h1]d")

P(ho|d,d*) — P(d|ho) P(ho|d*) (11)

whered andd* are assumed to be independent, conditionefoor .

Comparing Equation 11 with Equation 3, the key difference is that the nentgw*, are
taken into account in determining the prior odds when such information is Blail@inced* is
more consistent withy thanhy, the prior odds in favor ofi; will be decreased. Under our
definition of a coincidence, the event associated wittill still be considered a coincidence,
provided the likelihood ratio in favor df; is sufficiently high. However, taking* into account
will result in a significant decrease in the posterior odds. Thus, the imdftuef many unfulfilled
opportunities for an event to occur is not to decrease its potential to pessog, but to lessen the
extent to which one should believe that the suggested causal relationtaiyaexists.

In the previous section, we argued that our results suggest that huadoniality

concerning coincidences could be localized in miscalibrated prior oddsinortance of
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non-events in determining these prior odds provides another explanatiamy they might be
miscalibrated. Detecting non-events — that is, being aware of all of the momketsam event
fails to occur — requires significantly more effort than noticing that antesetually took place.
Under-estimating the number of such non-events would lead to an ovenhygsére prior
probability in favor of theories that predict novel causal structureisTbne reason why many
people reach less rational conclusions as a result of coincidencethts@drawn by Sherlock
Holmes may be that, unlike Holmes, most of us fail to notice when dogs do rloirbtire

night-time.

Coincidencesndtheorychange

Many cognitive scientists have suggested that the growth and organinéoowledge can
be understood by examining similar processes in scientific theories (Q88%, Gopnik &
Meltzoff, 1997; Karmiloff-Smith, 1988; Keil, 1989; Murphy & Medin, 198%0ne of the major
problems that arises in this “theory theory” is understanding the proééissary change. The
formal analyses we have presented in this chapter have charactesigeitiences as involving
data that provide support for a theory that has low a priori probabililyn€dences thus constitute
an opportunity to discover that one’s current theory of how the worlksvis false. This
characterization of coincidences suggests that they may play an impaitint theory change,
similar to the role of “anomalies” in accounts of scientific discovery in philogaytscience.

The theory theory draws extensively upon work in philosophy of seieaed in particular
upon Kuhn'’s (1970) analysis of science in terms of a succession oftgicieevolutions. One of
the major topics of Kuhn's work is the factors contributing to scientific disopaed subsequent
theoretical change. Principal among these factors is the growing asgsreh“anomalies,” with
Kuhn (1970) claiming that ‘discovery commences with the awareness aialgoi.e., with the
recognition that nature has somehow violated the paradigm-induced eiqresthat govern

normal science’ (p. 52). Kuhn (1970) argued that the process obdisy often follows a
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particular course:

Initially, only the anticipated and usual are experienced even undencitamces
where anomaly is later to be observed. Further acquaintance, howeesresult in
awareness of something wrong or does relate the effect to somethingthgbhe
wrong before. That awareness of anomaly opens a period in whiceptaral
categories are adjusted until the initially anomalous has become the anticipated. A

this point the discovery has been completed. (p. 64)

Anomalies can also be responsible for large-scale theoretical chadgeing a crisis that is
resolved by the development of a new theory. However, Kuhn (199%@)rthat ‘if an anomaly is
to evoke crisis, it must usually be more than just an anomaly’ (p. 82).

Anomalous scientific results can be of two kinds. The strongest kind eohalyds an event
that is impossible under a particular scientific theory, having zero probalSlitgh an event
contributes infinite evidence against the theory, and suggests that it $leteplaced. However,
most anomalies are of a different kind: events that are improbable urtkdeory. Salmon (1990)
suggested that a Bayesian approach to comparing theories might baemnsith Kuhn’s
characterization of theory change. Salmon characterized an anomalplsriomenon that
appears to have a small, possibly zero, likelihood given that theoryQ(J894.93). This assertion
is similar to the claim that coincidences are unlikely events, defining anomaliesdarms of
their probability under the current theory and not considering alteemtiust as we can construct
cases in which events are equally unlikely but not equally coincidentalaweanstruct cases in
which events are equally unlikely but not equally anomalous. A full accoianomalies needs to
compare this likelihood with some alternative, as in our account of coinoégenc

The consistency of Salmon’s (1990) statistical definition of an anomaly witadbeunts
that appear in the literature on coincidences suggests that there may besoespondence
between the two notions. Kuhn’s informal characterization of anomaliesyssimilar to our

intuition behind our formal definition of coincidences: anomalies are patténmesults that
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suggest a structure not predicted by the current theory, which caa tmmotivate theoretical
change once sufficient evidence mounts. Kuhn’s (1970, p. 64)igéen of the process by which
anomalies lead to discoveries bears a remarkable similarity to the processdbymére
coincidences become suspicious. Initially, a few surprising coincidemitldse dismissed as the
result of chance. However, as one comes to consider the possibilityefmibcesses being
involved, and as the number of coincidences increases, the evideviggar by this set of events
begins to promote suspicions. Further exploration of the source of thestsenight reveal an
unexpected causal relationship. Once one is aware of this relationshigyehts that were
previously coincidences become anticipated, and merely provide fuktitemee for a known
relationship. Likewise, the statement that crises are provoked by anottietese not just
anomalies expresses the same sentiment as our notion of suspicious cwiesidén order to

result in a change in beliefs, a coincidence must be more than just a coiceide

Conclusion

Coincidences pose an intriguing paradox, playing key roles both in signifetiscoveries
and in propagating false beliefs. Resolving this paradox requires geyand the common idea
that coincidences are just unlikely events, and considering their relaipttscausality. We have
argued that coincidences are events that naturally arise in the prdaassal induction,
providing support for an alternative to a current theory, but notighsupport to convince us to
accept that alternative. We encounter coincidences when our daideevidence that goes
against our expectations, and are central to the process of makingswwaties. By attending to
coincidences, we have the opportunity to discover that our beliefslaee &énd to develop more
accurate theories. Our sensitivity to coincidences is not just a sountgiotis tales and irrational
conclusions — it is one of the cognitive capacities that makes causal digquessible, both in

science and everyday life.
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Appendix

Bayesiarcoinflipping

If d is a sequence aV coinflips producingVy heads, thet(d | hy) = (1{,\;) (H)N. To
compute,P(d | h1), we need to define a prior distribution anthe probability that a given flip

comes up heads undky. If we define a prior distributio®(w | 4 ), then we can compute

1
Plm) = [ P]w)Pl ) o

1
= /0 (]%)wNH(l—w)N_NHP(le) dw. (12)

One possibility is to také’(w | k1) to be a Betaf,s) distribution over the rang®, 1], with

F(T + 8) wr—l

MY T

P(w\hl) =

wherel'(r) = [;° 2"~ ! exp{—z} is the generalized factorial function, with{r) = (- — 1)! for

integer values of. Substituting this distribution into Equation 12, we obtain

+

P(d ’ hl) F((: Z)) / Ng+r— 1 )N*NHJrS*ldw
(

_( )FT+S) (Ng +r)I(N — NH+S)
- L'(r)[(s) (N +r+s)

In the case where = s = 1, corresponding to a uniform distribution over values.dietweer)
and1, this reduces to

Pd|m) = 57

from which it follows that the likelihood ratio in favor df; is

Pldlh) _ 2N
P(d[ho) — (3,)(N +1)’
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which increasingly favoré; as Ny deviates fromV/2.

EvaluatingBayesfactorsfor bombing

Underhg, each bomb has its own target, and targets are distributed uniformly over the
regionR. The location at which a bomb lands follows a Gaussian distribution, with the mean
being the target of the bomb and a covariance maixJsing X; to indicate the location of the

ith bomb andL; to indicate the location of thih target, we have

Q

wherez; is the value taken by, ¢; is the value taken by.;, and¢s;(z, ¢) is the value of the
multivariate Gaussian density with meéand covariance matriX at pointz. The approximation

in the last line is a consequence of the fact thdt i§ near the boundary 62, some of the mass of
P(z; | ¢;) will fall outside R, making values of; near the boundary slightly less likely. This effect
will be negligible if R is large relative t&, so P(x; | ho) is well approximated by a uniform

distribution overR. Consequently, witld consisting of the locations a5 bombs,

P(d| ho) = <|7§|>N

since the locations of the bombs are assumed to be independent.

d={x1,...,xNn,}, We have

Underhq, the target of each bomb is determined probabilistically: with probahilitye
bomb is aimed at a common target at a locafignwith probability 1 — «a, the bomb has its own
target, at a locatio,;. ComputingP(d | hy) for d = {z1, ... xn,} requires evaluating

2NB 1

Pl = Y [ /R / P(d| %, £, Graph i) P(3)P(L.) dZdﬁc} /0 ' P(Graph i | a)P(a) da.
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we will explain how this sum can be computed evaluating the bracketed tei@rdph2™s — 1,
in which all X; are drawn from a single Gaussian distribution, summing over the theard
covariancex, and then discussing how the result can be generalized. More details kimthof
computations performed in this section can be found in Minka (2001).

We will assume a uniform prior o6, with P(¢.) =1/ | R | for ¢, € R, and an inverse
Wishart prior onX with parameter§, &, wherel is thed-dimensional identity matrix. Under this

prior,
1 1y
a3 vz P (E ),

P(T) =

wherecy,g = 28427 @D/ TT9_ T((k + 1 — j)/2) andT is the standard gamma function (e.g.,

Boas, 1983). Givex and/., we have

Np
1 1 _
P(d|%, ., Graph 2V —1) = T2rs [No/2 exp{—§ E (xi — L)TE"Nay — L)}
=1
1 Np,_ 1, 1 _

wherez is - 3" a; andS = 31V (z; — ) (z; — 2).

Using these definitions, we can express our integral as

P(d|Graph 2V8 —1) = / /P(X | 3, £., Graph 28 — 1)P(2)P(4,) dX df,
R

_ 1 1 1 1
= TRaenie | T [@erranz Pt S+ D)

[/ exp{@(f — )Tz — 1)} de..| dx.
R 2

The bracketed integrand has the form of a Gaussian. The result is upeded by
| 273 /Np | /2, with the tightness of the bound increasing with the sizRatlative toX/N.
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This reduces the outer integral to

1 1 1
Np _ ~ 1 -1
P(d|Graph 2 ) =~ IR | de(QW)d(NB—l)/zNgﬂ / | 2 | (Ne+k+d)/2 exp{ 2tr((S FOE )} R
_ 1 H DNs+h=0)/D) g
IR | 7Tul(z\qu)/z]\f]f;/? |S + 1| (Na+k=1)/2 7 L((k+1—75)/2) ’

where the result follows from the fact that the integrand has the form ofverse Wishart
distribution. The expression given in Equation 13 is a measure of the $&enity” of d: it is the
probability ofd being produced from some Gaussian distribution, assessed undeiotise pr
specified orf, andX.

This result can be extended to allow us to evaluate the probabilifyuofier any other
graph. For each graph, thé, can be partitioned into two sets: those that have their own target and
those that share the common target. Phehat have their own target each have probabiﬁ%.
The probability of theX; that share a target can be computed using Equation 13.

The integral over is straightforward to evaluate. Takidg«) to be uniform ovef0, 1], the
probability of Graph, in which Ng bombs share a common target asig bombs have their own

targets, is

1
P(Graphi) = / P(Graph i | a)P(«a) do
0

(14)

following a similar analysis to that given above for coinflipping.

Combining the values aP(d | Graph i) obtained via Equation 13 with witR(Graph )
from Equation 14, we need only evaluate the sum ove{hepossible graph structures. This can
be done by Monte Carlo simulation. The results shown in Figure 6 were cothpsiteg a form of

importance sampling designed for finding the Bayes factors of mixture ditriisuEmond,
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Raftery, & Steele, 2001). The model predictions shown in the figure 08®Q@0 samples and

k=4.
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Footnotes

IClarke’s investigations were later introduced to a broader audiencelley @968).

23uch examples abound. In considering the apparent rotation of starstab Earth,
Aristotle viewed the coincidence between the rate of motion and the distaneesgehas evidence
for the existence of a single celestial sphere (Franklin, 2001, pp1333-Halley would never
have discovered his comet without noticing the surprising regularity in tthes @and dates in a
table of orbits (Cook, 1998; Hughes, 1990; Yeomans, 1991). Semisatwght not have
developed his theory of contagion without noting the similarity in the symptoms of@d
injured during an autopsy and those of patients in his ward (Hempel, 1B6@&jn’s (1913/1990)
argument for the objective reality of molecules was based upon the susgjcgmilar estimates
of Avogadro’s number produced by several quite different methbdseasuring molecular
magnitudes (Hacking, 1983).

3Again there are many examples. Diaconis and Mosteller (1989), Gilovi@8j18iardy,
Harvie, and Koestler (1973), and Plous (1993) all present a nunfilserprising coincidences that
ultimately seem to be simply the work of chance.

4n general, we will use upper-case letters to indicate random varialbléspwaer-case letters
to indicate the values taken on by those variables. Heiea value of the random variable.

SIndeed, many people sought explanations other than chance: the ausirestiensible for
the New York lottery were sufficiently suspicious that they initiated an intérvaktigation, and
the St Petersburg Times quoted one psychologist as saying that ‘It loedldt, collectively, the
people in New York caused those lottery numbers to come up 9-1-1. oliggnpeople all are
thinking the same thing, at the same time, they can cause events to happere¢bsG
September 24, 2002).

6Coincidences played an important role in the “logical” method of deductionrsed by
Sherlock Holmes, with the notion appearing in 13 of his 60 published casdsned was

frequently able to solve mysteries by refusing to dismiss events as mere evioesd
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"We will use this non-linear scaling transformation wherever we conveq tikelihood
ratio into predictions of human judgments, to accommodate the possibility that log dikdlifatio
should not be mapped linearly onto the rating scale used in the experimergandmeter of the
transformationsy, will be selected to maximize the fit between model and data. The same
non-linear function was used by Griffiths and Tenenbaum (2005) to ngglikkdihood ratios to

causal judgments.
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Table 1
Parametertsedin Generatinghe Stimuli for Experiment2.

Property Parameters
Number Np =20 Np =50 Np = 200
Proportion a=0.5 a=0.3 a=0.1
. -3 0 3
Location EC_[_B] EC_[O] Ec_[?)}
Spread X = 2.0 3= % 0 Y= % 0
P o 2 “lo 4 1ot
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Figure Captions

Figure 1.Causal graphical models characterizing the relationship between twblesri@
indicates the presence of a cause — injection of a chemical, or the thoughtsyéhic — ande the
manifestation of the effect — a rat being born male, or a coin coming up hee@saph 0, cause

and effect are unrelated. {araph 1, the cause influences the effect.

Figure 2.The transition from coincidence to evidence can occur as a result o€erase in either
the likelihood ratio or the prior odds. Between mere coincidences and eédea suspicious
coincidences, for which the posterior odds become high enough thanhitssgossible that;

could actually be true.

Figure 3.Results of Experiment 1. The upper panel shows the proportion of pasged to be
coincidences in theoincidence condition, and the lower panel shows the mean responses in th
posterior condition. Dotted lines show model predictions, obtained by estinaiorng

probabilities for each participant.

Figure 4.Causal graphical models generated by theories of bomlbinmdicates the location of
theith target,X; indicates the point at which thigh bomb explodes, anH. is the location of a

target common to a subset of the bombs.

Figure 5.Distributions overX;, the location of théth bomb, under theorigs, andh,. Underhy,

the distribution is uniform over the region of inter@gt in this case a square indicating the city of
London. Underh, the distribution is a mixture of a uniform distribution and a Gaussian regularity
centered on the location of the common targetHere, the Gaussian is illustrated schematically

using a circle.

Figure 6.Results of Experiment 2. Each line shows the three stimuli used to test thseffe

manipulating one of the statistical properties of the stimulus, together with the nugménts of
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strength of coincidences from human participants and the predictions Batresian model. Error

bars show one standard error, and letters label the different stimuli.

Figure 7.Causal graphical models generated by theories of birthdaysdicates the birthday of

theith person, and; indicates their presence at a party.

Figure 8.Distributions overB;, the birthday of théth person, given their presence at a party
(P; = 1) under theories, andh;. Underhy, the birthday is chosen from a uniform distribution
over days of the year. Undéy, the birthday is chosen from a mixture of a uniform distribution
and a regularity, a uniform distribution over some subset of the yearpatiigular subset is

determined by the filter sé, which in this case corresponds to all birthdays in August.

Figure 9.The leftmost panel shows the mean judgment of the strength of coincidieancesuman
participants in Experiment 3. Error bars indicating one standard errdthier @irection are shown
in the upper right hand corner of the panel. The second panel shewsetictions of the
Bayesian model, the third shows the consequences of removing the siziplpriand the third
shows the consequences of using a uniform prior on filfe(s,). The fifth panel shows the
combined effects of these two omissions, illustrating the performance of thelmvbdn each

filter B contributes equally t&(d | h1).

Figure 10.Results of Experiment 4. The scatterplot indicates the close relationshipdiethve
mean ratings of the likelihood of an underlying cause behind lemur colontidosaand the mean
ratings of the size of a coincidence in bomb locations, using the same locadistimali. The

letters indicate which stimulus was used, under the key from Figure 6.

Figure 11 Results of Experiment 5. The scatterplot indicates the close relationshipdrethe
mean ratings of the likelihood of an underlying cause behind a set of packggments and the

mean ratings of the size of a coincidence in a set of birthdays, using thedsdeseas stimuli. The
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letters indicate which stimulus is plotted, using the key from Figure 9.
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Coincidence condition

—@— Humans - Psychokinesisg
—&— Humans — Genetics
O - Bayes — Psychokinesis
O - Bayes - Genetics

47 51 55 59 63 70 87 99

Posterior condition

o

47 51 55 59 63 70 87 99
Number of heads (males)
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P(Graph Qho) =1 P(Graph GQhO) = 0
P(Graph th P(Graph 60h;) =

PITEID IT.0
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ho: uniform h1: uniform+regularity
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P(Graph Qhg) = P(Graph 6Q)h0
Graph th ( Graph 60h;) =

I



From coincidences to discoveries, Figure 8

ho: uniform hq: uniform+regularity
P(b) P(b:) 5 :A-UQUSt
Day 365 1 Day 365
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Human data Bayesian model Without sizes Uniform P(B) Unit weights

Mar 12, Apr 28, Apr 30, May 2, May 4, Aug 18 (A)

Feb 12, Apr 6, May 6, Jun 27, Aug 6, Oct 6, Nov 15, Dec 22 (B)
Jan 12, Mar 22, Mar 22, Jul 19, Oct 1, Dec 8 (C)

Jan 29, Apr 26, May 5, May 5, May 5, May 5, Sep 14, Nov 1 (D)
Jan 17, Apr 17, Jun 17, Nov 17 (E)

Jan 2, Jan 13, Jan 21, Jan 30 (F)

Jun 27, Jun 29, Jul 1, Jul 2 (G)

Aug 3, Aug 3, Aug 3, Aug 3 (H)

Sep 30, Oct 1 (I)

May 18, May 18 (J)

Feb 22, Mar 6, May 2, Jun 13, Jul 27, Sep 21, Oct 18, Dec 11 (K)
Jan 23, Feb 2, Apr 9, Jul 12, Oct 17, Dec 5 (L)

Feb 11, Apr 6, Jun 24, Sep 17 (M)

Feb 25, Aug 10 (N)

0 5 10 0 5 10 0 5 10 0 5 10 O 5 10
How big a coincidence? Statistical evidence Statistical evidence Statistical evidence Statistical evidence
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From coincidences to discoveries, Figure 10
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Birthdays (coincidence)
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From coincidences to discoveries, Figure 11
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