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1. Introduction

In the previous chapter (Tenenbaum, Griffiths, & Niyogi, this volume), we introduced
a framework for thinking about the structure, function, and acquisition of intuitive theories
inspired by an analogy to the research program of generative grammar in linguistics. We
argued that a principal function for intuitive theories, just as for grammars for natural
languages, is to generate a constrained space of hypotheses that people consider in carrying
out a class of cognitively central and otherwise severely underconstrained inductive inference
tasks. Linguistic grammars generate a hypothesis space of syntactic structures considered
in sentence comprehension; intuitive theories generate a hypothesis space of causal network
structures considered in causal induction. Both linguistic grammars and intuitive causal
theories must also be reliably learnable from primary data available to people. In our view,
these functional characteristics of intuitive theories should strongly constrain the content
and form of the knowledge they represent, leading to representations somewhat like those
used in generative grammars for language. However, until now we have not presented any
specific proposals for formalizing the knowledge content or representational form of “causal
grammars.” That is our goal here.

Just as linguistic grammars encode the principles that implicitly underlie all gram-
matical utterances in a language, so do causal grammars express knowledge more abstract
than any one causal network in a domain. Consequently, existing approaches for represent-
ing causal knowledge based on Bayesian networks defined over observable events, properties
or variables, are not sufficient to characterize causal grammars. Causal grammars are in
some sense analogous to the “framework theories” for core domains that have been studied
in cognitive development (Wellman & Gelman, 1992): the domain-specific concepts and
principles that allow learners to construct appropriate causal networks for reasoning about
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systems in a given domain, and the expectations about which causal relations are more or
less likely a priori, that enable causal learning to proceed from the sparse data typically
encountered.

Tenenbaum, Griffiths, and Niyogi (this volume) described a hierarchical Bayesian
framework that more precisely formalizes the relationship between causal grammars and
causal Bayesian networks. A learner’s observations of the world are interpreted in terms
of a hierarchy of increasingly abstract and general theories, with each level generating a
hypothesis space and prior probability distribution for theories at the level below, thereby
allowing those lower-level theories to be learned in a top-down fashion based on only sparse
bottom-up input. The most specific level of intuitive theories concern cause-effect relation-
ships between observable events, properties or variables, which can be formalized as causal
Bayesian networks. Higher levels of abstraction require something like the representational
powers of generative grammars, specifying categories of variables and rules for how compos-
ing those categories to construct the constrained space of causal networks that are possible
in a given domain. For instance, to recall an example from our first chapter, a learner’s
beliefs about possible causal network structures in a simplified medical domain might be
characterized by these two principles:

P1 There exist three classes of variables: Symptoms, Diseases, and Behaviors.
These classes are open and of unspecified size, allowing the possibility that
a new variable may be introduced.

P2 Causal relations between variables are constrained with respect to these
classes: direct links arise only from behaviors to diseases and from diseases
to symptoms. These links may be overlapping, e.g., diseases tend to have
multiple effects and symptoms tend to have multiple causes.

Figure 1 shows several causal networks (Graphs 1-4) that are consistent with these princi-
ples, as well as two networks (Graphs 5 and 6) that would be impossible or “ungrammatical”
under this theory.

In this chapter, we will examine in detail two proposals for formalizing causal gram-
mars, the first based on a kind of graph grammar that we call a graph schema, and the
second based on a typed predicate logic. We will present applications of each approach to
characterizing several small-scale intuitive theories, and show how these approaches support
quantitative modeling of behavioral studies on causal learning and theory acquisition with
both child and adult subjects. Both proposals will be defined in a probabilistic setting, so
that we can show precisely how they support causal learning and how they themselves can
be learned using the hierarchical Bayesian framework of the previous chapter. For neither
approach will we be able to give fully satisfying accounts of learning at both of these lev-
els, because of an inherent tradeoff in the representational power and learnability of any
grammar: to the extent that a causal grammar generates rich and subtle constraints on
possible causal networks, it will be harder to acquire that grammar from observed data.
Presenting two quite different proposals for causal grammars will allow us to explore this
tradeoff and lay the groundwork for future attempts to give a full account of the use and
origins of abstract causal knowledge.
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Figure 1. Causal networks illustrating different possible sets of beliefs about the relationships
among behaviors, diseases, and symptoms. The same underlying causal grammar generates Graphs
1-4 but not Graphs 5 or 6.



CAUSAL GRAMMARS 4

2. Causal grammars in a hierarchical Bayesian framework

Before turning to our two proposals, we will briefly recap the necessary formal machin-
ery for hierarchical Bayesian learning from the previous chapter. Causal Bayesian networks
are identified with theories at the lowest, most concrete level of the abstraction hierarchy,
level T0. We will typically identify causal grammars with the T1-level theories that define
hypothesis spaces of T0-level structures and assign prior probabilities to those hypotheses,
thereby guiding inferences about the causal network structure T0 mostly likely to have given
rise to some observed dataset d. A Bayesian learner evaluates a causal network hypothesis
T0 based on its posterior probability,

P (T0|d, T1) =
P (d|T0)P (T0|T1)

P (d|T1)
, (1)

where the denominator is

P (d|T1) =
∑

T0∈H1

P (d|T0)P (T0|T1). (2)

The causal grammar T1 specifies a probabilistic process for generating causal-network hy-
potheses. The total set of networks generated by the grammar comprises the hypothesis
space H1. The probability with which the grammar generates any particular network T0

yields its prior probability, P (T0|T1).
Our hierarchical Bayesian analysis also provides a framework for understanding how

T1-level theories may be inferred from data. Given a higher-level theory T2 that specifies
a prior over causal grammars, P (T1|T2), and a collection of datasets D from one or more
systems in the domain, the posterior probability distribution over causal grammars is

P (T1|D, T2) =
P (D|T1)P (T1|T2)

P (D|T2)
. (3)

The denominator P (D|T2) is computed in a similar fashion to Equation 2, but summing over
theories at levels T0 and T1. In discussing our two proposals for causal grammars, one of
the critical questions that will arise is how such representations could be learned. Equation
3 provides a theoretical answer to this question, but actually applying these methods to
rich structures such as our causal grammars can pose significant computational challenges.

3. Theories as graph grammars

One approach to formalizing causal grammars – or higher-level causal theories – is in
terms of a probabilistic graph grammar. In concrete terms, the grammar can be thought of
as a machine that outputs samples from an infinite subset of labeled directed graphs, drawn
from some probability distribution. Each of these graphs represents the causal structure
underlying a causal Bayesian network, but the graphs are not equivalent to Bayesian net-
works: they must be supplemented with a semantic interpretation of the variable that each
node represents, and a specification of how each variable depends functionally or probabilis-
tically on its parents in the graph. Putting these complexities aside for now, a grammar for
causal graphs is still a useful starting point for formalizing some aspects of abstract causal
theories.
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This section focuses on one elementary family of graph grammars that are sufficient
to represent coarse probabilistic constraints on candidate causal network structures. We
call these models graph schemas. They generalize an earlier proposal of Tenenbaum and
Niyogi (2003). Graph schemas are clearly not adequate to express all theory-like knowledge
at levels T1 or above, but they provide a simple example of how we can begin to formalize
abstract causal theories at a level beyond specific causal networks, how those theories could
guide Bayesian learning of causal network structure, and how the theories may themselves
be learned.

3.1 Graph schemas

A graph schema G is a probabilistic generative model for labeled directed graphs.
The key components of the schema are a set of node classes and the class graph, a directed
graph defined over the node classes. (In the context of causal structure learning, each node
corresponds to a variable in a causal graphical model, so we will use the terms “node” and
“variable” interchangeably.) Generating a graph from a graph schema involves two stages:
(1) creating some number of graph nodes and assigning them to node classes; (2) creating
connections between nodes in accordance with the class graph, which specifies whether a
causal connection may (or must) exist from a particular variable i to a particular variable j
as a function of their classes C(i) and C(j). A probabilistic (or deterministic) process must
be defined for each of these stages, the details of which may vary from domain to domain.
But the basic structures of the set of node classes and the class graph are often sufficient
to characterize some important features of a domain theory.

Figure 2 shows a graph schema that we refer to as GDis, which is intended to capture
the constraints expressed by the principles P1 and P2 in our simplified disease domain.
Consistent with P1, there are three node classes, labeled B, D and S. Corresponding
lowercase letters (b, d, s) will be used to denote specific nodes in each class. All classes are
open, meaning that the number of nodes in each class is potentially unbounded. Consistent
with P2, the two arcs in the class graph specify allowed causal connections: D → S specifies
that variables in class D may connect causally to variables in class S, and B → D specifies
that variables in class D may connect causally to variables in class S. Both arcs are dashed
to indicate that they represent laws about possible causal relations: links that may exist
but need not. That is, any individual variable d ∈ D may be a cause of any individual node
s ∈ S, but need not be. A solid arc in the class graph (e.g., in Figure 4 or 5) indicates a
necessary causal relation, where every node in one class is causally linked to every node in
the other class.

Like a generative grammar for a language, GDis specifies abstract classes of entities
(variables, instead of words) and rules about the relations (causal relations, instead of
syntactic relations) that may exist between entities of various types. By analogy with
linguistic grammars, we say that a graph schema G generates Graph i if there exists some
way to partition (parse) the nodes in Graph i into the node classes of G, such that all the
edges in Graph i are consistent with the possible or necessary connections specified in the
class graph of G. As with a grammar for language, a graph grammar can be augmented
with probabilities to enable learning and inference. A probabilistic model can be defined
over a graph schema by specifying (1) a distribution over the number of nodes in the graph
and the number of nodes in each open class; and (2) distributions over which specific causal
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Node classes:

Class Symbol Status
Behavior B open
Disease D open
Symptom S open

Class graph:

S

D

B

Generative model:

1. Generate nodes in each class.

NB ∼ PowerLaw(αB)

ND ∼ PowerLaw(αD)

NS ∼ PowerLaw(αS)

2. Generate causal relations between pairs of nodes.

Condition Relation Probability
b ∈ B, d ∈ D b → d βBD

d ∈ D, s ∈ S d → s βDS

Figure 2. A graph schema GDis for networks of diseases, their causes and their effects.

links exist between nodes in classes connected in the class graph. For GDis, one way of
defining these probabilities is shown in Figure 2. The number of nodes in each class follows
a power law distribution, P (N) ∝ 1/Nα, with a class-specific exponent α. After sampling
an appropriate number of nodes in each class, a causal link is generated independently
at random between each pair of nodes in classes connected in the class graph, with some
probability β characteristic of the parent and child classes.

The graph schema G assigns a probability P (Graph i|G) to any causal network
Graph i over a set of N labeled nodes in its domain. P (Graph i|G) is non-zero if and only
if G generates Graph i. The sizes of the graphs generated by a schema are not bounded
but must be finite. The probabilities P (Graph i|G) are normalized to sum to one over all
labeled directed graphs with any finite number of nodes. If Graph i represents the structure
of a particular causal network (T0), then G can be thought of as those aspects of the T1-level
theory that generate a hypothesis space and prior over such structures: P (T0|T1). Figure
3 shows two graphs sampled from P (Graph i|Gdis), each with αB = αD = αS = 2 and
βBD = βDS = 1/2.

3.2 Examples of graph schemas in different domains

Figures 4 through 6 show schema-based graph grammars for several other domains.
None of these grammars comes close to capturing all of people’s abstract causal knowledge
in the corresponding domain, and important details are oversimplified. The point is merely
to illustrate some of the variations in abstract causal knowledge that can arise across do-
mains and how these variations can be represented with different graph schemas. Only the
qualitative structure of the graph schemas are shown, specifying the node classes and the
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Figure 3. Causal networks sampled from GDis.

possible and necessary causal links between classes.

The “essentialist” theory, GEss (Figure 4a), generates causal networks corresponding
to simple essentialist concepts for natural kinds (inspired in part by Rehder, this volume;
Rehder and Burnett, in press). Different networks (e.g., Figure 4b) generated by this schema
could describe different biological species, with different features or different causal relation-
ships between features. They could also describe the same species as a learner acquires more
or different beliefs about its characteristic properties and their causal connections. All of
these networks place a single essence node in the same abstract causal role. The grammar
captures this shared essentialist framework that underlies, supports, and constrains the in-
finite space of possible species concepts (Gelman, 2003). Under GEss, every species has a
single essence, a single label, and one or more features. In our terminology, the essence
class E and label class L are closed, but the feature class F is open. Causal relations may
exist between any pair of features (represented by the dashed F → F edge in Figure 4a).
The essence is also necessarily a cause of every feature (represented by the solid E → F
edge); even for superficial features not directly a consequence of the essence, the causal
relations that give rise to those features depend on the functioning of mechanisms that are
themselves generated by the concept’s essence. Finally, a causal link necessarily runs from
the single essence variable to the single label variable, reflecting the lexical assumption that
each concept has a single name.

The “magnetism” theory GMag, Figure 5a, generates networks appropriate for rea-
soning about physical causal relationships between the positions of a system of magnets
(class M), magnetic objects (class T ), and non-magnetic objects (class U). (Magnetic ob-
jects, such as a ball bearing, are magnetizable but not sources of magnetic force.) Different
systems may have different numbers of objects in these classes (e.g., Figure 5b), but in
every system, the position of every magnet causally influences the position of every magnet
and every magnetic object. The schema GMag captures these abstractions by positing three
open node classes and necessary causal connections from class M to itself and from M to
T .1

1This graph schema may look implausible as a template for generating causal graphical models, because

it generates graphs with directed cycles. However, the problem is easily remedied by imposing a simple

discrete dynamics on the variables. Each variable in each node class is indexed by time step, and causal

connections between nodes x and y in fact connect x(t), the state of variable x at time t, to y(t+1), the state

of variable y at time t + 1. By default, each state variable should also depend on its value at the previous

time step.



CAUSAL GRAMMARS 8

(a)
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Label L closed: |L| = 1
Feature F open

Class graph:
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Figure 4. (a) A graph schema GEss for essentialist categories of natural kinds (c.f. Rehder, this
volume). (b) Causal networks sampled from the grammar.

The “rational agent” theory, GAgent (Figure 6), generates causal networks appropriate
for a simple version of intuitive psychological reasoning. Different networks generated by
this grammar could be appropriate for reasoning about different agents or different kinds
of agents, with different specific beliefs, desires, and actions available to them. The graph
schema is meant to capture the causal mental architecture that is in common across all
these systems of rational agency. An agent has some set of actions A that can be produced,
as well as two classes of mental states, beliefs B and desires D. Which action is chosen at a
particular time depends upon the agent’s beliefs and desires. Variables in class W describe
relevant aspects of the state of the world. Actions may affect world states, and world states
in turn affect the agent’s beliefs. The agent’s desires are not directly affected by the world

(a)
Node classes:

Class Symbol Status
Position of a magnet M open
Position of a magnetic object T open
Position of a non-magnetic object U open

Class graph:

T

M U

(b)

M M

T T T T T T

U M M

T T T T

U U U

Figure 5. (a) A graph schema GMag describing the effects of magnets on other objects. (b) Causal
networks sampled from the grammar.
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Node classes:

Class Symbol Status
World states W open
Beliefs B open
Desires D open
Actions A open

Class graph:

A

D

W

B

Figure 6. A graph schema GAgent corresponding to a simple theory of mind for intentional agents.

but may be affected by the agent’s beliefs about the world.2 As with the graph schema
GDis for the disease domain, all edges in the class graph for GAgent are dashed, indicating
only possible rather than necessary causal relations.

An intriguing difference between causal theories in different kinds of domains is sug-
gested by the different patterns of necessary and possible causal relations in these graph
schemas. Physical theories may be more likely to specify necessary causal links, as in GMag,
in which every variable of a certain class possesses the same causal power (or lack thereof)
with respect to every variable of another class. Psychological or biological theories may be
more likely to specify possible causal links, as in GDis, GAgent, or GEss, where a variable’s
ontological class may constrain its possible cause and effect relations but does not determine
them necessarily. The necessary relations that characterize the essence of a natural-kind
concept in GEss may be an exception that proves this rule: essentialist intuitions give rise to
some of the few inviolable and all-or-none judgments about otherwise graded conceptions of
natural species (Gelman, 2003). Admittedly this particular generalization is quite specula-
tive, but some such generalizations about broad classes of domains could form the content
of more abstract causal theories at higher levels of the theory hierarchy – well above the T1

level that is our focus here.

3.3 The role of graph schemas in learning causal structure

As a model for T1-level theories in our hierarchical Bayesian framework, probabilistic
graph schemas should support the learning of causal network structures (T0-level theories),
and should themselves be learnable given a suitable hypothesis space of graph schemas (a
T2-level theory). To illustrate how graph schemas guide the learning of causal structure,
consider how the schema GDis explains an inference discussed in the previous chapter:
positing the existence of a new disease to explain the observation of a previously unseen
correlation between a symptom (e.g., Chest Pain) and a behavior (e.g., Working in Factory).

We first need to define more precisely the probabilistic model implied by each causal
network of behaviors, diseases and symptoms. In particular, we need to specify how the
probability that an effect occurs depends on the presence or absence of its causes. We assume

2Like GMag, this graph schema oversimplifies by leaving out the dynamic nature of these state variables.

But those dynamics can be included here just as we outlined for GMag in the previous footnote, by indexing

each variable by a time step and unfolding all causal connections between each time step and the next.
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a noisy-OR functional form for these cause-effect relationships (Pearl, 1988). This function
is a probabilistic generalization of a logical OR gate, allowing each cause an independent
opportunity to bring about the effect. If an effect E is caused by C1, . . . , CN , then the
noisy-OR states that

P (E = 1|c1, . . . , cN ) = 1 − (1 − w0)

N∏

i=1

(1 − wi)
ci (4)

where E = 1 indicates that the effect occurs, and ci takes on the value 1 if the cause occurs,
and 0 otherwise. Here, wi is the “causal power” of cause i (c.f. Cheng, 1997) – the probability
that cause i will produce the effect. The parameter w0 represents the probability that the
effect will occur in the absence of any causes. For the purpose of this demonstration, we will
assume that the probability that a patient exhibits each behavior is 0.10; that behaviors
cause diseases with power wi = 0.1 and diseases occur spontaneously with w0 = 0.001; and
that diseases cause symptoms with power wi = 0.8 while symptoms occur spontaneously
with w0 = 0.001. We will also assume that αD = 2.

Figure 7 shows how the graph schema GDis predicts that the posterior probabilities of
five structures should change as evidence for a new correlation accumulates. For simplicity,
we assume that only the first five structures shown in Figure 1 are under consideration.3

Graph 1 is the “null hypothesis”, asserting a set of relationships among behaviors, diseases,
and symptoms that is consistent with our medical intuitions. Graph 2 adds an additional
link from Bronchitis to Chest Pain. Graph 3 adds an additional link from Working in
Factory to Lung Cancer. Graph 4 introduces a new disease, Y, which connects Working in
Factory to Chest Pain. Graph 5 adds an additional link from Working in Factory to Chest
Pain; this link has causal power wi = 0.8× 0.1 = 0.08 for consistency with the assumptions
of the other graphs. The dataset d consists of 1000 samples from Graph 1, together with
some number of “anomalous” instances in which patients’ only relevant behavior is working
in a factory, and their only symptom is chest pain. For each patient, only their relevant
behaviors and symptoms are observed, not their diseases.

Figure 7 (a) shows the log-likelihood, log P (d|Graph i), as a function of the number
of anomalous instances observed. This quantity embodies the bottom-up influence of the
data on evaluating these causal structure hypotheses, independent of the domain constraints
embodied in the graph grammar. With no anomalous instances, these data are most likely
under Graph 1, consistent with the fact that they were generated from this structure. As
the number of anomalous instances increases, the data become more likely under structures
that allow for a correlation between Working in Factory and Chest Pain. The network with
a direct link between Working in Factory and Chest Pain and the network which postulates
a new disease linking these conditions (Graph 5) give the highest probability to these data.
The network that postulates a link from Working in Factory to Lung Cancer (Graph 3)
starts off equal to those hypotheses, but declines in probability as more anomalous cases are
observed (without any appearance of coughing, the other symptom associated with Lung
Cancer).

We can compute the posterior probability of each of these graph structures by applying
Bayes’ rule, as in Equation 1. We want to compute P (T0|d, T1), where T0 refers to one of

3Graph 6 provides such a poor fit to the observed data that its likelihood would not show up on Figure

7.
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Figure 7. Learning from a correlation between working in factory and chest pain. (a) Likelihood
functions for different structures as a function of the number of new instances in which Working
in Factory and Chest Pain co-occur. (b) Posterior probabilities resulting from combining these
likelihoods with the prior specified by GDis.

the five graphs described above and T1 is the graph schema GDis. The prior P (T0|T1) has
both qualitative and quantitative implications for these posterior probabilities. Graph 5 is
not generated by GDis, and consequently has a prior probability of zero. The remaining
structures are all generated by the grammar, but with different probabilities. Graph 1,
Graph 2, and Graph 3 are all approximately equally probable. Graph 4 is far less probable,
for two reasons. First, it is less likely that a structure with five disease nodes will be
generated than a structure with four disease nodes, since the probability of the number of
nodes is proportional to 1/|D|2. Second, there are many more structures with five disease
nodes than four, and consequently the average probability of any one of those structures is
lower than the average probability of any one structure with four disease nodes.

Figure 7 (b) shows the posterior probabilities of the different causal networks. De-
spite receiving maximal likelihood (along with Graph 4) given three or more anomalies,
Graph 5 has zero posterior probability, due to its inconsistency with GDis. As the number
of anomalous instances increases, there are three discrete stages in the evolution of the
posterior probabilities of the other networks. At first, Graph 1 remains favored by both the
prior and the likelihood, and the apparent correlation is dismissed as just a coincidence. In
the second stage, it becomes clear that the correlation between working in a factory and
experiencing chest pain is genuine, and the likelihood favors the other structures. However,
the prior is strongly against a new disease, so it seems most plausible that working in a
factory is actually a cause of lung cancer, and it is just a coincidence that these patients do
not also have the symptom of coughing associated with lung cancer. Finally, the likelihood
overwhelms the prior’s bias, and it becomes apparent that this pattern of data is evidence
for an entirely new disease.
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Node classes:

Class Symbol Status
Label L closed: |L| = 1
Feature F open

Class graph:

F

L

Figure 8. A graph schema, GPro, for a prototype theory of natural-kind concepts.

3.4 Learning graph schemas

To the extent that the skeletal structure of intuitive theories can be captured by graph
schemas for causal networks, the development of intuitive theories may be characterized in
terms of changes in those graph schemas. A theory may develop via changes in the causal
relations that are necessary or possible, as well as in more radical ways – akin to what
Carey (1985) calls “radical conceptual change”: node classes may be added or deleted, split
or merged. Often the explanatory power of a theory is deepened by adding a new class of
hidden causes. For instance, the construction of the Disease class of unobservable interven-
ing causes between Behaviors and Symptoms might have been an important development
in medical reasoning. Similarly, Rehder (this volume) posits that essentialist concepts of
natural kinds are a relatively late development. Initially, the graph schema for natural-kind
concepts might look more like a prototype theory, GPro (Figure 8). There is no underlying
essence node and no explicit representation of causal links between features. Concepts are
simply a bundle of one or more features, each linked directly and independently to the
concept label.

There are probably many ways by which knowledge at the level of graph schemas can
change or grow. One mechanism could be inductive learning from known causal networks or
observed patterns of cause-and-effect co-occurence. Kemp, Griffiths, and Tenenbaum (2004)
have developed a computational framework for discovering class structures in relational
data, which can be used to learn a version of probabilistic graph schemas. The learning
algorithm takes as input one or more causal networks T0, and automatically discovers the
classes that are needed to capture the causal relationships among nodes and the probability
of a relationship existing between nodes in each pair of classes. This framework does
not explicitly distinguish laws for necessary or possible causal links, but treats them as
special cases of a more general probabilistic model. The learning algorithm makes no
a priori assumption about the number of node classes, but adopts a prior on node-class
assignments that prefers to cluster most nodes into a few large classes. The learner can
thus automatically discover the most parsimonious grammar, with the smallest number of
classes, capable of generating the observed causal network structures.

The model defined by Kemp et al. (2004) effectively computes P (T1|T0, T2), the prob-
ability of a graph schema given an observed causal network generated from that grammar
and some T2-level background knowledge. It does so by defining the distributions P (T0|T1)
in Equation 2 and P (T1|T2) in Equation 3. In order to learn a graph schema directly from
observations of the variables in a causal system – that is, to compute P (T1|D, T2) – this
model can be combined with the Bayesian framework for learning causal network structure
described above, which specifies P (D|T0).
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There has been relatively little empirical work looking at how people learn abstract
theories at the level of a graph schema. Tenenbaum and Niyogi (2003) found that people
were able to discover a set of classes and causal laws that determined the novel causal
relationships among a set of objects in a virtual world. The “objects” in their experiments
consisted of blocks that could be moved around and brought into contact with other blocks.
When two blocks came into contact, one or both (or neither) could light up, depending on
their class memberships and the causal laws operative in the virtual world. The experiments
conducted by Tenenbaum and Niyogi (2003) examined how well people learned theories
corresponding to the graph schemas shown in Figure 9a. Participants found it easiest to
learn laws specifying necessary causal links, such as “Every object belongs to either class
A or B, and every object lights up objects in the other class, but not those in the same
class.” The graph schemas G1 and G2 have such a structure. Laws specifying possible but
not necessary causal relations, such as G3 and G4, were more difficult to learn, but still
learnable when the node classes played asymmetric roles, e.g., “Every object belongs to
either class A or B, and objects in class A may or may not light up objects in class B”.
When the node classes played symmetric roles in a law specifying possible causal links –
e.g., “Every object belongs to either class A or B, and any object may light up one or more
objects in the other class, but not any in the same class” – the theory was most difficult
(indeed, practically impossible) for participants to learn.

Kemp et al. (2004) applied their Bayesian algorithm for learning graph schemas to
the same tasks, and showed that it accounts for the relative difficulty that participants had
in learning these different grammars. Figure 9b shows how the evidence for the correct
theory accumulates as more objects are encountered, for all four graph schemas (see Kemp
et al., 2004, for details). Evidence is computed as the log ratio of the probability of the
data under two T2-level theories: one in which the causal relations between the objects are
generated by a graph schema (with an unknown number of classes), and another in which
each object belongs to its own class (and thus no non-trivial graph schema is appropriate).
The evidence for the correct grammar-based theory increases in all cases as more objects and
relations are observed, but the rate of increase varies across the four theories in accordance
with their relative ease of learning. Intuitively, graph schemas that make more constrained
predictions about possible causal networks should be easier to learn, because they assign
higher probability to the causal networks they do generate. The empirical difficulty of
learning was in accord with this principle. For instance, graph schemas specifying necessary
causal relations were the easiest to learn, and they were also the most constraining, because
an assignment of objects to classes uniquely specifies a single causal network that must be
observed.

3.5 Extensions and limitations

The notion of a graph schema can be extended in many ways, to capture richer domain
structures. One extension is to allow objects to belong to multiple classes. These classes
might form a hierarchy, with each object in a set of nested classes, or a factorial structure,
with each object belonging to one class from each of a number of groups. Furthermore,
the grammar might depend upon the attributes of the objects, in addition to their class.
Another possibility is to allow some kind of generative intermediate representations in the
grammar, analogous to the non-terminals in context-free grammars for language, which



CAUSAL GRAMMARS 14

(a)

A B A B

A B A B

B

B B B B

A A A A A A A A

B B B B B

A A A A A A A A

G
3

G
4

G
2

G
1

B B B B B B B B B

B

(b)

3 6 9
0

10

20

30

40

50

60

Number of objects

E
vi

de
nc

e 
fo

r 
th

eo
ry

 G
1

 G
2

 G
3

 G
4

Figure 9. (a) Class graphs and sample networks representing the four graph schemas explored in
the experiments of Tenenbaum and Niyogi (2003). (b) The evidence for a theory based on a graph
schema increases as learners encounter more objects exhibiting causal relations consistent with that
schema, but at a different rate for different graph schemas. Human learners demonstrate the same
ordering in the difficulty of learning these graph schemas.

could correspond to mechanisms of transmission linking causes and effects (e.g., Shultz,
1982).

While graph schemas provide a simple way to capture some of the abstract knowledge
in T1-level theories, they leave out other knowledge that is fundamental to intuitive theories
and essential for generating hypothesis spaces of causal structures. Foremost is their lack
of a sufficiently expressive ontology. They take the nodes or variables of a causal network
as primitive entities, without explaining how those variables – or the classes of variables
represented in a graph schema – derive from knowledge about types of entities and their
properties. Their representations of causal relations and the laws that generate those re-
lations are also fundamentally limited. The class graph of a graph schema specifies which
causal relationships are possible or necessary, but not what functional form those relation-
ships take on if they exist. This knowledge of how effects depend on their causes should
form a crucial part of both T0- and T1-level knowledge. At the T0 level, it is necessary
to compute the probability of an observed dataset given a causal network structure, or to
make predictions about how novel interventions will affect a causal system. At the T1 level,
it provides valuable constraints on possible causal network models, and thus plays a critical
role in explaining how T0-level theories can be inferred from limited data.

4. Theories as logical grammars

Just as there are many different formalisms that one can adopt for representing linguis-
tic grammars, varying greatly in complexity and coverage, so are there different approaches
to formalizing causal grammars. Some of the shortcomings of graph grammars as accounts
of T1-level theories can be addressed by adopting a richer representational language, based
on a probabilistic version of predicate logic. Logical grammars can specify more complex
and realistic ontologies, in which the types of entities and predicates defined over those
entities determine the space of causal Bayesian networks generated by the grammar. Un-
like the graph grammars presented in the previous section, which generate only the labeled
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directed graph skeleton of causal networks, these logical grammars generate full T0-level
theories, each comprising a set of semantically grounded variables, a network of cause-effect
relations, and the functional dependencies between causes and effects. By defining a prob-
abilistic model over these logical grammars, analogous to the introduction of probabilities
in graph grammars, we can specify a complete probabilistic generative model for T0-level
theories with a well-defined prior distribution P (T0|T1). Probabilistic models defined over
logical knowledge representations are a promising area of contemporary artificial intelli-
gence research (e.g., Friedman, Getoor, Koller, & Pfeffer, 1999; Pasula & Russell, 2001).
Our approach is closest in spirit to the Bayesian Logic framework of Milch, Marthi and
Russell (2004).

The theories we consider in this section will be defined using a probabilistic typed (or
many-sorted) form of predicate logic. In predicate logic, a set of abstract entities are named
with constants, and the properties of those entities are stated using predicates that apply to
constants.4 We will use typewriter font when referring to logical notions, writing constants
as lower-case letters or words and predicates as capitalized words. For example, in defining
a theory of diseases, we could use ChestPain(p) to indicate that a particular person,
represented by the constant p, had the property of having chest pain. In some cases, we
might want to talk about a predicate without committing to a particular entity, which can be
done by introducing a logical variable, which we will write as a capital letter. Quantification
over logical variables can be used to define the set of entities for whom a predicate holds. For
example, if we had a world containing three entities, indicated by constants p1, p2, and p3, we
could indicate that they all suffered chest pain using the expression ∀P ChestPain(P), where
P is a logical variable that can take on values corresponding to each of the three entities,
and ∀ is the “universal quantifier”, indicating the truth of the proposition it concerns for
all values of the variable over which it quantifies. A typed logic divides entities into types,
and places constraints on the types of entities to which predicates can apply. We will use
the same notation used for predicates to refer to types, since types are naturally translated
into predicates (e.g., Enderton, 1972). In the case of diseases, we might want to distinguish
two types of entities – People and Objects – and assert that ChestPain is a predicate that
can only apply to entities of type People.

This discussion of the properties of logic already reveals one of the ways in which
logical representations of theories can go beyond graph grammars: they support rich on-
tologies, defined in terms of types of entities and the predicates that apply to them. We will
illustrate some of their other properties and show how such theories may constrain people’s
causal inferences via an in-depth discussion of the “blicket detector” experimental paradigm
(Gopnik & Sobel, 2000; Gopnik et al., 2001; Sobel, Tenenbaum, & Gopnik, 2004; Tenen-
baum, Sobel, Griffiths, & Gopnik, submitted). This paradigm showcases people’s ability to
make causal inferences about novel physical systems from very limited data – just one or
a few observations – when guided by appropriate prior knowledge. Traditional bottom-up
approaches to learning causal relationships based on rational assessments of correlation,
partial correlation, or other statistical measures (e.g., Cheng, 1997; Glymour, 2001; Gopnik
et al., 2004; Shanks, 1995) are not readily applicable here, because people do not observe

4The abstract entities referred to in a logical theory need not correspond to any kind of physical object.

Logical approaches to number theory consider entities that correspond to numbers, and we will consider

entities that correspond to intervals of time.
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sufficient data to compute these statistics. Our framework provides a rational account of
both adults’ and children’s causal inferences in this paradigm, as well as strong quantitative
predictions with a minimum of free numerical parameters.

Relative to the graph grammar formalisms of the previous section, the added power
of logical grammars comes at a price. Their richer ontologies introduce more details and
greater complexity, making it harder to define satisfying theories that go beyond the sim-
plest systems. It is also much less clear how these logical theories could be learned in full
generality, although we can give analyses of several special cases in the blicket detector
paradigm. We discuss extensions to our logical framework and prospects for explaining
learning at the end of this section.

4.1 The blicket detector

Gopnik and Sobel (2000) introduced a novel paradigm for investigating causal infer-
ence in children, in which participants are shown a number of blocks, along with a machine
– the “blicket detector”. The blicket detector “activates” – lights up and makes noise –
whenever a “blicket” is placed on it. Some of the blocks are “blickets”, others are not,
but their outward appearance is no guide. Participants observe a series of trials, on each
of which one or more blocks are placed on the detector and the detector activates or not.
They are then asked which blocks have the power to activate the machine.

Gopnik and Sobel have demonstrated various conditions under which children suc-
cessfully infer the causal status of blocks from just one or a few observations (Gopnik et al.,
2001; Sobel et al., 2004). Two experiments of this kind are summarized in Table 1. In these
experiments, children saw two blocks, a and b, placed on the detector either together or
separately across a series of trials. On each trial the blicket detector either became active
or remained silent. Table 1 gives the proportion of 4-year-olds who identified a and b as
blickets after several different sequences of trials, encoding contact between the blocks and
the detector with the variables A and B and the detector response of the detector with
the variable E. Tenenbaum, Sobel, Griffiths, & Gopnik (submitted) tested adults with
a similar paradigm, obtaining quantitative judgments that could be used to evaluate the
precise predictions of competing computational models. They also used stimuli that were
intended to provide ambiguous evidence as to whether blocks were blickets. These data are
not presented in Table 1 but are discussed below in Section 4.2.

We will explain the blicket-detector inferences that children and adults draw with
reference to a T1-level theory, expressed using probabilistic logic. This account elaborates on
our earlier theory-based model of blicket-detector inferences (Tenenbaum & Griffiths, 2003),
by making the theory used in that analysis explicit. The theory should embody people’s
expectations about how machines (and detectors) work, informed by the specific instructions
and familiarization experience provided to experimental participants. For the experiments
described in Table 1, the blicket detector was introduced to children as a “blicket machine”,
and children were told that “blickets make the machine go”. In a familiarization phase prior
to the critical experimental trials, children saw blocks that activated the machine identified
as “blickets” and blocks that did not activate the machine identified as “not blickets”. A
theory expressing the relevant background knowledge is sketched in Figure 10.

This theory has three parts, specifying an ontology, prescriptions as to causal struc-
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Table 1: Probability of Identification as Blickets for 4-year-old Children and Deterministic and
Probabilistic Theories

Children Deterministic Probabilistic
Condition Stimuli a b a b a b

one cause e+|a+b− 0.91 0.16 1.00 0.00 0.99 0.07
e−|a−b+

2e+|a+b+

two cause 3e+|a+b− 0.97 0.78 ? ? 1.00 0.81

2e+|a−b+

e−|a−b+

indirect screening-off 2e+|a+b+ 0.00 1.00 0.00 1.00 0.13 0.90
e−|a+b−

backwards blocking 2e+|a+b+ 1.00 0.34 1.00 β 0.93 0.41
e+|a+b−

association e+|a+b− 0.94 1.00 1.00 1.00 0.82 0.98
2e+|a−b+

backwards blocking (rare) 2e+|a+b+ 1.00 0.25 1.00 0.17 0.91 0.26
e+|a+b−

backwards blocking (common) 2e+|a+b+ 1.00 0.81 1.00 0.83 0.98 0.86
e+|a+b−

Note: The one cause and two cause conditions are from Gopnik, Sobel, Schulz, and Glymour (2001,

Experiment 1). The indirect screening-off, backwards blocking, association, backwards blocking (rare),

and backwards blocking (common) conditions are from Sobel, Tenenbaum, and Gopnik (2004, Ex-

periments 2 and 3). Boldface indicates the predictions of the model favored by the theory selection

procedure outlined in Section 4.3.

ture, and expectations about the functional form of causal relations.5 The constraints on
causal structures and functional form together constitute the “causal laws” expressed in the
theory. As a generative grammar for causal Bayesian networks, the three components of
the theory respectively generate the nodes of the network, the causal links between nodes,
and the local conditional probability distribution for each node as a function of its causes.
We describe this generative model below, but first we explain the content of the theory in
more detail.

The ontology identifies the types of entities in the domain and predicates defined on
those types. The types are organized hierarchically, with the first cut into Object, Power,

5The particular versions of those components shown in Figure 10 represent just one of many possible

choices that could work here. We assume this particular theory because it is simple and fairly intuitive, not

because we think it corresponds precisely to people’s theories in these experiments. However, we will argue

that something like the key principles expressed in this theory are critical to explain people’s inferences in

blicket detector tasks.
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Ontology:

Types Number Structural predicates
Object Has(Power, Object) ∼ Bernoulli(β)

Block NB ∼ PowerLaw(αB) Activates(Power, Machine) ∼ Bernoulli(γ)
Machine NM ∼ PowerLaw(αM )

Power NP ∼ PowerLaw(αP ) Causal predicates
Trial NT ∼ PowerLaw(αT ) Contact(Object, Object, Trial)

Active(Machine, Trial)

Causal laws:

Structure:

Condition Relation Probability
Has(P, O) ∧ Activates(P, M) ∀T Contact(O, M, T) → Active(M, T) 1

Functional form:

Contact(O, O′, T) ∼ Bernoulli(·)
Active(M, T) ∼ Bernoulli(ν) for ν given by a noisy-OR function

Cause Strength
(Background) w0 = ǫ
Contact(O, M, T) w1 = 1 − ǫ

Figure 10. Sketch of a probabilistic logical theory for causal induction with blicket detectors.

and Trial. The Object type further divides into Block and Machine. The predicates are
divided into structural and causal predicates. The causal predicates specify the kinds of
variables that will appear as nodes in causal networks (T0-level theories) describing systems
in the domain. The structural predicates concern the basic properties of the entities in the
domain and determine which causal relationships can or must hold among causal predicates
applied to those entities – that is, the constraints on candidate causal networks defined over
grounded causal predicates.

In this case, there are two kinds of causal predicates – variables that can participate
in causal relationships: Contact(O, O′, T) is true if objects O and O′ are in contact on trial
T. Active(M, T) is true if machine M is active on trial T. These predicates each apply to a
particular Trial, representing discrete temporal intervals of the experiment. There are two
structural predicates: Has(P, O) is true if object O has power P, e.g., if an object is a blicket,
and Activates(P, M) is true if power P activates machine M, e.g., if a machine is a blicket
detector. Under this construal, being a blicket or a blicket detector is like being an acid or
a base. It is to belong to a class of causal agents or causal patients, defined by the roles
that they play in certain laws of causal interaction (White, 1995).

So far, we have focused on the logical structure of the ontology. The probabilistic
aspect of the ontology defines a distribution for the number of entities of each type and
specifies the probability with which structural predicates hold. In Figure 10, the numbers
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of blocks, machines, powers, and trials are assumed to follow power-law distributions with
parameters αB , αM , αP , and αT respectively. These distributions are not of consequence
in the experiments we will analyze: all blocks and machines are assumed to be observed,
and there is just one relevant power concept, blicket, that is introduced verbally at the
beginning of each experiment. The probability with which each object has a particular
power (e.g., is a blicket), β, will be an important variable below. Because there is only
one power, blicket, and one machine, d, and d is explicitly called a “blicket detector”, the
prior probability γ that Activates(blicket,d) is true can be assumed to be 1.

The causal laws of a theory specify which causal relations between variables may,
must, or are likely to exist, and what form they take. We divide causal laws into the
aspects relevant to causal structure, and those that concern functional form. The structural
prescriptions of the theory determine the probability that particular causal relationships
exist. Each rule consists of a set of conditions stated in terms of structural predicates, under
which a causal relationship between two causal predicates holds with some probability. The
causal law in Figure 10 asserts that contact between an object and a machine on a given
trial will cause the machine to be active on that trial, if the object has some power (e.g., is
a blicket) and the machine is activated by that power.

The structural component of the causal laws concerns only the presence or absence
of causal links between variables. The strength of those links, e.g., the probability that on
any one trial, the presence of the cause will indeed lead to the presence of the effect, are
determined by the functional form component of the theory, which specifies the probability
distribution associated with each causal predicate. This theory posits a noisy-OR form
for the conditional probability distribution of any machine activating given contact with
objects that can activate it. For simplicity we reduce these noisy-OR functions to just a
single parameter ǫ, representing the “error rate” of a detector – the probability of a “miss”
or “false alarm”. To begin with, we will assume a deterministic detector with ǫ = 0. This
has two important implications. First, the detector cannot activate unless a blicket is in
contact with it (w0 = 0). Second, placing a blicket on the detector will always activate the
detector (wi = 1). These two assumptions are equivalent to the “activation law” of Sobel et
al. 2004): a blicket detector will be active if and only if one or more blickets are in contact
with it. Because people always observe which objects are in contact on each trial, the prior
probabilities for contact relations are irrelevant.

The deterministic detector theory generates a hypothesis space H1 of causal networks
defined for any set of trials involving any number of blocks and detectors. The generative
process defines a prior probability distribution over that space, indicating which causal
structures are more or less likely a priori. The process by which a causal network is generated
from the theory is as follows:

1. Generate nodes. Sample a set of entities of each type from the distribution
specified in the Ontology. Sample the structural predicates for these entities,
using the appropriate probabilities. Generate the set of grounded causal predi-
cates. Each of these grounded predicates can be thought of as a binary variable
that is true or false. These variables will comprise the nodes of the causal
network.

2. Generate links. Conditioned on the values of the structural predicates, sam-
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ple causal links between nodes from the distribution stated in the Structure

component of the theory’s Causal laws.

3. Generate local conditional probabilities. For each node, define a local condi-
tional probability as specified in the Functional form component of the the-
ory’s Causal laws, and set the appropriate parameters (or sample them from
some prior distribution).

The set of grounded causal predicates is obtained by applying each causal predicate to
all entities that can act as its arguments. Assuming that we have two blocks a and b, a
single detector d, a single power blicket, and the knowledge that d is activated by this
power, the set of grounded predicates is as follows: Contact(a,d,T), Contact(b,d,T), and
Active(d,T) for each trial T. These grounded predicates are the variables on which the
possible causal networks (or T0-level theories) will be defined.

Since causal relationships are constant over all trials T, we can express these causal
networks in terms of four graph structures, as shown in Figure 11(a). For shorthand, we
use the variables A and B to represent Contact(a, d, T) and Contact(b, d, T) respectively,
and E to represent Active(d, T). The prior probabilities of these networks P (Graph i|T1)
are determined by the parameter β in the T1 theory – that is, the prior probabilities that
Has(blicket, a) and Has(blicket, b) are true – since a causal relationship between a block
and a detector exists if and only if that block has the power that activates the detector.

The posterior probability distribution over the set of causal networks generated by
the theory can be evaluated for each set of trials shown in Table 1, identifying the observed
events as the dataset d and applying Bayes’ rule as in Equation 1. In the blicket detector
experiments, learners are typically asked to judge whether a block (such as a) is a blicket.
This question asks whether Has(blicket, a) is true. Because Has(blicket, a) is logically
equivalent to the existence of a causal link between Contact(a, d, T) and Active(d, T), this
question can be reduced to a Bayesian inference over causal network structures: given
some observed trials with a blicket detector d, the probability that a block is a blicket
is the probability that the causal link Contact(b, d, T) → Active(d, T) exists in the causal
network describing the observed system. This can be evaluated by summing the posterior
probability of the models in which such a causal relationship exists. For instance, to evaluate
the probability that a is a blicket, we compute

P (A → E|d, T1) =
∑

T0∈H1

P (A → E|T0)P (T0|d, T1). (5)

For the simple hypothesis space shown in Figure 11(a), this is just P (Graph 2|d, T1) +
P (Graph 3|d, T1).

The predictions of the deterministic detector theory are given in Table 1. The theory’s
predictions correspond qualitatively with children’s judgments but cannot explain all of the
inferences observed. In particular, it cannot explain the two cause condition in Experiment
1 of Gopnik et al. (2004), which served as an associative control for the one cause condition.
In the two cause condition children saw the detector activate when block a was placed on
it (alone), on three out of three trials, and also saw the detector activate when block b was
placed on it (alone), but only on two out of three trials. These data are not compatible with
any causal network generated by the deterministic detector theory, and thus the theory’s
predictions are undefined (indicated by the question marks in Table 1).
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Figure 11. Graph structures generated by the causal theory for the blicket detector. (a) shows the
hypothesis space for two blocks, a and b, while (b) shows the hypothesis space with three blocks, a,
b, and c. A, B, and C denote Contact(a,d,T), Contact(b,d,T), and Contact(c,d,T) respectively,
while E indicates Active(d,T). These causal networks are implicitly quantified over all trials T.

The two cause dataset can be explained by relaxing one of the assumptions of the
deterministic detector theory, to allow blickets to activate detectors only some of the time.
We can make this change by allowing ǫ to take on some value greater than zero. This
probabilistic detector theory gives the same predictions as the deterministic detector theory
in the limit as ǫ → 0, but also predicts that both a and b are blickets with probability 1 in
the two cause condition. Different values of ǫ give different predictions. The predictions of
this theory with ǫ = 0.1 and α = 1/3 are shown in Table 1. This model captures some of
the finer details of children’s judgments that are not captured by the deterministic detector,
such as the fact that b is judged less likely to be a blicket than a in the two cause condition.

4.2 Comparison with alternative accounts

Besides our theory-based Bayesian account, at least two other accounts have been
proposed for how children or adults might infer causal structure in the blicket detector
paradigm: (1) using a domain-general algorithm for learning causal structure based on
statistical dependencies; (2) using domain-general deductive reasoning, augmented with
domain-specific assumptions about the relevant class of causal mechanisms (e.g., detectors).
Each of these approaches is simpler in some way than our theory-based Bayesian framework,
but each is also unable to explain the full range of people’s inferences in this paradigm.

Gopnik et al. (2004) advocate the first alternative, proposing that children’s causal
inferences can be explained by standard bottom-up algorithms for learning causal graphical
models (e.g., Spirtes et al., 1993; Pearl, 2000). In particular, they argue that these algo-
rithms will infer the same causal structure (which objects are blickets) that children do in
the blicket detector experiments, given observations of the variables A, B, and E across
trials. However, the Spirtes et al. (1993) and Pearl (2000) algorithms require as input the
probabilistic dependence and independence relations among a set of variables, and these re-
lations cannot be inferred with any reliability from the very small number of trials presented
to human learners in the experiments. At least an order of magnitude more data – or some
domain-specific assumptions about the causal mechanisms at work – would be necessary for
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one of these algorithms to work as a rational account of human causal learning. Gopnik et
al. (2004) finesse this issue by proposing that learners assume the observed data frequencies
can be safely multiplied by some large number, but this assumption is clearly unjustified in
many cases. Effectively, it serves to introduce crucial aspects of the deterministic detector
theory without making them explicit, because it is justified only in those domains where
causal systems are deterministic and fully observable (Tenenbaum et al., submitted).

There is a clearer rational basis for accounts of children’s reasoning in logical terms.
An assumption that the blicket detector activates if and only there is a blicket in contact
with it, plus elementary deductive reasoning capacities, is sufficient to explain all of chil-
dren’s inferences discussed so far (except in the two cause condition). However, neither this
deductive model nor the Spirtes et al. (1993) or Pearl (2000) bottom-up structure learning
algorithms can address another core aspect of human causal inference. Under all these
alternative approaches, learners evaluate candidate causal structures in a binary fashion:
each structure is either consistent or inconsistent with the data. There is no provision for
representing graded degrees of belief about the existence of a causal relation, either a pri-
ori, based on expectations about which network structures are more or less plausible, or a
posteriori, after observing data that is more or less compatible with multiple structures.

In contrast, our theory-based account naturally explains these gradations, through
the probabilistic form of the theory and the probabilistic character of the causal inference
process. For instance, after all trials have been observed in the backwards blocking condition,
the posterior probability that block b is a blicket reduces to β: the prior probability that
any block is a blicket (assuming the deterministic theory). This reduction to the prior
occurs because, having observed that block a unambiguously activates the detector (and
hence is definitely a blicket), the data now provide no evidence either way about b. More
generally, even if the data do not provide unambiguous evidence about the status of any
one block, they can suggest that some blocks are more likely to be blickets than others,
while the prior probability β modulates the overall probability that any block is a blicket.
Sobel et al. (2004) and Tenenbaum et al. (submitted) have shown that adults and children
reason in accord with these graded predictions.

Tenenbaum et al. (submitted, Experiment 1) studied an analog of the backwards
blocking condition of Sobel et al. (2004, Experiment 1) and attempted to manipulate the β
parameter – the prior probability of encountering objects with the causal power to activate
the detector. The experiment was performed with adults, in order to measure more precise
graded judgments. They used a “superpencil” detector – rather than a blicket detector
– which determined whether apparently normal pencils contained a special kind of lead
called “super lead”. Participants were randomly assigned to two groups, varying in how
they were introduced to the notion of super lead. Both groups of participants were initially
shown 12 pencils placed on the detector, one at a time. In what we will refer to as the the
rare condition, only two of these pencils caused the detector to activate. In the common
condition, the detector activated for 10 of the 12 pencils. It was hypothesized that learners
would set the β parameter in their theories to something like the base rate of causally
efficacious objects: 1/6 in the rare condition and 5/6 in the common condition.

The judgment phase had three stages. In stage one, the baseline, participants were
simply shown two new pencils, a and b. In stage two, participants saw a and b placed on
the detector together, and the detector activated. In stage three, just a was placed on the
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Figure 12. Adult judgments with “superpencils”, an analog of the blicket detector task, from
Tenenbaum, Sobel, & Gopnik (submitted). (a) and (b) show inferences from the same set of trials,
but with different prior probabilities for superpencils, being rare and common respectively. (c)
Inferences from ambiguous evidence.

detector, and the detector activated. After each stage, participants were asked to rate the
probability that a and b were superpencils. Mean ratings after the first (baseline) stage in
each condition were used to set β in our model. Then the same values of β were used to
predict judgments in the remaining stages. Mean ratings in the rare and common conditions
are shown in Figure 12 (a) and (b), respectively, along with our model’s predictions.

Manipulating the base rate of superpencils during familiarization had the expected
effect on people’s baseline judgments: β was estimated at 0.19 in the rare condition, and
0.78 in the common condition. It also affected subsequent judgments as predicted by our
Bayesian model under the deterministic detector theory (or the probabilistic detector theory
with ω = 1− ǫ as ǫ → 0). The probability of a and b being superpencils increases after the
first trial, and then the second trial provides unequivocal evidence that a is a superpencil
while the probability that b is a superpencil returns to the prior β. Sobel et al. (2004,
Experiment 3) replicated this study with 4-year-old children using the blicket detector,
but collecting only binary judgments (“blicket”, “not a blicket”) and without the first two
stages of judgment. Table 1 shows the percentage of children who labeled the a and b

objects as blickets in each condition. These results showed the same effect of varying prior
probabilities seen in the model predictions and adult judgments.

These results are consistent with our theory-based Bayesian account of causal infer-
ence, but they do not provide the strongest possible test of whether people’s inferences are
truly Bayesian. A deductive reasoning account that simply defaults to the observed base
rates of causal powers when the data are ambiguous could predict people’s judgments just as
well. Tenenbaum et al. (submitted, Experiment 2) also asked whether people could make
more subtle graded inferences from ambiguous evidence in a fashion consistent with the
theory-based Bayesian account. This experiment was equivalent to the superpencil back-
wards blocking (rare) condition, except in the judgment phase. Now that phase began by
introducing three new pencils, a, b, and c, and asking for baseline ratings of the probability
that each pencil was a superpencil. Participants then saw a and b placed on the detector
together, causing the detector to activate, and gave new ratings. Finally, they saw a and c
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placed on the detector together, causing the detector to activate, and were asked to rate the
probability that each of the three pencils was a superpencil. The mean ratings are shown
in Figure 12(c).

Model predictions are also shown in Figure 12(c), with β calibrated to the mean
probability rating on the first (baseline) judgment. Figure 11(b) shows the hypothesis
space H1 of causal network structures generated by the T1 theory. With three blocks, there
are now eight possible networks. As in Equation 5, the probability that any given block is
a blicket is calculated by summing the probability of all network hypotheses in which that
block’s position is a cause of the detector’s activation.

In this experiment, people received no unambiguous clues that a particular pencil
was a superpencil: there were no trials on which a single pencil caused the detector to
activate. Nonetheless, after the final trial, people were able to infer that a was likely to be a
superpencil, while b and c were less likely to be superpencils, with higher judged probability
than at the start of the judgment phase, but lower than the peak judgment after the first
trial. These judgments are strongly in accord with our theory-based Bayesian account.
Figure 12(c) shows that the Bayesian model yields four qualitatively distinct levels of belief
over the course of the judgment phase, which are all matched by statistically significant
differences in the corresponding ratings of participants. Qualitatively similar inferences
were made by 4-year-old children in an analogous experiment with the blicket detector:
after the final trial, children were most likely to say that a but not b or c were blickets
(Tenenbaum et al., submitted, Experiment 3).

In sum, our theory-based Bayesian framework can explain how people make successful
causal inferences about novel physical systems from just one or a few observations, as well as
the gradations of judgment and the effects of prior knowledge that arise. These phenomena
are not easily explained by other existing approaches to rational causal inference, based
on deductive reasoning or bottom-up detection of probabilistic dependencies. Our frame-
work also provides a strong quantitative predictive model with essentially no free numerical
parameters. Qualitative assumptions were needed about the form of people’s intuitive the-
ories for how machines (or detectors) work, but we would argue that these assumptions are
necessary in some form for any account that seeks to give a rational explanation of people’s
judgments in these scenarios.

While our discussion here has focused on the blicket detector, the same approach
of Bayesian inference over logical theories provides a useful framework for understanding
causal induction in a variety of settings. In Griffiths (2005) and Griffiths and Tenenbaum
(in prep), we show how this approach can explain people’s judgments in identifying causal
structure from contingency data (Griffiths & Tenenbaum, in press), reasoning about me-
chanical systems (Gopnik et al., 2004), identifying causal relations and hidden causes with
dynamic events (Griffiths et al., 2004), and evaluating evidence for causal relations between
variables in different domains (Schulz & Gopnik, in press). The integration of Bayesian in-
ference mechanisms with a logical theory for generating causal-network hypotheses accounts
for the effects of several important dimensions along which these learning scenarios vary:
the number of independent data points observed (ranging from just one or two samples
up to 60-100 samples); the availability of active interventional data in addition to purely
passive observational data; the possibility of and strength of evidence for hidden causes; the
availability of dynamic real-time observations rather than merely discrete trials; and the a
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priori plausibility of a mechanism linking candidate causes and effects.

4.3 Learning logical theories

The logical theories outlined in this section are a proposal for a T1-level representa-
tion, specifying one level of our hierarchy of theories. As with graph grammars, statistical
inference can in principle be used to learn these T1-level theories, but the greater representa-
tional expressiveness of predicate logic leads to a vastly larger hypothesis space of candidate
theories – and thus a much more challenging learning problem in general.

A constrained but quite tractable form of theory learning is parameter estimation:
inferring the values of numerical parameters in the theory such as those controling the num-
ber of entities of some type (e.g., the α parameters in Figure 10), the frequency with which
some structural predicate holds (e.g., the β or γ parameters), or the strength of probabilistic
causes (e.g., the ǫ parameter). The rare-common manipulation in the backwards-blocking
experiments discussed above shows that adults and children can rationally adjust their be-
liefs about one parameter in the theory’s ontology (β) to reflect the apparent abundance of
a causal power (being a blicket).

More formally, in these experiments people act as if they are inferring the theory with
maximum likelihood, out of all candidates in a one-dimensional hypothesis space of possible
theories parameterized by β. This sort of learning is certainly less general than discovering
a full theory with new classes and causal laws, as in the experiments of Tenenbaum and
Niyogi (2003), but it is also more general than just learning the parameters or structure of
a single causal network (learning at the T0-level). The knowledge acquired about β exists
at the T1 level, specifying a prior distribution over possible causal networks that can be
defined for any number of new entities in this domain.

In the remainder of the section, we show how similar parametric learning can take
place concerning the functional form of a theory’s causal laws. The blicket-detector theory
in Figure 10 specifies the error rate of a detector in terms of a parameter, ǫ. We have
outlined two different versions of the theory – for deterministic detectors and probabilistic
detectors – that take ǫ = 0 and ǫ > 0 respectively. In some cases, such as the one cause
and two causes experimental conditions, the probabilistic-detector theory seems to better
characterize children’s inferences. However, the instructions the children received suggested
that the deterministic theory might be more appropriate. This raises an interesting learning
question: how might a learner choose between these different theories as descriptions of a
causal system? Our hierarchical Bayesian framework provides an answer, in particular
Section 4.4, where we showed how the same statistical machinery used to learn causal
networks could be used to make inferences about theories. In this simple case, we have
just two candidate T1 theories that differ only in the functional form of their causal laws:
the deterministic theory and the probabilistic theory. We can use Bayes’ rule to compute a
posterior distribution over these theories, P (T1|D, T2), as shown in Equation 3.

Figure 13 shows how this process of inferring the T1-level theory with an appropriate
functional form can operate concurrently with identifying which blocks are blickets – an
inference about causal networks at the T0-level. The figure shows how the posterior distri-
bution over the two theories – deterministic and probabilistic – evolves as the data D grow
with each additional trial in the two cause condition. The bottom row shows the corre-
sponding changes in the judged probabilities that blocks a and b are blickets, an average
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Figure 13. Learning functional form. The bar graphs along the top of the figure show the probabil-
ities of two theories, with “Det” indicating the deterministic detector theory, and “Prob” indicating
the probabilistic detector theory. The bar graphs along the bottom show the probabilities that the
blocks A and B are blickets. The probabilities after successive trials are shown from left to right.

of the predictions of each T1 theory weighted by their posterior probabilities P (T1|D, T2).
The prior P (T1|T2) assigns a probability of 0.99 to the deterministic theory, and 0.01 to the
probabilistic theory, consistent with both task instructions and an intuitive bias towards
determinism in mechanical systems. The base rate of blickets β is set to 1/3, and the noise
level ǫ for the probabilistic theory is set to 1/10.

In the two cause condition, the first three trials are all e+|a+b−: events in which block
a is placed on the detector and the detector activates. This is sufficient to identify a as a
blicket under either theory. The fourth trial is e−|a−b+: b is placed on the detector and
the detector does not activate. Under the deterministic theory, b would definitely not be a
blicket. Under the probabilistic theory, there remains a small chance that b is a blicket, and
since the probabilistic theory is still viable, the probability that b is a blicket is non-zero
but extremely low. On the fifth trial, e+|a−b+, the detector activates when b is placed upon
it. The fourth and fifth trials are mutually contradictory under the deterministic theory
– together they have a probability of zero – so the posterior over theories now switches
suddenly to favor the probabilistic theory with probability 1. Under that theory, the data
so far are uninformative about whether b is a blicket, because we assumed equal probabilities
of the two types of error in the detector. It is just as likely that b is a blicket and the fourth
trial was bad luck, or that b is not a blicket and the fifth trial was a fluke, so the probability
reverts to the prior, β. The sixth trial provides further evidence that b is actually a blicket,
e+|a−b+. The final prediction is that a is very likely to be a blicket, while b is slightly less
likely, matching the judgments of the children in Gopnik et al. (2001).

Ultimately, parametric learning of T1-level theories is far from a complete solution to
the problem of how people acquire rich representations of abstract causal knowledge. It is
an open question how (and even whether) people learn T1 theories in their full generality,
not to mention theories at levels T2 and above. Techniques of inductive logic programming
(Muggleton, forthcoming) may provide one computational approach to these problems, but
it is not at all clear that these techniques can scale up to human-like knowledge, or that they
bear any similarity to human learning mechanisms. Formal computational frameworks for
inductive learning will likely need to be extended to incorporate other cognitive capacities,
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such as analogy and natural language, that can provide crucial scaffolding for building
appropriate hypothesis spaces of candidate theories.

5. Conclusion

This chapter has explored two proposals for formalizing the content and representa-
tional form of abstract causal theories, based on graph schemas and typed predicate logic.
Each of these formalisms was cast as a probabilistic generative grammar for causal networks,
inspired by an analogy between the computational problems of causal inference and natural
language processing. We discussed each approach in terms of how it could account for the
functional roles that abstract theories must play in a hierarchical Bayesian framework for
causal inference and learning (Tenenbaum, Griffiths & Niyogi, this volume): chiefly, how
the theory supports learning of causal-network structures (or lower-level theories), and how
the theory could itself be learned or tuned based on observations.

We hope that readers find each of these frameworks for causal grammar intriguing
but hardly satisyfing. We see them as proposals for what a causal grammar might look like
rather than fully developed accounts. We close this chapter with three lessons that we have
learned in the course of trying to formalize intuitive theories as causal grammars.

First, to approach human-level competence in models of intuitive theories, as in nat-
ural language grammars, it will be necessary to integrate two schools of thought that have
often been treated as incommensurate or in opposition: probability and statistics on the one
hand, and logical and symbolic representations on the other hand. Although this view is
not yet fully accepted by researchers in generative linguistics, many computational linguists
have recognized that probabilistic models defined over rule-based grammatical representa-
tions, such as stochastic finite-state grammars or context-free grammars, offer significant
advantages over purely statistical or purely symbolic models while preserving the best fea-
tures of both (Charniak, 1993; Jurafsky & Martin, 2000; Manning & Schütze, 1999). Logical
or rule systems provide representational richness and the capacity for abstraction; proba-
bilistic models provide the capacity for inductive inference from observed data. These same
considerations motivate our proposals for expressing intuitive theories as probabilistic gen-
erative models defined over graph grammars or typed logical systems. We believe that some
such integration of probability and structured rule systems will be necessary to explain how
abstract causal knowledge guides the learning of new causal relations and can itself be
learned from experience.

Second, in formal models of intuitive theories, as with formal models of grammar in
linguistics, there will often be a tradeoff between representational capacity and learnability.
For instance, hidden Markov models are much more limited than stochastic context-free
grammars in terms of the syntactic regularities they can represent, but their structure
can be induced from data much more readily by statistical methods. Likewise, the graph
schemas we presented in Section 3 are much more limited as accounts of intuitive theories
than are the typed logics we presented in Section 4, but we can give a principled and
tractable algorithm for learning graph schemas (Kemp et al., 2004), while we cannot yet do
that for logical theories. At this early stage it is valuable to pursue multiple approaches to
formalizing theories, with the hope of ultimately converging on a framework that is both
sufficiently expressive and learnable.
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Finally, definitive accounts of people’s intuitive theories are likely to be elusive, just
as they are with natural language grammars. It is not easy to work backwards, from
observations of people’s judgments about linguistic utterances or cause-effect relations to
formal accounts of the unobservable abstract knowledge that they bring to bear in making
those judgments. In this chapter we have not attempted to claim that any particular formal
model necessarily corresponds in detail to people’s intuitive theory in some domain. We have
merely proposed some possible models of intuitive theories that could account for aspects
of people’s causal inference capacities, and argued for the importance of certain general
characteristics of these models. Progress on a formal account of intuitive causal theories is
likely to be slow and painstaking for some time, and initially we may be able to give precise
accounts only for rather small-scale domains such as the blicket detector paradigm. But if
indeed there is an analogy between our project and the career of linguistics, from the early
days of generative grammar through the contemporary computational era, then we can look
forward to a most interesting journey.
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