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Introduction

 

Over the past 30 years we have discovered an enormous
amount about what children know and when they know
it. But the real question for developmental cognitive
science is not so much what children know, when they
know it or even whether they learn it. The real question
is 

 

how

 

 they learn it and 

 

why

 

 they get it right. Developmental
‘theory theorists’ (e.g. Carey, 1985; Gopnik & Meltzoff,
1997; Wellman & Gelman, 1998) have suggested that
children’s learning mechanisms are analogous to scientific
theory-formation. However, what we really need is a more
precise computational specification of the mechanisms
that underlie both types of  learning, in cognitive
development and scientific discovery.

The most familiar candidates for learning mechanisms
in developmental psychology have been variants of
associationism, either the mechanisms of classical and
operant conditioning in behaviorist theories (e.g. Rescorla
& Wagner, 1972) or more recently, connectionist models
(e.g. Rumelhart & McClelland, 1986; Elman, Bates,
Johnson & Karmiloff-Smith, 1996; Shultz, 2003; Rogers
& McClelland, 2004). Such theories have had difficulty
explaining how apparently rich, complex, abstract, rule-
governed representations, such as we see in everyday
theories, could be derived from evidence. Typically,
associationists have argued that such abstract represen-
tations do not really exist, and that children’s behavior
can be just as well explained in terms of more specific
learned associations between task inputs and outputs.
Connectionists often qualify this denial by appealing to
the notion of distributed representations in hidden layers
of units that relate inputs to outputs (Rogers & McClelland,
2004; Colunga & Smith, 2005). On this view, however, the

representations are not explicit, task-independent
models of  the world’s structure that are responsible
for the input–output relations. Instead, they are implicit
summaries of the input–output relations for a specific set
of tasks that the connectionist network has been trained
to perform.

Conversely, more nativist accounts of cognitive develop-
ment endorse the existence of abstract rule-governed
representations but deny that their basic structure is
learned. Modularity or ‘core knowledge’ theorists, for
example, suggest that there are a small number of innate
causal schemas designed to fit particular domains of
knowledge, such as a belief-desire schema for intuitive
psychology or a generic object schema for intuitive physics.
Development is either a matter of enriching those innate
schemas, or else involves quite sophisticated and culture-
specific kinds of learning like those of the social institu-
tions of science (e.g. Spelke, Breinlinger, Macomber &
Jacobson, 1992).

This has left empirically minded developmentalists,
who seem to see both abstract representation 

 

and

 

 learning
in even the youngest children, in an unfortunate theoretical
bind. There appears to be a vast gap between the kinds
of knowledge that children learn and the mechanisms
that could allow them to learn that knowledge. The attempt
to bridge this gap dates back to Piagetian ideas about
constructivism, of course, but simply saying that there are
constructivist learning mechanisms is a way of restating
the problem rather than providing a solution. Is there a
more precise computational way to bridge this gap?

Recent developments in machine learning and artificial
intelligence suggest that the answer may be yes. These
new approaches to inductive learning are based on
sophisticated and rational mechanisms of statistical
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inference operating over explicitly structured representations.
They allow abstract, coherent, theory-like knowledge to
be derived from patterns of evidence, and show how that
knowledge provides constraints on future inductive
inferences that a learner might make. These computational
accounts take the kinds of  evidence that have been
considered in traditional associative learning accounts –
such as evidence about contingencies among events or
evidence about the consequences of actions – and use
that data to learn structured knowledge representations
of the kinds that have been proposed in traditional nativist
accounts, such as causal networks, generative grammars,
or ontological hierarchies.

The papers in this special section show how these
sophisticated statistical inference frameworks can be
applied to problems of longstanding interest in cognitive
development. The papers focus on two classes of learning
problems: learning causal relations, from observing co-
occurrences among events and active interventions; and
learning how to organize the world into categories and
map word labels onto categories, from observing examples
of objects in those categories. Causal learning, category
learning and word learning are all problems of 

 

induction

 

,
in which children form representations of the world’s
abstract structure that extend qualitatively beyond the
data they observe and that support generalization to new
tasks and contexts. While philosophers have long seen
inductive inference as a source of  great puzzles and
paradoxes, children solve these natural problems of
induction routinely and effortlessly. Through a combination
of new computational approaches and empirical studies
motivated by those models, developmental scientists may
now be on the verge of understanding how they do it.

 

Learning causal Bayesian networks

 

Three of the five papers in this section focus on children’s
causal learning. This work is inspired by the development
of causal Bayesian networks, a rational but cognitively
appealing formalism for representing, learning, and
reasoning about causal relations (Pearl, 2000; Glymour,
2001; Gopnik, Glymour, Sobel, Schulz, Kushnir & Danks,
2004; Gopnik & Schulz, 2007). ‘Theory theorists’ in
cognitive development point to an analogy between
learning in children and learning in science. Causal Bayesian
networks provide a computational account of a kind of
inductive inference that should be familiar from everyday
scientific thinking: testing hypotheses about the causal
structure underlying a set of  variables by observing
patterns of correlation and partial correlation among
these variables, and by examining the consequences of
interventions (or experiments) on these variables.

Bayesian networks represent causal relations as
directed acyclic graphs. Nodes in the graph represent
variables in a causal system, and edges (arrows) repre-
sent direct causal relations between those variables. Vari-
ables can be binary or discrete sets of propositions (e.g.
a person’s eye color or a student’s grade) or continuous
quantities (e.g. height or weight). They can be observable
or hidden. The direct causal relations can also take on
many different functional forms: deterministic or prob-
abilistic, generative or inhibitory, linear or non-linear.

The graph structure of a causal Bayesian network is
used to define a joint probability distribution over the
variables in the network – thereby specifying how likely
is any joint setting of all the variables. These probabilis-
tic models can be used to reason and make predictions
about the variables when the graph structure is known,
and also to learn the graph structure when it is unknown,
by observing which settings of the variables tend to
occur together more or less often. The probability distri-
bution specified by a causal Bayesian network is a product
of many local components, each corresponding to one
variable and its direct causes in the graph. Two variables
may be correlated – or probabilistically dependent –
even if  they are not directly connected in the graph, but
if  they are not directly connected, their correlation will
be mediated by one or more other variables.

As a consequence of how the graph structure of a
causal Bayesian network is used to define a probabilistic
model, the graph places constraints on the probabilistic
relations that may hold among the variables in that net-
work, regardless of what the variables represent or how
the causal mechanisms operate. In particular, the graph
structure constrains the conditional independencies
among those variables.

 

1

 

 Given a certain causal structure,
only some patterns of conditional independence will be
expected to occur generically among the variables. The
precise constraints are captured by the 

 

causal Markov
condition

 

: conditioned on its direct causes, any variable
will be independent of all other variables in the graph
except for its own direct and indirect effects. For example,
in the causal chain 

 

A

 

 

 

→

 

 

 

B

 

 

 

→

 

 

 

C

 

 

 

→

 

 

 

D

 

, the variables 

 

C

 

and 

 

A

 

 are normally dependent, but they become in-
dependent conditioned on 

 

C

 

’s one direct cause 

 

B

 

; 

 

C

 

 remains

 

1

 

 Conditional and unconditional dependence and independence are
defined as follows. Two variables 

 

X

 

 and 

 

Y

 

 are unconditionally independent
in probability if  and only if  for every value 

 

x

 

 of  

 

X

 

 and 

 

y

 

 of  

 

Y

 

 the
probability of 

 

x

 

 and 

 

y

 

 occurring together equals the unconditional
probability of  

 

x

 

 multiplied by the unconditional probability of  

 

y

 

:

 

P

 

(

 

x

 

, 

 

y

 

) = 

 

P

 

(

 

x

 

)

 

P

 

(

 

y

 

). Two variables 

 

X

 

 and 

 

Y

 

 are independent in probability
conditional on some third variable 

 

Z

 

 if  and only if  for every value 

 

x

 

,

 

y

 

, and 

 

z

 

 of  those variables, the probability of 

 

x

 

 and 

 

y

 

 given 

 

z

 

 equals
the conditional probability of 

 

x

 

 given 

 

z

 

 multiplied by the conditional
probability of 

 

y

 

 given 

 

z

 

: 
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probabilistically dependent on its direct effect 

 

D

 

 under
all conditions. The same patterns of dependence and
conditional dependence would hold if the chain runs the
other way, 

 

A

 

 

 

←

 

 

 

B

 

 

 

←

 

 

 

C

 

 

 

←

 

 

 

D

 

; these two networks are said
to be 

 

Markov equivalent

 

. A graph that appears only slightly
different, such as 

 

A

 

 

 

→

 

 

 

B

 

 

 

←

 

 

 

C

 

 

 

→

 

 

 

D

 

, may imply quite different
dependencies: here, the variable 

 

C

 

 is independent of 

 

A

 

,
but becomes dependent on 

 

A

 

 when we condition on 

 

B.

 

Causal Bayesian networks also allow us to reason
about the effects of outside interventions on variables in
a causal system.

 

2

 

 Interventions on a particular variable

 

X

 

 induce predictable changes in the probabilistic
dependencies over all variables in the network. Formally,
these dependencies are still governed by the Markov
condition but are now applied to a ‘mutilated’ graph in
which all incoming arrows to 

 

X

 

 are cut. Two networks
that would otherwise imply identical patterns of prob-
abilistic dependence may become distinguishable
under intervention. For example, if  we intervene to set
the value of  

 

C

 

 in the above graphs, then the structures

 

A

 

 

 

→

 

 

 

B

 

 

 

→

 

 

 

C

 

 

 

→

 

 

 

D

 

 and 

 

A

 

 

 

←

 

 

 

B

 

 

 

←

 

 

 

C

 

 

 

←

 

 

 

D

 

 predict distinct pat-
terns of probabilistic dependence, given by these ‘mutilated’
graphs respectively: 

 

A

 

 

 

→

 

 

 

B C

 

 

 

→

 

 

 

D

 

 and 

 

A

 

 

 

←

 

 

 

B

 

 

 

←

 

 

 

C D

 

.
For the first graph, 

 

B

 

 should now be independent of 

 

C

 

,
but 

 

C

 

 and 

 

D

 

 should remain dependent; for the second
graph, the opposite pattern should hold.

The Markov condition and the logic of intervention
together form the basis for one popular approach to
learning causal Bayesian networks from data, known as

 

constraint-based learning

 

 (Spirtes, Glymour & Schienes,
2001; Pearl, 2000). Given observed patterns of independence
and conditional independence among a set of variables,
perhaps under different conditions of intervention, these
algorithms work backwards to figure out the set of causal
structures compatible with the constraints of that evidence.
Computationally tractable algorithms can search for or
construct the subset of possible network structures that are
compatible with the evidence, and have been extensively
applied in a range of disciplines (e.g. Glymour & Cooper,
1999). It is even possible to infer the existence of new un-
observed variables that are common causes of the observed
variables (Silva, Scheines, Glymour & Spirtes, 2003).

 

Bayesian learning

 

Despite the impressive accomplishments of  these
constraint-based learning algorithms, human causal

learning often goes beyond their capacities. People –
even young children – can correctly infer causes from
only one or a small number of examples, far too little
data to compute reliable measures of correlation as these
algorithms require. Such rapid inferences may depend
on more articulated causal hypotheses than can be
captured simply by a causal graph. For instance, people
may have ideas about the kinds of  causal mechanisms
at work, which would allow more specific predictions
about the patterns of data that are likely to be observed
under different hypothesized causal structures. People are
also inclined to judge certain causal structures as more
likely than others, rather than simply asserting some
causal structures as consistent with the data and others
inconsistent. These degrees of belief  may be strongly
influenced by prior expectations about which kinds of
causal relations are more or less likely to hold in
particular domains.

These aspects of human causal learning may be best
captured by an alternative computational approach that
explicitly formalizes the learning problem as a Bayesian
probabilistic inference. The learner constructs a hypothesis
space 

 

H

 

 of  possible causal models, and given some data

 

d

 

 – observations of the states of one or more variables in
the causal system for different cases, individuals or situations
– computes a 

 

posterior probability

 

 distribution 

 

P

 

(h | d)
representing a degree of belief  that each causal-model
hypothesis h corresponds to the true causal structure.
These posteriors depend on two more primitive quantities:
prior probabilities P(h), measuring the plausibility of
each causal hypothesis independent of the data, and
likelihoods P(d  | h), expressing how likely we would be to
observe the data d if  the hypothesis h were correct.
Bayes’ rule dictates how these quantities are related:
posterior probabilities are proportional to the product of
priors and likelihoods, normalized by the sum of these
scores over all alternative hypotheses h′,

(1)

Like constraint-based learning algorithms, Bayesian
algorithms for learning causal networks have been
successfully applied across many tasks in machine learning,
artificial intelligence and related disciplines (Heckerman,
1999). A distinctive strength of Bayesian learning comes
from the ability to use informative, highly structured priors
and likelihoods that draw on the learner’s background
knowledge. This knowledge can often be expressed in
the form of abstract conceptual frameworks or schemas,
specifying what kinds of entities or variables exist, and
what kinds of causal relations are likely to exist between
entities or variables as a function of these types (Pasula

2 An outside intervention on a variable X can be captured formally by
adding a new variable I to the network that obeys these conditions: it
is exogenous (not caused by other variables in the graph); it directly
fixes X to some value; and it does not affect the values of any other
variables in the graph except through its influence on X.
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& Russell, 2001; Milch, Marthi, Russell, Sontag, Ong
& Kolobov, 2005; Mansinghka, Kemp, Tenenbaum &
Griffiths, 2006; Griffiths & Tenenbaum, 2007). These
frameworks are much like the ‘framework theories’ that
cognitive developmentalists have identified as playing a
key role in children’s learning (Wellman & Gelman, 1992).
They can be formalized as systems for generating a
constrained space of  causal Bayesian networks and
a prior distribution over that space to support Bayesian
learning.

Bayesian principles can be applied not only to causal
learning, but to a much broader class of cognitively
important inductive inference tasks (Chater, Tenenbaum
& Yuille, 2006). These tasks include learning concepts
and properties (Anderson, 1991; Mitchell, 1997; Tenen-
baum, 2000; Tenenbaum & Griffiths, 2001; Tenenbaum,
Kemp & Shafto, in press), learning systems of categories
that characterize domains (Kemp, Perfors & Tenenbaum,
2004; Kemp, Tenenbaum, Griffiths, Yamada & Ueda, 2006;
Shafto, Kemp, Mansinghka, Gordon & Tenenbaum, 2006;
Navarro, 2006), syntactic parsing in natural language
and learning the rules of syntax (Chater & Manning,
2006), and parsing visual images of natural scenes
(Yuille & Kersten, 2006). These approaches use various
structured frameworks to represent the learner’s knowledge,
such as generative grammars, tree-structured hierarchies,
or predicate logic. They thus show how a diverse range
of abstract representations of the external world – not
only directed causal graphs – can be rationally inferred from
sparse, ambiguous data, and used to guide subsequent
predictions and actions. For instance, Kemp et al. (2004)
show how a Bayesian learner can discover that a system
of categories and their properties is best organized according
to a taxonomic tree structure, and can then use this structure
to generate priors for inferring how a novel property is
distributed over categories, given only a few examples of
objects with that property.

A research program for cognitive development

Over the last few years, several groups of researchers
have explored the hypothesis that children implicitly
use representations and computations similar to those
discussed above to learn about the structure of the world.
The papers in this special section represent some of
their latest efforts. ‘Implicitly’ and ‘similar to’ are key
words here. These formal approaches are framed at
an abstract level of analysis, what Marr (1982) called the
level of  computational theory. They specify ideal
inferential relations between structured hypotheses and
patterns of data. Hence the developmental research
focuses on comparing children’s behavior with the

output of Bayesian network or Bayesian learning models,
rather than testing precise correspondences between
children’s cognitive processes and the algorithmic operations
of these models.

One line of  work, inspired by constraint-based
algorithms for learning causal Bayesian networks, has
looked at children’s abilities to make causal inferences from
patterns of conditional probabilities and interventions.
Eight-month-olds can calculate elementary conditional
independence relations and can use these relations to
make predictions (Sobel & Kirkham, in press, this issue).
Two-year-olds can combine conditional independence
and intervention information appropriately to choose
among candidate causes of an effect. Four-year-olds not
only do this but also design novel and appropriate
interventions on these causes (Gopnik, Sobel, Schulz &
Glymour, 2001; Sobel & Kirkham, in press), and do so
across a wide variety of domains (Schulz & Gopnik,
2004). They can use different patterns of evidence to
determine the direction of causal relations – whether A
causes B or B causes A – and to infer unobserved causes
(Gopnik et al., 2004; Kushnir, Gopnik, Shulz & Danks,
2003; Schulz & Somerville 2006). They discriminate
between observations and interventions appropriately
(Gopnik et al., 2004; Kushnir & Gopnik, 2005) and use
probabilities to calculate causal strength (Kushnir &
Gopnik, 2005, 2007).

Despite this wealth of results, many interesting empirical
questions remain. Most existing studies of children’s
causal learning have involved only very simple networks
(e.g. two variables) and learning from passively presented
data. Schulz et al. (this issue) advance along both of
these fronts, by studying inferences about more complex
network structures based on conditional interventions,
and examining the inferential power of the spontaneous
interventions that children naturally make in their
everyday play. Most studies have involved deterministic
causal relations – e.g. wheel A always makes wheel B
spin – rather than the probabilistic relations for which
causal Bayesian networks were originally intended. The
developmental trajectory of causal learning abilities,
from infancy up to the preschool years where most
existing studies focus, is only beginning to be probed. Sobel
and Kirkham (this issue) are pushing this frontier in their
work with 5-month-olds.

Another line of work has explored Bayesian learning
models as accounts of how children infer causal structure,
as well as word meanings and other kinds of world structure.
By age 4, children appear able to combine prior knowledge
about hypotheses and new evidence in a Bayesian fashion.
In causal learning, children can learn the prior probability
that a particular causal relation is likely to hold for a
particular kind of object, and use that knowledge together
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with potentially ambiguous data to judge the causal efficacy
of a new object of that kind (Sobel, Tenenbaum & Gopnik,
2004; Tenenbaum, Sobel, Griffiths & Gopnik, submitted).
Four-year-olds can use new evidence to override causal
hypotheses that are favored a priori: for example, they
can conclude that a biological effect has a psychological
cause (Bonawitz, Griffiths & Schulz, 2006) or that a
physical object can act at a distance on another object
(Kushnir & Gopnik, 2007). However, they are less likely
to accept those hypotheses than hypotheses that are
consistent with prior knowledge. Tenenbaum and Xu
(2000; Xu & Tenenbaum, 2005, in press) have developed
a Bayesian model of word learning, and shown that it
accounts for how preschoolers learn words from one or
a few examples – the ‘fast mapping’ behavior first studied
by Carey and Bartlett (1978). This model encodes
traditional principles of word learning, such as the
assumption that kind labels pick out whole objects and
map onto taxonomic categories (Markman, 1989), as
constraints on the hypothesis space of possible word
meanings. Fast-mapping is then explained as a Bayesian
inference over that hypothesis space. Related Bayesian
models have been proposed to explain how children learn
the meanings of other aspects of language, including
verbs (Niyogi, 2002), adjectives (Dowman, 2002), and
anaphoric constructions (Regier & Gahl, 2004).

Two frontiers of this research program are explored in
papers in the special section. Most Bayesian analyses
to date have focused on the child in isolation, without
considering the central role of the social and intentional
context in which the child’s learning and reasoning are
embedded (Gopnik & Meltzoff, 1997; Bloom, 2000). Xu
and Tenenbaum (this issue) extend Bayesian models of
word learning to account for the different inferences
children make depending on whether the examples they
observe are labeled ostensively by a teacher, or actively
chosen by the learners themselves. Related Bayesian
models are being developed to explain children’s intuitive
psychological reasoning – how they infer the beliefs and
goals of other agents from observations about their behavior
(Goodman, Baker, Bonawitz, Mansinghka, Gopnik,
Wellman, Schulz & Tenenbaum, 2006; Baker, Saxe &
Tenenbaum, 2006).

Bayesian models have also traditionally been limited
by a focus on learning representations at only a single level
of abstraction. In contrast, children can learn in parallel
at multiple levels: for example, they can learn new causal
relations from sparse data, guided by priors from larger-
scale framework theories of a domain, but over time
they will also change their framework theories as they
observe how causal structures in that domain tend to
operate. Tenenbaum, Griffiths and Niyogi (2007) have
suggested how multiple levels of causal learning can be

captured within a hierarchical Bayesian framework. Kemp,
Perfors and Tenenbaum (this issue) develop a hierarchical
Bayesian model for learning overhypotheses about
categories and word labels – principles such as the shape
bias, specifying the kinds of categories that labels tend
to pick out, which are learned by children (around age 2)
at the same time that they are learning specific word-
category mappings (Smith, Jones, Landau, Gershkoff-
Stowe & Samuelson, 2002). Similar analyses have been
proposed for how children can acquire other kinds of
abstract knowledge, such as a tree-structured system
of ontological classes (Schmidt, Kemp & Tenenbaum, 2006)
or the hierarchical structure of syntactic phrases in natural
language (Perfors, Tenenbaum & Regier, 2006).

Perhaps the greatest open question about Bayesian
network and Bayesian learning models is how they might
be implemented in the brain. The appeal of connectionist
models of development comes partly from their relatively
straightforward mapping onto known neural mechanisms;
that is certainly not true for Bayesian networks and Bayesian
learning. Some first steps have recently been made, however.
Computational neuroscientists have begun studying how
Bayesian updating may be implemented in neural circuitry
or population codes (Knill & Pouget, 2004). McClelland
and Thompson (this issue) suggest how several experi-
mental studies of children’s causal learning can be modeled
in a brain-inspired connectionist architecture, which also
approximates the relevant Bayesian inferences. Their
proposal includes several elements that go beyond tradi-
tional associative or connectionist models, including
complementary ‘cortical’ and ‘hippocampal’ learning
systems, the capacity to interleave different kinds of trials
during training, and a ‘backpropagation to representation’
mechanism to infer the hidden-layer representations of
novel stimuli necessary for causal attribution. How far
such models can go towards capturing the structure of
children’s intuitive theories remains an important question
for future work.

Conclusion

Developing rigorous theories that generate testable
experimental predictions is, of course, a holy grail of
developmental science, and like all grails tends to
shimmer on the horizon rather than to be firmly and
indubitably grasped. But certainly the papers in this
special section pass a more realistic test. To use a technical
term from adolescence, they are really cool – cool experi-
mental results and cool computational findings. We hope
and believe that the interaction of probabilistic models
and developmental experiments will keep generating lots
of cool work for years to come.



286 Alison Gopnik and Joshua B. Tenenbaum

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd.

Acknowledgements

The writing of this article was supported by the James S.
McDonnell Foundation Causal Learning Research Col-
laborative, and the Paul E. Newton Career Development
Chair (JBT). We are grateful to Denis Mareschal and
Laura Schulz for encouraging and helpful discussions.

References

Anderson, J.R. (1991). The adaptive nature of human catego-
rization. Psychological Review, 98, 409–429.

Baker, C., Saxe, R., & Tenenbaum, J.B. (2006). Bayesian models
of human action understanding. In Y. Weiss, B. Scholkopf,
& J. Platt (Eds.), Advances in Neural Information Processing
Systems, 18, 99–106.

Bloom, P. (2000). How children learn the meanings of words.
Cambridge, MA: MIT Press.

Bonawitz, E.B., Griffiths, T.L., & Schulz, L.E. (2006).
Modeling cross-domain causal learning in preschoolers as
Bayesian inference. In R. Sun & N. Miyake (Eds.), Proceedings
of the 28th Annual Conference of the Cognitive Science Society
(pp. 89–94). Mahwah, NJ: Lawrence Erlbaum Associates.

Carey, S. (1985). Conceptual change in childhood. Cambridge,
MA: MIT Press/Bradford Books.

Carey, S., & Bartlett, E. (1978) Acquiring a single new word.
Papers and Reports on Child Language Development, 15, 17–29.

Chater, N., & Manning, C.D. (2006). Probabilistic models of
language processing and acquisition. Trends in Cognitive Sci-
ences, 10, 335–344.

Chater, N., Tenenbaum, J.B., & Yuille, A. (2006). Probabilistic
models of cognition: conceptual foundations. Trends in Cog-
nitive Sciences, 10, 287–291.

Colunga, E., & Smith, L.B. (2005). From the lexicon to expec-
tations about kinds: a role for associative learning. Psycho-
logical Review, 112 (2), 347–382.

Dowman, M. (2002). Modelling the acquisition of colour
words. In Proceedings of the 15th Australian. Joint Conference
on Artificial Intelligence: Advances in Artificial Intelligence,
pp. 259–271. Springer-Verlag.

Elman, J.L., Bates, E.A., Johnson, M.H., & Karmiloff-Smith,
A. (1996). Rethinking innateness: A connectionist perspective
on development. Cambridge, MA: MIT Press.

Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical
causal models in psychology. Cambridge, MA: MIT Press.

Glymour, C., & Cooper, G. (1999). Computation, causation,
and discovery. Menlo Park, CA: AAAI/MIT Press.

Goodman, N.D., Baker, C.L., Bonawitz, E.B., Mansinghka,
V.K., Gopnik, A., Wellman, H., Schulz, L., & Tenenbaum,
J.B. (2006). Intuitive theories of mind: a rational approach to
false belief. Proceedings of the Twenty-Eigth Annual Conference
of the Cognitive Science Society. Mahwah, NJ: Erlbaum.

Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir,
T., & Danks, D. (2004). A theory of  causal learning in
children: causal maps and Bayes nets. Psychological
Review, 111, 1–30.

Gopnik, A., & Meltzoff, A. (1997). Words, thoughts and theories.
Cambridge, MA: MIT Press.

Gopnik, A., & Schulz, L. (2007). Causal learning: Psychology,
philosophy, and computation. Oxford: Oxford University
Press.

Gopnik, A., Sobel, D.M., Schulz, L., & Glymour, C. (2001).
Causal learning mechanisms in very young children: two-
three-, and four-year-olds infer causal relations from patterns
of variation and covariation. Developmental Psychology, 37
(50), 620–629.

Griffiths, T.L., & Tenenbaum, J.B. (2007). Two proposals for
causal grammar. In A. Gopnik & L. Schulz (Eds.), Causal
learning: Psychology, philosophy, and computation. Oxford:
Oxford University Press.

Heckerman, D., Meek, C., & Cooper, G. (1999). A Bayesian
approach to causal discovery. In C. Glymour & G. Cooper
(Eds.), Computation, causation and discovery (pp. 143–167).
Cambridge, MA: MIT Press.

Kemp, C., Perfors, A.F., & Tenenbaum, J.B. (2004). Learning
domain structure. Proceedings of the Twenty-Sixth Annual
Conference of the Cognitive Science Society.

Kemp, C., Perfors, A.F., & Tenenbaum, J.B. (this issue).
Learning overhypotheses with hierarchical Bayesian models.
Developmental Science, 10 (3), 307–321.

Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., &
Ueda, N. (2006). Learning systems of concepts with an infi-
nite relational model. Twenty-First National Conference on
Artificial Intelligence (AAAI 2006).

Knill, D., & Pouget, A. (2004). The Bayesian brain: the role of
uncertainty in neural coding and computation. Trends in
Neuroscience, 27 (12), 712–719.

Kushnir, T., Gopnik, A., Schulz, L.E., & Danks, D. (2003).
Inferring hidden causes. In R. Alterman & D. Kirsch
(Eds.), Proceedings of the 24th Annual Meeting of the Cogni-
tive Science Society, Boston, MA (pp. 56–64).

Kushnir, T., & Gopnik, A. (2005). Children infer causal
strength from probabilities and interventions. Psychological
Science, 16 (9), 678–683.

Kushnir, T., & Gopnik, A. (2007). Conditional probability
versus spatial contiguity in causal learning: preschoolers use
new contingency evidence to overcome prior spatial assump-
tions. Developmental Psychology, 43 (1), 186–196.

McClelland, J.L., & Thompson, R.M. (this issue). Using
domain-general principles to explain children’s causal rea-
soning abilities. Developmental Science, 10 (3), 333–356.

Mansinghka, V.K., Kemp, C., Tenenbaum, J.B., & Griffiths,
T.L. (2006). Structured priors for structure learning. Twenty-
Second Conference on Uncertainty in Artificial Intelligence
(UAI 2006).

Markman, E.M. (1989). Categorization and naming in children.
Cambridge, MA: MIT Press.

Marr, D. (1982). Vision. San Francisco, CA: W.H. Freeman.
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., &

Kolobov, A. (2005). BLOG: probabilistic models with
unknown objects. Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI), 1352–1359.

Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.
Navarro, D.J. (2006). From natural kinds to complex



Bayesian networks, learning and cognitive development 287

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd.

categories. In R. Sun & N. Miyake (Eds.), Proceedings of the
27th Annual Conference of the Cognitive Science Society
(pp. 621–626). Mahwah, NJ: Lawrence Erlbaum.

Niyogi, S. (2002). Bayesian learning at the syntax–semantics
interface. In Proceedings of the 24th Annual Conference of
the Cognitive Science Society (W. Gray & C. Schunn, Eds.,
pp. 697–702). Mahwah, NJ: Erlbaum.

Pasula, H., & Russell, S. (2001). Approximate inference for
first-order probabilistic languages. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence 2001
(IJCAI-2001).

Pearl, J. (2000). Causality. New York: Oxford University Press.
Perfors, A., Tenenbaum, J.B., & Regier, T. (2006). Poverty of

the stimulus? A rational approach. Proceedings of the
Twenty-Eigth Annual Conference of the Cognitive Science Society.

Regier, T., & Gahl, S. (2004). Learning the unlearnable: the
role of missing evidence. Cognition, 93, 147–155.

Rescorla, R.A., & Wagner, A.R. (1972). A theory of Pavlovian
conditioning: variations in the effectiveness of reinforcement
and nonreinforcement. In A.H. Black & W.F. Prokasy
(Eds.), Classical conditioning II: Current theory and research
(pp. 64–99). New York: Appleton-Century-Crofts.

Rogers, T., & McClelland, J. (2004). Semantic cognition: A
parallel distributed approach. Cambridge, MA: MIT Press.

Rumelhart, D.E., & McClelland, J.L. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition.
Cambridge, MA: MIT Press.

Scheines, R., Spirtes, P., & Glymour, C. (2003). Learning
measurement models. Technical Report, CMU-CALD-03-
100. Carnegie Mellon University, Pittsburgh, PA.

Schmidt, L., Kemp, C., & Tenenbaum, J.B. (2006). Nonsense
and sensibility: inferring unseen possibilities. Proceedings of the
Twenty-Eigth Annual Conference of the Cognitive Science Society.

Schulz, L.E., & Gopnik, A. (2004). Causal learning across
domains. Developmental Psychology, 40, 162–176.

Schulz, L.E., & Sommerville, J. (2006). God does not play dice:
causal determinism and preschoolers’ causal inferences.
Child Development, 77 (2), 427–442.

Schulz, L.E., Gopnik, A., & Glymour, C. (this issue).
Preschool children learn about causal structure from condi-
tional interventions. Developmental Science, 10 (3), 322–332.

Shafto, P., Kemp, C., Mansinghka, V., Gordon, M., & Tenen-
baum, J.B. (2006). Learning cross-cutting systems of catego-
ries. Proceedings of the Twenty-Eigth Annual Conference of
the Cognitive Science Society.

Shultz, T.R. (2003). Computational developmental psychology.
Cambridge, MA: MIT Press.

Silva, R., Scheines, R., Glymour, C., & Spirtes, P. (2003).
Learning measurement models for unobserved variables.
Proceedings of the 18th Conference on Uncertainty in Artifi-
cial Intelligence (AAAI-2003). AAAI Press.

Smith, L.B., Jones, S.S., Landau, B., Gershkoff-Stowe, L., &
Samuelson, L. (2002). Object name learning provides on-
the-job training for attention. Psychological Science, 13
(1), 13–19.

Sobel, D.M., & Kirkham, N.Z. (in press). Blickets and babies:
the development of causal reasoning in toddlers and infants.
Developmental Psychology.

Sobel, D.M., & Kirkham, N.Z. (this issue). Bayes nets and
babies: infants’ developing statistical reasoning abilities and their
representation of causal knowledge. Developmental Science,
10 (3), 298–306.

Sobel, D.M., Tenenbaum, J.B., & Gopnik, A. (2004). Children’s
causal inferences from indirect evidence: backwards
blocking and Bayesian reasoning in preschoolers. Cognitive
Science, 28, 303–333.

Spelke, E.S., Breinlinger, K., Macomber, J., & Jacobson, K.
(1992). Origins of knowledge. Psychological Review, 99, 605–632.

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation,
prediction, and search (Springer lecture notes in statistics,
2nd edn., revised). Cambridge, MA: MIT Press.

Tenenbaum, J.B. (2000). Rules and similarity in concept learning.
In S. Solla, T. Leen, & K.R. Mueller (Eds.), Advances in
neural information processing systems (12; pp. 59–65).
Cambridge, MA: MIT Press.

Tenenbaum, J.B., & Griffiths, T.L. (2001). Generalization,
similarity, and Bayesian inference. Behavioral and Brain
Sciences, 24 (4), 629–641.

Tenenbaum, J.B., & Griffiths, T.L. (2003). Theory-based causal
inference. In S. Becker, S. Thrun, & K. Obermayer (Eds.),
Advances in neural information processing systems (15;
pp. 35–42). Cambridge, MA: The MIT Press.

Tenenbaum, J.B., Griffiths, T.L., & Kemp, C. (2006). Theory-
based Bayesian models of inductive learning and reasoning.
Trends in Cognitive Sciences, 10, 309–318.

Tenenbaum, J.B., Griffiths, T.L., & Niyogi, S. (2007). Intuitive
theories as grammars for causal inference. In A. Gopnik &
L. Schulz (Eds.), Causal learning: Psychology, philosophy,
and computation. Oxford: Oxford University Press.

Tenenbaum, J.B., Kemp, C., Shafto, P. (in press). Theory-based
Bayesian models for inductive reasoning. In A. Feeney & E.
Heit (Eds.), Induction. Cambridge: Cambridge University Press.

Tenenbaum, J.B., Sobel, D.M., Griffiths, T.L., & Gopnik, A.
(submitted). Bayesian reasoning in adults’ and children’s
causal inferences.

Tenenbaum, J.B., & Xu, F. (2000). Word learning as Bayesian
inference. Proceedings of the Twenty-Second Annual Conference
of the Cognitive Science Society, 517–522.

Wellman, H.M., & Gelman, S.A. (1992). Cognitive development:
foundational theories of core domains. Annual Review of
Psychology, 43, 337–375.

Wellman, H.M., & Gelman, S.A. (1998). Knowledge acquisition
in foundational domains. In William Damon (Ed.), Handbook
of child psychology, Vol. 2: Cognition, perception and language
(pp. 523–573). Hoboken, NJ: Wiley.

Xu, F., & Tenenbaum, J.B. (2005). Word learning as Bayesian
inference: evidence from preschoolers. In Proceedings of the
27th Annual Conference of the Cognitive Science Society.
Mahwah, NJ: Lawrence Erlbaum Associates.

Xu, F., & Tenenbaum, J.B. (in press). Word learning as
Bayesian inference. Psychological Review.

Xu, F., & Tenenbaum, J.B. (this issue). Sensitivity to sampling
in Bayesian word learning. Developmental Science, 10 (3),
288–297.

Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference:
analysis by synthesis? Trends in Cognitive Sciences, 10, 301–308.


