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Leading accounts of judgment under uncertainty evaluate performance within purely statistical frame-
works, holding people to the standards of classical Bayesian (A. Tversky & D. Kahneman, 1974) or
frequentist (G. Gigerenzer & U. Hoffrage, 1995) norms. The authors argue that these frameworks have
limited ability to explain the success and flexibility of people’s real-world judgments and propose an
alternative normative framework based on Bayesian inferences over causal models. Deviations from
traditional norms of judgment, such as base-rate neglect, may then be explained in terms of a mismatch
between the statistics given to people and the causal models they intuitively construct to support
probabilistic reasoning. Four experiments show that when a clear mapping can be established from given
statistics to the parameters of an intuitive causal model, people are more likely to use the statistics
appropriately, and that when the classical and causal Bayesian norms differ in their prescriptions,
people’s judgments are more consistent with causal Bayesian norms.
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Everywhere in life, people are faced with situations that require
intuitive judgments of probability. How likely is it that this person
is trustworthy? That this meeting will end on time? That this pain
in my side is a sign of a serious disease? Survival and success in
the world depend on making judgments that are as accurate as
possible given the limited amount of information that is often
available. To explain how people make judgments under uncer-
tainty, researchers typically invoke a computational framework to
clarify the kinds of inputs, computations, and outputs that they
expect people to use during judgment. We can view human judg-
ments as approximations (sometimes better, sometimes worse) to
modes of reasoning within a rational computational framework,
where a computation is “rational” to the extent that it provides
adaptive value in real-world tasks and environments. However,
there is more than one rational framework for judgment under
uncertainty, and behavior that looks irrational under one frame-
work may look rational under a different framework. Because of
this, evidence of “error-prone” behavior as judged by one frame-
work may alternatively be viewed as evidence that a different
rational framework is appropriate.

In this article we consider the question of which computational
framework best explains people’s judgments under uncertainty. To
answer this, we must consider what kinds of real-world tasks and

environments people encounter, which frameworks are best suited
to these environments (i.e., which we should take to be normative),
and how well these frameworks predict people’s actual judgments
under uncertainty (i.e., which framework offers the best descrip-
tive model). We propose that a causal Bayesian framework, in
which Bayesian inferences are made over causal models, repre-
sents a more appropriate normative standard and a more accurate
descriptive model than previous frameworks for judgment under
uncertainty.

The plan of the article is as follows. We first review previous
accounts of judgment under uncertainty, followed by the argu-
ments for why a causal Bayesian framework provides a better
normative standard for human judgment. We then present four
experiments supporting the causal Bayesian framework as a de-
scriptive model of people’s judgments. Our experiments focus on
the framework’s ability to explain when and why people exhibit
base-rate neglect, a well-known judgment phenomenon that has
often been taken as a violation of classical Bayesian norms. Spe-
cifically, we test the hypotheses that people’s judgments can be
explained as approximations to Bayesian inference over appropri-
ate causal models and that base-rate neglect often occurs when
experimenter-provided statistics do not map clearly onto parame-
ters of the causal model participants are likely to invoke. We
conclude by discussing implications of the causal Bayesian frame-
work for other phenomena in probabilistic reasoning and for
improving the teaching of statistical reasoning.

Statistical Frameworks for Judgment Under Uncertainty

Most previous accounts—whether arguing for or against human
adherence to rationality—have taken some framework of statisti-
cal inference to be the normative standard (Anderson, 1990; Gig-
erenzer & Hoffrage, 1995; McKenzie, 2003; Oaksford & Chater,
1994; Peterson & Beach, 1967; Shepard, 1987; Tversky & Kah-
neman, 1974). Statistical inference frameworks generally approach
the judgment of an uncertain variable, such as whether someone
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has a disease, by considering the current data, such as the person’s
symptoms, as well as past co-occurrences of the data and the
uncertain variable, such as previous cases of patients with the same
symptoms and various diseases. Because these frameworks focus
on observations rather than knowledge, beliefs about the causal
relationships between variables do not play a role in inference.

Using statistical inference frameworks as a rational standard,
several hypotheses have been advanced to describe how people
make judgments under uncertainty. Early studies of judgment
suggested that people behaved as “intuitive statisticians” (Peterson
& Beach, 1967), because their judgments corresponded closely to
classical Bayesian statistical norms, which were presumed ratio-
nal. Classical Bayesian norms explain how prior beliefs may be
updated rationally in light of new data, via Bayes’s rule. To judge
P(H�D), the probability of an uncertain hypothesis H given some
data D, Bayes’s rule prescribes a rational answer, as long as one
knows (a) P(H), the prior degree of belief in H, and (b) P(D�H) and
P(D�¬H), the data expected if H were true and if H were false:

P(H�D) �
P(H)P(D�H)

P(D)
, (4)

where P(D) � P(H)P(D�H) � P(¬H)P(D�¬H).
The intuitive statistician hypothesis did not reign for long. It was

not able to account for a rapidly accumulating body of experimen-
tal evidence that people reliably violate Bayesian norms (Ajzen,
1977; Bar-Hillel, 1980; Eddy, 1982; Lyon & Slovic, 1976; Nisbett
& Borgida, 1975; Tversky & Kahneman, 1974). For example,
consider the mammogram problem, a Bayesian diagnosis problem
that even doctors commonly fail (Eddy, 1982). One well-tested
version comes from Gigerenzer and Hoffrage (1995), adapted from
Eddy (1982), in which participants were told that the probability of
breast cancer for any woman getting a screening is 1%, that 80%
of women with cancer receive a positive mammogram, and that
9.6% of women without cancer also receive a positive mammo-
gram. Participants were then asked to judge the likelihood that a
woman who receives a positive mammogram actually has cancer.
Participants often give answers of 70%–90% (Eddy, 1982; Giger-
enzer & Hoffrage, 1995), whereas Bayes’s theorem prescribes a
much lower probability of 7.8%. In this case, H is “Patient X has
breast cancer,” D is “Patient X received a positive mammogram,”
and the required task is to judge P(H�D), the probability that the
patient has breast cancer given that she received a positive mam-
mogram:

P(H�D) �
P(H)P(D�H)

P(H)P(D�H) � P(¬ H)P(D�¬ H)
�

1% � 80%

1% � 80% � 99% � 9.6%
� 7.8%. (2)

Kahneman and Tversky (1973) characterized the source of such
errors as “neglect” of the base rate (in this case, the rate of cancer),
which should be used to set P(H) in the above calculation of
P(H�D) (in this case, the probability of cancer given a positive
mammogram).1

The heuristics and biases view, which came to replace the
intuitive statistician framework, sought to understand probabilistic
judgments as heuristics, which approximate normative Bayesian
statistical methods in many cases but lead to systematic errors in

others (Tversky & Kahneman, 1974). Given the focus of the
heuristics and biases program on judgment errors, many concluded
that people were ill equipped to reason successfully under uncer-
tainty. Slovic, Fischhoff, and Lichtenstein (1976) wrote, “It ap-
pears that people lack the correct programs for many important
judgmental tasks. . . . it may be argued that we have not had the
opportunity to evolve an intellect capable of dealing conceptually
with uncertainty” (p. 174). Yet by the standards of engineered
artificial intelligence systems, the human capacity for judgment
under uncertainty is prodigious. People, but not computers, rou-
tinely make successful uncertain inferences on a wide and flexible
range of complex real-world tasks. As Glymour (2001) memorably
asked, “If we’re so dumb, how come we’re so smart?” (p. 8).
Research in the heuristics and biases tradition generally did not
address this question in a satisfying way.

These previous paradigms for analyzing judgment under uncer-
tainty, including the heuristics and biases program (Tversky &
Kahneman, 1974) and the natural frequency view (Gigerenzer &
Hoffrage, 1995), have one commitment in common: They accept
the appropriateness of traditional statistical inference as a rational
standard for human judgment. Purely statistical methods are best
suited to reasoning about a small number of variables based on
many observations of their patterns of co-occurrence—the typical
situation in ideally controlled scientific experiments. In contrast,
real-world reasoning typically involves the opposite scenario:
complex systems with many relevant variables and a relatively
small number of opportunities for observing their co-occurrences.
Because of this complexity, the amount of data required for reli-
able inference with purely statistical frameworks, which generally
grows exponentially in the number of variables, is often not
available in real-world environments. The conventional statistical
paradigms developed for idealized scientific inquiry may thus be
inappropriate as rational standards for human judgment in real-
world tasks. Proposing heuristics as descriptive models to account
for deviations from statistical norms only clouds the issue, as there
is no way to tell whether an apparent deviation is a poor heuristic
approximation to a presumed statistical norm or a good approxi-
mation to some more adaptive approach.

We propose that a causal Bayesian framework provides this
more adaptive approach, and that it offers both a better normative
standard than purely statistical methods and a better descriptive
model than heuristic accounts. Like classical statistical norms, the
framework we propose is Bayesian, but rather than being made
from purely statistical data, inferences in our framework are made
with respect to a causal model and are subject to the constraints of

1 We should note that a popular explanation of the original mammogram
problem suggests that people are confused by the given conditional prob-
ability P(�M�cancer) and think it means P(cancer��M). This has been
called the inverse fallacy (Villejoubert & Mandel, 2002). We find this
limited as an explanation, because people seem to exhibit the inverse
fallacy only when they expect both probabilities to have roughly the same
value. For instance, though people might agree that the probability of death
in a plane crash is nearly 100% (P(death�plane crash) � 100%), they
surely would not agree to the inverse: that death is almost always the result
of a plane crash (P(plane crash�death) � 100%). Thus, it may be that
people confuse a conditional probability with its inverse only when they
expect the inverse to have the same value. It is this expectation, then, that
needs to be explained.
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causal domain knowledge. Our causal Bayesian framework is
more adaptive than previous proposals, as it explains how rational
judgments can be made with the relatively limited statistical data
that are typically available in real-world environments. This ap-
proach also represents a better descriptive model than purely
statistical norms or heuristics, which do not emphasize, or even
have room to accommodate, the kinds of causal knowledge that
seem to underlie much of people’s real-world judgment.

We study the role of causal knowledge in judgment by focusing
on how it modulates the classic phenomenon of base-rate neglect.
Early studies indicated that people were more likely to neglect
base rates that lack “causal relevance” (Ajzen, 1977; Tversky &
Kahneman, 1980), although the notion of causal relevance was
never well defined. Bar-Hillel (1980) argued that the salience of
the base rate determined whether people would use this informa-
tion, and that causal relevance was just one form of salience.
Contrary to the conclusions of the heuristics and biases literature,
we argue that for many well-known stimuli, the features of the
base rate are not what lead people to exhibit apparent base-rate
neglect. We offer as evidence four experiments in which the
description of the base rate is identical across two conditions, but
people neglect the base rate in one condition and use it appropri-
ately in the second condition. We further argue that people in these
experiments may not actually be misusing base-rate statistics; we
show how cases of apparent base-rate neglect may be reinterpreted
as cases in which the prescriptions of classical Bayesian norms are
nonnormative by the standards of causal Bayesian inference. Our
experiments show that when these prescriptive norms agree, peo-
ple often use the given statistics normatively (by both standards),
but when they disagree, people’s judgments adhere more often to
the causal Bayesian standard than to the classical Bayesian stan-
dard. Furthermore, when the problem makes clear which causal
model should be used and how given statistics should be incorpo-
rated into that model, we find that people rarely neglect base rates.

As indicated above, we are not the first to propose that causal
knowledge plays a role in base-rate neglect. Researchers in the
heuristics and biases tradition investigated how causal factors
influenced the phenomenology of base-rate neglect, but they of-
fered no precise or generalizable models for how causal knowl-
edge and probabilistic judgment interact, and they did not explore
the rational role of causal reasoning in judgment under uncertainty.
Ajzen (1977) proposed that a “causality heuristic” leads to neglect
of information that has no apparent causal explanation. Following
Ajzen, Tversky and Kahneman (1980) proposed that “evidence
that fits into a causal schema is utilized, whereas equally informa-
tive evidence which is not given a causal interpretation is ne-
glected” (p. 65). However, neither explained how a focus on causal
factors could lead to successful judgments in the real world. They
did not attempt to explain why people would have such a heuristic
or why it should work the way that it does. On the contrary, the
heuristics and biases tradition did not appear to treat attention to
causal structure as rational or adaptive. The use of causal schemas
was instead viewed as an intuitive, fuzzy form of reasoning that, to
our detriment, tends to take precedence over normative statistical
reasoning when given the chance. In contrast to Tversky and
Kahneman’s (1980) undefined “causal schemas,” our proposal for
inference over causal models based on Bayesian networks pro-
vides a well-defined, rational, and adaptive method for judgment
under uncertainty, which can succeed in real-world tasks where

noncausal statistical methods fail to apply. We argue that people’s
judgments can in fact be both causally constrained and rational—
and rational precisely because of how they exploit causal knowl-
edge.

A Causal Bayesian Framework for Judgment Under
Uncertainty

Causal reasoning enables one to combine available statistics
with knowledge of causal relationships, resulting in more reliable
judgments, with less data required than purely statistical methods.
It is becoming clear from research in artificial intelligence (Pearl,
2000), associative learning (Cheng, 1997; Glymour, 2001; Gopnik
& Glymour, 2002; Gopnik & Sobel, 2000; Waldmann, 1996), and
categorization (Ahn, 1999; Rehder, 2003) that causal reasoning
methods are often better suited than purely statistical methods for
inference in real-world environments. Causal Bayesian networks
have been proposed as tools for understanding how people intu-
itively learn and reason about causal systems (e.g., Glymour &
Cheng, 1998; Gopnik et al., 2004; Griffiths & Tenenbaum, 2005;
Sloman & Lagnado, 2005; Steyvers, Tenenbaum, Wagenmakers,
& Blum, 2003; Tenenbaum & Griffiths, 2001, 2003; Waldmann,
2001), but their implications for more general phenomena of
judgment under uncertainty have not been systematically explored.
We see the present article as a first attempt in this direction, with
a focus on explaining base-rate neglect, one of the best known
phenomena of modern research on probabilistic judgment.

This section outlines the theoretical background for our work. A
full and formal treatment of causal Bayesian networks is beyond
the scope of this article, so we begin by summarizing the main
aspects of the causal Bayesian framework that our experiments
build on. We then argue that this framework represents a better
normative standard for judgment under uncertainty in real-world
environments than the purely statistical frameworks that have
motivated previous research on human judgment. Finally, we
illustrate how causal Bayesian reasoning implies that a given piece
of statistical information, such as a base rate, may be used differ-
ently depending on the reasoner’s causal model. In particular, we
describe two ways in which the causal Bayesian framework may
predict cases of apparent base-rate neglect: a given statistic may
not always fit into a person’s causal model, or it may fit in such a
way that the structure of the causal model dictates that it is not
relevant to a certain judgment at hand.

We will study human judgment as an approximation to the
following ideal analysis. We assume that a causal mental model
can be represented by a Bayesian network (Pearl, 2000), a directed
graphical probabilistic model in which nodes correspond to vari-
ables and edges correspond to direct causal influences. A set of
parameters associated with each node defines a conditional prob-
ability distribution (CPD) for the corresponding variable, condi-
tioned on the values of its parents in the causal graph (i.e., its direct
causes). Loosely speaking, the edge structure of the graph specifies
what causes what, and the parameters specify how effects depend
probabilistically on their causes. The product of the conditional
distributions associated with each node defines a full joint proba-
bility distribution over all variables in the system. Any probabi-
listic judgment of interest can be computed by manipulating this
joint distribution in accordance with Bayes’s rule.
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When people are confronted with a judgment task, they face
three distinct aspects of judgment: (a) constructing a causal model,
(b) setting the model’s parameters, and (c) inferring probabilities
of target variables via Bayesian inference over the model. We
illustrate this process using a scenario we created for Experiment
1, a version of the classic problem in which participants are asked
to judge the probability that a woman receiving a positive mam-
mogram actually has breast cancer, which we call the benign cyst
scenario. The text of the scenario is shown in Figure 1, along with
the three stages of judgment.

The first step is to construct a causal model (see Figure 1a)
relating the variables described in the task. In this case, informa-
tion is given in the task description that benign cysts (the variable
cyst) can cause positive mammograms (the variable �M). Often,
however, people rely on prior knowledge of which variables cause
which others. For example, most participants already know that
breast cancer (the variable cancer) causes positive mammograms
(the variable �M). The second step is to set the values of the
parameters characterizing the relationships between cause and
effect (see Figure 1b). In this case, precise numerical values for
some parameters can be determined from the statistical informa-
tion provided in the judgment task (e.g., the base rate of breast
cancer is 2% and the base rate of benign cysts is approximately
6%, if we neglect the very low probability that a woman has both
breast cancer and benign cysts). Background knowledge may be

necessary to supply values for other parameters, such as how the
effect depends on its causes. In this case, one might assume that
positive mammograms do not occur unless caused, that the causes
act independently to generate positive mammograms, and that both
of the given causes are fairly strong. These assumptions can be
captured using a noisy-OR parameterization (Pearl, 1988), a sim-
ple model to characterize independent generative causes that is
equivalent to the parameterizations used in Cheng’s (1997) power
PC theory or Rehder’s (2003) causal models for categorization.
For simplicity, in Figure 1 we assume that either cause when
present produces the effect with probability near 1. Once the causal
structure of the model has been determined and parameters have
been specified, inference can be performed on this model to make
judgments about unknown variables (see Figure 1c). Bayesian
reasoning prescribes the correct answer for any judgment about the
state of one variable given knowledge about the states of other
variables (e.g., given knowledge that a woman received a positive
mammogram, the probability that she has cancer as opposed to a
benign cyst is approximately 25%).

Expert systems based on Bayesian networks (Pearl, 1988) have
traditionally been built and used in just this three-stage fashion: An
expert provides an initial qualitative causal model, objectively
measured statistics determine the model’s parameters, and infer-
ence over the resulting Bayesian network model automates the
expert’s judgments about unobserved events in novel cases. This

Figure 1. In our ideal model for causal Bayesian inference, judgment under uncertainty is divided into three
phases: (a) When one is given a task description, causal domain knowledge is used to construct a causal model.
(b) Available statistical data are used to set parameter values. (c) Judgments are made via Bayesian inference
over the parameterized causal model. The particular task illustrated here corresponds to one of the conditions
tested in Experiment 1, the benign cyst scenario. Pos. mamm. � positive mammogram. CIA � Central
Intelligence Agency.
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top-down, knowledge-based view of how causal models are con-
structed is somewhat different from much recent work on causal
learning in psychology, which emphasizes more bottom-up mech-
anisms of statistical induction from data (e.g., Glymour, 2001). As
we argue, however, the prior causal knowledge that people bring to
a judgment task is essential for explaining how those judgments
can be successful in the real world, as well as for determining
when and how certain statistics given in a task (such as base rates)
will affect people’s judgments.

Causal Bayesian Inference as a New Normative Standard

This causal Bayesian framework may provide a more reasonable
normative standard for human judgment than classical, purely
statistical norms that do not depend on a causal analysis. Our
argument follows in the tradition of recent rational analyses of
cognition (Anderson, 1990; Oaksford & Chater, 1999). Causal
Bayesian reasoning is often more ecologically adaptive, because it
can leverage available causal knowledge to make appropriate
judgments even when there is not sufficient statistical data avail-
able to make rational inferences under noncausal Bayesian norms.
The structure of the causal model typically reduces the number of
numerical parameters that must be set in order to perform Bayesian
inference. In general, for a system of N variables, standard Bayes-
ian inference using the full joint distribution requires specifying
2N � 1 numbers, whereas a causally structured model could
involve considerably fewer parameters. For instance, in Figure 1,
only four parameters are needed to specify the joint distribution
among three variables, which would require seven numbers if we
were using conventional Bayesian reasoning. The simplifications
come from several pieces of qualitative causal knowledge: that
there is no direct causal connection between having breast cancer
and having benign cysts, that breast cancer and benign cysts act to
produce positive mammograms through independent mechanisms
(and hence each cause requires only one parameter to describe its
influence on the effect of a positive mammogram), and that there
are no other causes of positive mammograms.

In more complex, real-world inference situations there are often
many relevant variables, and as the number of variables increases
this difference becomes more dramatic. We cannot generally ex-

pect to have sufficient data available to determine the full joint
distribution over all of these variables in a purely statistical,
noncausal fashion, with the number of degrees of freedom in this
distribution increasing exponentially with the number of variables.
Causal Bayesian inference provides a way to go beyond the
available data, by using causal domain knowledge to fill in the
gaps where statistical data are lacking.

Causal Bayesian Inference as a Descriptive Model

The Causal Bayesian framework can be used to explain human
judgment in the base-rate neglect literature and in our experiments.
Because judgments are made using causal models rather than
statistics alone, experimenter-provided statistics should be used
differently depending on the causal structure one believes to be
underlying them. Two cases are of particular importance to base-
rate neglect and are explored in our experiments.

First, statistics can often map clearly onto one causal model but
not another. For example, suppose we are provided with statistical
data indicating that the risk of breast cancer (C) is associated with
two lifestyle factors, being childless (L) and having high stress
levels (S), but we do not have the full joint distribution among the
three variables. Suppose further that we know that stress causes
cancer but we do not know how being childless and having cancer
are causally related. Three causal models are consistent with this
knowledge (see Figure 2), but they have different parameters,
which means a given statistic may fit clearly into one model but
not into another. Suppose, for instance, we are given the statistic
for the probability of high stress levels given that one is childless
(e.g., P(S�L) � .75). For Figure 2b, the given statistic corre-
sponds directly to a model parameter, and thus it can be directly
assigned to that parameter. For Figure 2c, there is no model
parameter corresponding to P(S�L), but there is a parameter cor-
responding to its inverse, P(L�S), and hence one can assign the
formula P(S�L)P(L)/P(S) to the parameter for P(L�S). For Fig-
ure 2a, P(S�L) does not correspond directly to a parameter of the
model or its inverse, which means there is no single prescription
for how such a statistic will influence future judgments from this
model. In Experiments 1, 2, and 3, we test the hypothesis that
statistics that map clearly onto parameters of the causal model are

Figure 2. Three causal structures that could be responsible for the same statistics relating having cancer (C),
being childless (L), and having high stress levels (S). The correct judgment for P(C|L,S) depends on which causal
structure was actually responsible for generating the observed statistics.
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more likely to be used appropriately, whereas statistics that do not
have corresponding parameters in the model are more likely to be
used incorrectly or ignored.

Second, even when provided statistics can be clearly mapped to
parameters, the causal Bayesian framework prescribes different
ways of using those statistics in making judgments depending on
the causal structure. Suppose we are told that a particular woman
is childless, and we are asked to judge the likelihood of her having
cancer. If being childless causes breast cancer (Figure 2a), then the
risk of cancer in a childless woman is increased, regardless of
whether she has high stress levels (assuming for simplicity that
these factors do not interact). However, it could be the case that
being childless causes women to develop high stress levels (Fig-
ure 2b) but does not directly cause cancer. In this case, the risk of
cancer in a childless woman is still increased, but we can ignore
the fact that she is childless if we know her level of stress. Finally,
it might be the case that having high stress levels causes women
not to have children (Figure 2c). In this case, we should again
ignore the fact that a woman is childless if we already know the
woman’s level of stress. These principles of causal structure are
intuitively sound, but the notion that statistical data should be used
differently for different causal structures is beyond the scope of
classical statistical norms. The causal Bayesian standard is able to
make inferences where previous standards could not, prescribing
the appropriate use of limited data by making use of the condi-
tional independence relations determined by causal structure. Ex-
periment 4 tests the applicability of this principle to human judg-
ment. We test the hypothesis that people will ignore a given piece
of statistical data in a case where it is rational to do so given the
causal structure of the task but will use that same statistic if the
causal structure is slightly modified to suggest that it is relevant to
the judgment at hand.

Experiments

Psychological studies of judgment under uncertainty typi-
cally provide people with statistical data and then ask them to
make judgments using the provided statistics, but if several
different causal models are possible, this information may not
be sufficient for the causal Bayesian framework to prescribe a
unique correct answer. The normatively correct inference de-
pends both on the particular causal model used and on how the
statistics are assigned to the parameters of the model. There-
fore, it is possible to prescribe a single correct answer using the
causal Bayesian framework only if (a) the model structure is
known, (b) the provided statistics map unambiguously onto
model parameters, and (c) no free parameters remain after the
provided statistics have been assigned to the problem. The issue
of how provided statistics are used to update the parameters of
a model, and how they are then used in subsequent inferences,
plays a central role in our experiments. In each of the following
four experiments we tested the extent to which people’s judg-
ments conform to the prescriptions of causal Bayesian inference
by providing a scenario in which the statistics clearly map onto
the parameters of an unambiguous causal model. In Experi-
ments 1–3 we compared these judgments with those on an
equivalent scenario from the base-rate neglect literature in

which the statistics do not map clearly onto parameters of the
causal model. In Experiment 4, we compared these judgments
with those on an equivalent scenario with a different causal
structure, in which the base-rate statistic is rendered irrelevant
to the judgments.

In each experiment, the formal statistical structures of the two
scenarios were always identical from the point of view of the
classical Bayesian norm; thus, the judgment prescribed by this
norm was the same for the two scenarios. Furthermore, all other
factors previously identified as playing a role in base-rate neglect
(such as salience or causal relevance of the base rate) were held
constant; thus, the heuristics and biases view would predict that
people will exhibit identical levels of base-rate neglect in the two
scenarios. Crucially, however, the two scenarios always differed in
their causal structure, such that the correct answers prescribed by
our new causal Bayesian norm differed across scenarios. Thus,
only the causal Bayesian framework would predict that people’s
judgments will differ between the two scenarios. In addition, only
the causal Bayesian framework would predict that people will
exhibit less base-rate neglect in the scenario with a clear parameter
mapping and a causal structure that requires that the base rate be
used.

Experiment 1

In the original mammogram problem (Eddy, 1982; Gigeren-
zer & Hoffrage, 1995), the base rate of cancer in the population
often appears to be neglected when people judge the likelihood
that a woman who receives a positive mammogram has cancer.
Figure 3 (a– c) depicts the three phases of inference for the
mammogram scenario. A causal model of this scenario con-
structed from common knowledge should include cancer as a
cause of positive mammograms (�M), as depicted Figure 3a. In
this model, the variable cancer has no parents, therefore the
CPD for cancer contains just one parameter, P(cancer), which
directly corresponds to the base rate provided in the problem.
Because there is only one way to assign the base rate to this
model parameter, the base rate should influence judgments by
causal Bayesian standards.

In this experiment, we demonstrate empirically that people do
not neglect this base rate in a newly developed scenario that differs
only in causal structure, and we argue that the real difficulty people
have in the classic version is with the false-positive statistic: the
probability of a positive mammogram in a woman who does not
have cancer, P( � M�¬cancer) � 9.6%. On classic versions of this
task, we hypothesize that people may adopt a causal model in
which the false-positive statistic does not correspond to a model
parameter. If people assume a noisy-OR parameterization, as we
used in constructing the causal model in Figure 1, the model will
have a parameter for P(�M�cancer) but not for P(�M�¬cancer);
this reflects the intuition that the absence of a cause has no power
to produce an effect (see Figure 3b). Although it would be possible
to accommodate the false-positive statistic within a noisy-OR
parameterization by hypothesizing an additional cause of positive
mammograms and interpreting this statistic as the causal power of
that alternative cause, this represents several steps of hypothetical
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reasoning that might not occur to many people.2 Many participants
may realize that the false-positive statistic is somehow relevant,
and if they cannot fit it into their model, they may look for some
simple way to use it to adjust their judgment. For example,
subtracting the false-positive rate from the true-positive rate would
be one such strategy, consistent with typical responses classified as
base-rate neglect.

To test our hypothesis about when people can use base rates
properly in causal inference, we developed a new scenario in
which the causal model is clear and all of the statistics clearly map
onto parameters of the model. We clarified the causal structure by
providing an explicit alternative cause for positive mammograms
in women who do not have cancer: benign cysts (see Figure 1). We
replaced the false-positive rate in the original problem with the
base rate of dense but harmless cysts and described the mechanism
by which these cysts generate positive mammograms. This new
statistic, the base rate of benign cysts in the population, directly
maps onto the parameter for P(cyst) in the model (see Figure 1b).

Method

Participants. The participants in this experiment were 60 Mas-
sachusetts Institute of Technology (MIT) undergraduate and grad-
uate students (majors were not recorded but were likely randomly
distributed). They were recruited randomly in a main corridor on
campus and given token compensation.

Materials. Participants were randomly assigned to receive one
of two paper-and-pen versions of Gigerenzer and Hoffrage’s
(1995) probabilistic mammogram question (adapted from Eddy,
1982) in a between-subjects design. The false-positive scenario
was similar to the original question, whereas the benign cyst
scenario gave the base rate of benign cysts in the population rather
than the rate of false positives. We chose not to include the
true-positive rate, P(�M�cancer) � .80, but instead stated, “most

2 Another way to incorporate the false-positive statistic would be to
adopt a different parameterization, other than the noisy-OR model, that
describes the effects of one or more independent generative causes. The
noisy-OR parameterization is often appropriate when variables represent
causal factors that can be present or absent, such as a variable representing
whether a person has breast cancer; this is how we expect that most people
interpret the mammogram problem. But variables may also represent two
or more distinct causally active states of a single factor. For instance, a
variable could represent which of two medical conditions a person has;
then, not having cancer would be equivalent to having some other condi-
tion with a potential power to cause positive mammograms (or other
effects). In that case, P(�M�¬cancer) would fit clearly into the causal
model, just as conditional probabilities of the same P(A�¬B) form were
represented in the causal models discussed earlier for the cancer–childless–
stress levels scenarios shown in Figure 2. Yet for the standard mammogram
problem, this would require extra steps of hypothetical reasoning that we
think might not occur to many participants in a rapid judgment task.

Figure 3. The three phases of causal Bayesian inference for a more traditional version of the mammogram
question, the false-positive scenario tested in Experiment 1. Under this interpretation of the causal structure of
the false-positive scenario, having breast cancer is the only explicitly represented cause of positive mammo-
grams. In contrast, for the scenario depicted in Figure 1, there are two explicitly represented possible causes of
positive mammograms: cancer and benign cysts. Pos. mamm. � positive mammogram.
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women with breast cancer will receive a positive mammogram.”
This was done to encourage participants to provide answers based
on their intuition rather than memorized mathematical formulas.
Both scenarios required the exact same mathematical formula to
calculate the answer, and so there was no difference in arithmetic
difficulty. The exact wording of the scenarios is shown in Figure 3,
along with the three phases of judgment prescribed by causal
Bayesian inference. We also asked participants to rate the believ-
ability of the statistics given, to ensure that the benign cyst statistic
and the false-positive statistic were equally believable:

The problem on the previous page gave several statistics about breast
cancer and mammogram tests. To what extent do you think the given
statistics accurately reflect the real-world probabilities of these
events?

Answer on a scale of 1 to 7 �circle one�:

1 2 3 4 5 6 7

Very inaccurate Not sure Very accurate

Results

The results show significantly better performance on the benign
cyst scenario. The correct answer to both scenarios is (by the
standards of classical Bayesian inference) approximately

2%

2% � 98% � 6%
�

2%

2% � 6%
� 25%.

We classified as correct answers of exactly 25% (with or without
rounding) and classified as base-rate neglect any answer over 80%
(however, there were no responses between 80% and 90%). We
also found several answers of odds form (answers of 2/6 or 33%)
and base-rate overuse (answers of 2%). All remaining responses
were classified as other (answers of odds form and base-rate
overuse are shown in Figure 4 but were collapsed with other for
the statistical analysis). The rate of responses consistent with
base-rate neglect was significantly lower and the rate of correct

responses was significantly higher on the benign cyst scenario as
compared with the false-positive scenario, �2(2, N � 60) � 6.29,
p � .05 (see Figure 4).

Because people likely assume error rates to be low in medical
tests, one explanation for our results is that people find the benign
cyst statistic more consistent with their prior beliefs than the
false-positive statistic. However, the results of our believability
question indicate no significant difference in believability ratings
between the two scenarios (4.03 average rating for the benign cyst
scenario vs. 4.37 average rating for the false-positive scenario).
Thus, it is unlikely that believability can serve as an explanation
for the difference in performance.

Discussion

These results support our hypothesis that people are adept at
making rational judgments from statistics that unambiguously map
onto parameters of a clear causal model. We found that the modal
response to the benign cyst scenario was the correct answer, with
only 2 out of 30 responses consistent with base-rate neglect. We
also replicated previous findings (Gigerenzer & Hoffrage, 1995)
that the modal response to the original scenario was consistent
with base-rate neglect, demonstrating that our participants were
not merely more statistically adept than the populations of previ-
ous studies. In a previous study, Krynski and Tenenbaum (2003)
obtained similar and even more significant results on essentially
the same question with 157 participants containing a mix of airport
passengers and MIT students.

The heuristics and biases view cannot account for these results,
which, by classical Bayesian standards, show increased correct
responses and fewer responses consistent with base-rate neglect on
our newly developed benign cyst scenario. Although causality has
been implicated as a factor in base-rate neglect, the focus has been
only on the base-rate statistic itself. Tversky and Kahneman (1980)
stated that “base-rate data that are given a causal interpretation
affect judgments, while base-rates that do not fit into a causal
schema are dominated by causally relevant data” (p. 50). Because

Figure 4. Histogram of responses to Experiment 1. The correct answer was 25%. Responses were classified
as correct (20%–25%), base-rate neglect (�75%), odds form (33%), base-rate overuse (2%), and other. For
analysis purposes, responses of odds form and base-rate overuse were grouped with other responses. A
significant difference was found between false-positive and benign cyst scenarios, �2(2, N � 60) � 6.28, p �
.05. Error bars represent the standard error of the normal approximation to the binomial distribution.
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the base rate of cancer itself is presented identically in the two
scenarios, the heuristics and biases view cannot explain why it is
more often used properly in the benign cyst scenario yet so often
“neglected” in the false-positive scenario.

Experiment 2

In Experiment 1, we demonstrated that people often make
accurate judgments about the uncertainty of a given cause being
responsible for an observed effect. However, the mechanisms
involved were described in essentially deterministic terms. In
Experiment 2, we introduce a second source of uncertainty: prob-
abilistic mechanisms. We again created a version of the mammo-
gram problem (Eddy, 1982; Gigerenzer & Hoffrage, 1995), but
this time we included the true-positive rate, P(�M�cancer), as well
as the propensity of a benign cyst to cause a positive mammogram,
P(�M�benign cyst). This enabled us to test whether people reason
appropriately about the uncertainty introduced by probabilistic
mechanisms. It also made the difficulty of the questions more
similar to that in prior research and provided a more rigorous test
of people’s judgment capabilities.

We also attempted to eliminate some potential confounds in the
previous experiment. In Experiment 1, the salience and descriptive
detail of the causal mechanism may have enabled people to pay
more attention or think more clearly about the benign cyst sce-
nario, which could account for their superior performance by
classical Bayesian standards. For Experiment 2, both questions
were written with only dry statistical information; instead of the
description of the causal mechanism by which a benign cyst can
lead to a positive mammogram, we provided only statistical data
concerning the rate of benign cysts in the population and the
likelihood of their causing a positive mammogram.

Method

Participants. The participants in this experiment were 59 MIT
undergraduates (majors were not recorded but were likely ran-
domly distributed). They were recruited during a study break in an
undergraduate dormitory and were given token compensation.

Materials. We again randomly assigned participants to one of
two scenarios based on Gigerenzer and Hoffrage’s (1995) proba-
bilistic mammogram question (adapted from Eddy, 1982). The
false-positive scenario was similar to the original question,
whereas the benign cyst scenario gave the base rate of benign cysts
in the population, as well as the likelihood of a positive mammo-
gram given a benign cyst, rather than the rate of false positives.
Under the classical Bayesian norm, the two calculations were
equally difficult, ensuring that any superior performance on the
benign cyst scenario over the false-positive scenario would not be
due to an easier computation. The correct Bayesian calculation for
the false-positive scenario was

P(H�D) �
P(H)*P(D�H)

P(H)*P(D�H) � P(¬ H)*P(D�¬ H)

and the (approximately) correct Bayesian calculation for the be-
nign cyst scenario was

P(H�D) �
P(H)*P(D�H)

P(H)*P(D�H) � P(A)*P(D�A)
,

where A is the alternative cause, benign cysts.
Scenarios. The false-positive scenario was as follows:

Doctors often encourage women at age 50 to participate in a routine
mammography screening for breast cancer. From past statistics, the
following is known:

1% of the women had breast cancer at the time of the screening

Of those with breast cancer, 80% received a positive result on the
mammogram

Of those without breast cancer, 15% received a positive result on
the mammogram

All others received a negative result

Suppose a woman gets a positive result during a routine mammogram
screening. Without knowing any other symptoms, what are the
chances she has breast cancer?

The benign cyst scenario was as follows:

Doctors often encourage women at age 50 to participate in a routine
mammography screening for breast cancer. From past statistics, the
following is known:

1% of the women had breast cancer at the time of the screening

Of those with breast cancer, 80% received a positive result on the
mammogram

30% of the women had a benign cyst at the time of the screening

Of those with a benign cyst, 50% received a positive result on the
mammogram

All others received a negative result

Suppose a woman gets a positive result during a routine mammogram
screening. Without knowing any other symptoms, what are the
chances she has breast cancer?

Results

The correct answer to both scenarios is

1% � 80%

1% � 80% � 15%
� 5.1%.

We classified as correct any version of the exact answer with or
without rounding (e.g., 5%, 5.1%, 5.06%), and we again classified
as base-rate neglect any answer over P(D�H) � P(D�¬H), the
lower bound of typical base-rate neglect answers (65% in this
problem). All other answers were classified as neither; these
responses were distributed across the spectrum with no discernable
pattern. Our results show that the rate of base-rate neglect was
significantly lower and correct answer rates were significantly
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higher on the benign cyst scenario (Fisher’s exact test,3 p � .05;
see Figure 5). The size of the effect was also considerable, with
correct responses more than doubled (11 of 30 on the benign cyst
scenario vs. 4 of 29 on the false-positive scenario) and responses
consistent with base-rate neglect nearly eliminated (1 of 30 on the
benign cyst scenario vs. 7 of 29 on the false-positive scenario).

Discussion

The results of Experiment 2 again support our hypothesis that
people generally make judgments consistent with the causal
Bayesian framework. The benign cyst scenario in this case
provided two sources of uncertainty: (a) multiple causes of an
observed effect and (b) probabilistic mechanisms by which
those causes produce the effect. Although the arithmetic com-
plexity involved prevented many participants from providing
exactly correct responses, performance was relatively good
overall, suggesting that people are often able to interpret and
reason appropriately about statistics describing multiple prob-
abilistic mechanisms.

Experiment 2 also addressed the potential confound in Experi-
ment 1 that the benign cyst scenario was more descriptive of the
mammogram mechanism than the false-positive scenario and
hence potentially more salient. In Experiment 2, we did not de-
scribe the mechanism, and neither did we explicitly state that
benign cysts were an alternative cause for positive mammograms.
Merely by structuring the statistics in terms of an alternative cause,
as opposed to a rate of false positives, we were able to improve
performance (according to classical Bayesian norms). This sug-
gests that if the existence of a mechanism seems plausible, such as
a mechanism by which benign cysts can generate positive mam-
mograms, one need not understand the mechanism entirely to
reason about it appropriately.

Experiment 3

Experiments 1 and 2 demonstrated that statistics that can be
unambiguously assigned to causal model parameters are often used
appropriately. This finding bears some resemblance to previous

appeals to “causal relevance” in explaining base-rate neglect
(Ajzen, 1977; Tversky & Kahneman, 1980), but our causal Bayes-
ian account is importantly different. Under previous causal rele-
vance accounts, the prescribed method of judgment is the use of
Bayes’s rule, and base rates are neglected if they do not fit into a
causal schema. In contrast, the prescribed method of judgment in
our framework is Bayesian inference over causal models, which
means sometimes base rates can appear to be neglected even if
they do fit into the model, because they may not be required in the
final judgment. This is what we propose happens when people
seem to neglect the base rate in the cab problem (Kahneman &
Tversky, 1972).

The cab problem was one of the earliest problems found to elicit
base-rate neglect. In this problem, participants were told that a
witness identified the color of a cab in a hit-and-run accident,
claiming it was blue, although only 15% of the cabs in the city
were blue and the remaining 85% were green. In subsequent tests
of the witness’s vision, the witness mistakenly identified 20% of
the green cabs as blue and 20% of the blue cabs as green.
Participants were then asked to judge the likelihood that the
hit-and-run cab was really blue. Participants famously tended to
ignore the base rate of 15% blue cabs in the city, providing a modal
response of 80% chance that the cab was really blue. In a
follow-up study, Tversky and Kahneman (1980) obtained im-
proved performance using a “causal” base rate: Now 50% of the
cabs in the city were blue and 50% were green, but only 15% of
the cabs involved in accidents were blue and 85% were green.

Tversky and Kahneman (1980) argued that the population base
rate in the original problem is neglected because it does not fit into
a causal schema; that is, nothing causes there to be more green
cabs. In contrast, they argued, the base rate in the causal cab
problem fits into a causal schema: The higher accident rate of
green cabs might be caused by green cab drivers being more

3 The results are also significant by a chi-square test, but because one of
the cells of the expected distribution was less than 5, the chi-square test was
considered unreliable and therefore Fisher’s exact test was used.

Figure 5. Histogram of responses to Experiment 2. The correct answer was 5.1%. Responses were classified
as correct (5.1%), base-rate neglect (�65%), and other. A significant difference was found between false positive
and benign cyst scenarios (Fisher’s exact test, p � .05). Error bars represent the standard error of the normal
approximation to the binomial distribution.
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reckless. One major difficulty with this proposal is that it is unclear
what it means for a statistic to fit into a causal schema. In
particular, Tversky and Kahneman (1980) make the assumption
that population base rates do not fit into causal schemas. However,
causal Bayesian networks require base rates for uncaused vari-
ables, and thus the provided base rates should fit equally well into
the causal models for both scenarios. Furthermore, intuitive causal
judgment is clearly sensitive to base rates; when judging whether
someone’s cough is more likely to be caused by a common cold or
by lung cancer, the base rate of these illnesses in the population is
obviously essential. Further casting doubt on the ability of causal
schemas to explain base-rate neglect, Bar-Hillel (1980) showed
that even population base rates can elicit good performance in the
cab problem (using a third variant, the intercom problem).

In this experiment, we demonstrate that the base rate in the
original cab problem, previously labeled “noncausal,” can be eas-
ily interpretable and used properly. Our explanation for the previ-
ous findings of base-rate neglect starts with the observation that

the causal structure of this problem is more complex than antici-
pated by previous researchers. It is common knowledge that per-
ceptual discriminations are strongly influenced not only by the
intrinsic discriminability of objects in the world but also by prior
knowledge, such as stereotypes or more mundane expectations.
For instance, if you feel a rough oblong object in a fruit bowl you
might guess it is a pear, whereas if you feel the same object in a
vegetable drawer you might guess it is a potato. Because prior
expectations influence people’s judgments, unexpected judgments
can be as accurate as expected ones. Someone who thinks he found
a pear in a vegetable drawer probably inspected it more closely
than someone who thinks he found a potato in that drawer. More
formally, signal detection theory captures the contributions of both
discriminability (d�) and prior expectations (through criterion
shifts of the area under the occurrence distributions). If we use a
causal model to capture this process, there are three causes of the
witness’s judgment (see Figure 6b). In this case, the given base-
rate statistics can be applied to the parameters for the witness’s

Figure 6. The three phases of causal Bayesian inference for the perceptual error scenario of Experiment 3. The
causal model depicts one possible causal interpretation, in which the witness’s judgment obeys signal detection
theory, and the witness’s error rate could be used to infer the discriminability of the colors.
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expectations, and the given statistics for confusing blue and green
can be applied to the parameters for discriminability. Because the
model is so complex, these statistics end up being used differently
than if they were inserted into Bayes’s rule according to the classical
Bayesian norm. According to Birnbaum (1983), if the witness’s
judgment can be characterized by signal detection theory, then ignor-
ing the base rate of cabs may actually be justified. Birnbaum’s
analysis suggests that for an optimizing witness whose expectations
match the true base rate, the probability of the witness being correct
remains at approximately 80% across a large range of base rates. This
means that ignoring the base rate may actually be appropriate, because
the witness has essentially already taken it into account.

Although this account may be plausible, it is essentially specu-
lative because we do not know what causal model people have in
mind when solving these problems. It could be that people really
have a signal detection model in mind, and their judgments are
accurate by that model. Alternatively, people could merely have

the intuition that reliability in perception should not vary across
base rates. Only by clarifying the causal structure can we make
clear predictions using the causal Bayesian framework. In our new
faded paint scenario, 20% of green cabs have faded paint, making
them appear blue, and 20% of blue cabs have faded paint, making
them appear green; the witness accurately reports the apparent
color of the cab. This results in an identical computation (under
classical Bayesian inference) to the original cab problem, but
because it is clear how the model should be structured and how the
given statistic should be assigned to its parameters, a correct
solution can be prescribed using the causal Bayesian framework.
This correct solution requires use of the base rate and is the same
as the solution prescribed by classical Bayesian inference. The
three phases of causal Bayesian inference for this scenario are
depicted in Figure 7 (a–c). As in the previous experiments, we
tested people’s performance on our new scenario while using the
original perceptual error scenario as a control.

Figure 7. The three phases of causal Bayesian inference for the faded paint scenario of Experiment 3.
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Method

Participants. The 47 participants in this experiment were MIT
undergraduate and graduate students (majors were not recorded
but were likely randomly distributed). They were approached in a
student center and given token compensation.

Materials. Participants were randomly assigned to receive one
of two variants of Kahneman and Tversky’s (1972) cab problem in
a between-subjects design. The perceptual error scenario, mod-
eled after the original cab problem, attributed the witness’s mis-
takes to perceptual error. The faded paint scenario attributed the
witness’s mistakes to faded paint. Both questions require the exact
same calculation, and so they are equally difficult to solve with
classical Bayesian methods. The questions follow:

Results

We classified as correct only those answers that matched (with
or without rounding) the normative solution by classical Bayesian
standards:

15% � 80%

15% � 80% � 85% � 20%
�

12%

29%
� 41%.

Consistent with prior studies, we classified as base-rate neglect
any response of 80% or above. All other answers were classified
as neither; these responses were distributed across the spectrum
with no discernable pattern. The results show a significant reduc-
tion in base-rate neglect and a significant increase in correct
responses for the faded paint scenario, �2(2 N � 47) � 11.55, p �
.005 (see Figure 8). The effect was very large, with correct re-
sponses dramatically improved (11 of 24 on the faded paint sce-
nario vs. 2 of 23 on the perceptual error scenario) and responses
consistent with base-rate neglect nearly eliminated (2 of 24 on the
faded paint scenario vs. 10 of 23 on the perceptual error scenario).

Discussion

The results show generally strong performance on the faded
paint scenario, with nearly half of the participants giving the exact
correct solution on a mathematically difficult task. Using the

original scenario as a control, we found that our participants are
not merely more statistically adept than other populations, as they
exhibited the classic pattern of responses consistent with base-rate
neglect on the original scenario. These results are not predicted by
the heuristics and biases view, according to which people use base
rates that seem causally relevant but neglect those that do not; in
this case, the base rates are identical, yet people perform much
better on the faded paint scenario.

As in the previous experiments, we see important implications
not just for the role of causality in judgments tasks but also for the
role of statistics in judgments from causal models. The cab prob-
lem is controversial in part because perception is a much more
complicated process than can be summed up in two conditional
probabilities. People’s neglect of the base rate suggests that people
may have a special model for perception in which accuracy re-
mains relatively constant across base rates but varies with the
confusability of the items to be perceived, as would be expected if
people are optimal signal detectors. This perceptual model may be
one of many such models that people have for a variety of specific
domains that enable them to make reasonably accurate qualitative
judgments about complex mechanisms.

Experiment 4

In this experiment, we demonstrate more directly that causal
structure should influence whether base rates will be used and that
the classical Bayesian framework, which ignores causal structure,
can sometimes fail to provide an appropriate standard for judg-
ment. The previous three experiments all compared scenarios that
differed considerably in their descriptions, introducing possible
imbalances in salience or plausibility that could be implicated in
our results. In this experiment, we adopted stimuli that were
identical to each other except for a manipulation of causal structure
and requested judgment. All of the stimuli were newly developed,
modeled after social judgment tasks such as Kahneman and Tver-
sky’s (1973) famous lawyer–engineer problem, which asked par-
ticipants to predict a man’s career from his personality. In the
lawyer–engineer problem, participants in one condition were told
that personality tests had been administered to 30 engineers and 70

Figure 8. Histogram of responses to Experiment 3. Error bars represent the standard error of the normal
approximation to the binomial distribution. The difference between conditions was large and highly significant,
�2(2, N � 47) � 11.55, p � .005.
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lawyers, whereas those in another condition were told the tests had
been administered to 70 engineers and 30 lawyers. Participants
were then presented with several personality profiles and asked to
judge the likelihood that each was a lawyer or an engineer.
Kahneman and Tversky’s (1973) findings were that although peo-
ple gave slightly different responses in the two conditions, they
were not different enough. According to classical Bayesian prin-
ciples, the difference between the base rates of lawyers and engi-
neers should dramatically influence judgments of career given
personality.4

In this experiment we investigated a new problem modeled after
the lawyer–engineer problem. The cover story described a Central
Intelligence Agency (CIA) special operations team that selected its
members according to certain criteria. In the first scenario, part of
the mission required female agents, and in the second scenario,
part of the mission required short agents. Causal models for these
two scenarios are depicted in Figure 9 and Figure 10. Because
women are shorter than men, the agents in the first scenario were
mostly 5�7	 or under. Because it was easier to find short women
than short men, the agents in the second scenario were mostly
women.

For each scenario, two different tasks were posed (each
participant received only one task). The first task was to judge
the probability that a male agent randomly selected from the
team is shorter than average. According to the causal Bayesian
framework, in the judgment of height from gender, one should
ignore the base rate of heights in the first scenario but not in the
second scenario. Intuitively, this makes sense: A male agent on
the team selected by gender is no more likely to be short than
any other male agent, even if the base rate of people over 5�7	
is 30%. However, a male member on the team selected by
height is likely to be shorter than average, and thus the differ-
ence in base rate of heights matters. This distinction between
the scenarios derives from their causal structures, depicted in
Figure 9 and Figure 10. Given the causal model for the selected-
by-gender scenario (see Figure 9a), learning the gender of an
agent renders the fact that the agent is on the team irrelevant to

judging the agent’s height, because the path from on CIA team
to height is blocked by gender (technically, the causal Markov
condition of Bayesian networks specifies that on CIA team is
conditionally independent of height given gender). Because it is
irrelevant that the agent is on the team, the base rate of heights
on the team is also irrelevant. In contrast, given the causal
model for the selected-by-height scenario (see Figure 10a), after
one learns the gender of an agent the fact that the agent is on the
team remains relevant to judging the agent’s height because the
path from on CIA team to height is not blocked by gender.

The second task was to judge whether, compared with other
CIA teams, a randomly selected agent over 5�7	 on this team is
more likely to be male. Whereas the first task judged height
from gender, this task judged gender from height. By reversing
which variable was observed and which was judged, we also
reversed which scenario required ignoring the base rate; in the
first task the selected-by-gender scenario required ignoring the
base rate, whereas in this task the selected-by-height scenario
required ignoring the base rate. Intuitively, because the team
selected by gender has more females, more of the tall agents are
female than on other teams; thus, the base rate of gender
matters. Conversely, a tall person on the team selected by

4 To be fair, classical Bayesian norms dictating that posterior judgments
should change as priors change are not applicable to these scenarios,
because the likelihoods are dependent on the priors. Although the depen-
dence means the classical Bayesian norm is not applicable, the norm
provides no means to determine whether this dependence exists or how to
reason appropriately about it. In fact, we suspect many of the classic
scenarios that purportedly demonstrate judgment failures contain priors
that are not independent of the likelihoods, yet researchers continue to hold
people’s judgments to inapplicable Bayesian norms requiring that changes
in priors (base rates) should lead to changes in posterior judgments.
Because the causal Bayesian framework provides not just a method of
determining whether the priors and likelihoods are independent but also a
method of making judgments when they are dependent, it offers a more
useful standard for rational judgment.

Figure 9. Causal model for the lawyer–engineer problem. It is not clear how the interviewed variable should
be connected causally to the rest of the model.
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height is no more likely to be male than on any other team,
assuming that gender does not influence selection for the team.
Formally, in the selected-by-height scenario the path from
gender to on CIA team is blocked by height; therefore, the fact
that the tall person is on the team is irrelevant for judging the
person’s gender, and the base rate of heights on the team should
be ignored. In contrast, in the selected-by-gender scenario the
path from gender to on CIA team is not blocked by height;
therefore, the fact that the tall person is on the team is relevant
to judging the person’s gender, and the base rate of heights on
the team should be used.

With Experiment 4, we used the gender– height scenarios to
test whether people use or ignore the base rate appropriately
according to the causal Bayesian framework. This framework
prescribes that people should ignore the base rate when the
observed variable blocks the path between the variable to be
judged and the variable representing being on the team, and
should use the base rate when the variable to be judged falls
between the observed variable and the variable representing
being on the team.

Method

Participants. The 152 participants in this experiment were
MIT undergraduates and graduate students (majors were not re-
corded but were likely randomly distributed). They were ap-
proached in a main corridor on campus and were given token
compensation.

Materials. Participants were assigned randomly to one of four
conditions, as we crossed two factors: whether the team members
were selected by gender or by height (the causal structure) and
whether the judgment was to infer gender from height or height
from gender (the judgment). The cover story changed depending
on the causal structure, whereas the question changed depending
on the judgment. The materials are depicted in Figure 9 and
Figure 10, along with a depiction of the three phases of judgment
prescribed by causal Bayesian inference.

Results

The results are depicted in Figure 11. The modal response in all
conditions matched the predictions of our causal Bayesian hypoth-

Figure 10. The three phases of causal Bayesian inference for the selected-by-gender scenario of Experiment
4.
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esis. For judgments of height from gender, there were three pos-
sible responses: shorter, taller, or no different. A significant dif-
ference was found in responses levels between the two scenarios,
�2(2) � 9.7, p � .001. Responses of no different (indicating
base-rate ignorance) were higher for the selected-by-gender causal
structure than for the selected-by-height causal structure, which is
consistent with the prescription of the causal Bayesian norm that if
agents were selected by gender, knowing the agent’s gender ren-
ders height independent of being on the CIA team (see Figure 9c).
For judgments of gender from height, there were three possible
responses: more likely male, more likely female, or about the same.
A significant difference was again found in responses levels be-
tween the two scenarios, �2(2) � 7.3, p � .05. This time, re-
sponses of about the same (indicating base-rate ignorance) were
higher for the selected-by-height causal structure than for the
selected-by-gender causal structure, which is consistent with the
prescription of the causal Bayesian norm that if agents were

selected by height, knowing the agent’s height renders gender
independent of being on the CIA team (see Figure 9c).

We also analyzed the two factors separately, as well as their
interaction, using a two-way analysis of variance. We found no
main effect of causal structure and no main effect of judgment but
a highly significant interaction between them, �2(2) � 16.44, p �
.0005. Consistent with our predictions, base-rate ignorance was
significantly higher when the observed variable was situated be-
tween the variable to be judged and on CIA team in the causal
model, whereas base-rate use was significantly higher when the
variable to be judged was situated between the observed variable
and on CIA team in the causal model (see Figure 11). This result
indicated that nothing about the causal structure (selected by
gender vs. selected by height) or the judgment (gender from height
vs. height from gender) determined whether the base rate was used
or ignored; rather, it is the interaction of the judgment with the
scenario that determined whether the base rate was relevant. This

Figure 11. The three phases of causal Bayesian inference for the selected-by-height scenario of Experiment 4.
CIA � Central Intelligence Agency.
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finding demonstrates that people often use or ignore the base rate
exactly as prescribed by our proposed causal Bayesian norm and
that ignoring the base rate may often be a natural consequence of
reasoning causally.

Discussion

In several comparisons, we found strong effects of causal struc-
ture on judgments, demonstrating that people’s use or neglect of
the base rate varies according to what is rational under our pro-
posed causal Bayesian norm. These results are not predicted by the
heuristics and biases view, which proposes that people neglect the
base rate when the individuating information seems more salient or
more causally relevant. In our questions, the base rate (70% under
5�7	 or 70% female) remained constant across scenarios, yet we
were able to induce use or neglect of the base rate by varying
causal structure. The results also cast doubt on the hypothesis that
people use a representativeness heuristic (Kahneman & Tversky,
1973) in social judgment tasks. A representativeness heuristic
would judge P(male�over 5�7	) by the degree to which a person
over 5�7	 represents a typical male, ignoring the base rate of males
on the team. Our results show that people generally use the low
base rate of males in the selected-by-gender scenario appropri-
ately, with the modal judgment being that a person over 5�7	 on
this team is more likely to be female than is a person over 5�7	 on
other teams, contrary to the predictions of representativeness.

The interaction of causal structure with base rate use may be
responsible for a host of base-rate neglect findings on social
judgment types of tasks, such as in Kahneman and Tversky’s
(1973) lawyer–engineer problem, described in the introduction to
this experiment. Assuming that personality is a causal influence on
the career choice of lawyers and engineers, the appropriate causal
model for this scenario, including the three phases of causal
Bayesian inference, is depicted in Figure 12. We are told that the base
rate of lawyers and engineers interviewed is P(lawyer�interviewed) �
70%; P(engineer�interviewed) � 30% (in one variant), but this
base rate cannot be used to update the CPD for the career

variable, because it has a parent in the model. The CPD for career
contains parameters only for P(career�personality), not P(career).
One could accommodate this base rate by including a variable for
interviewed. However, we are not told how the lawyers and engi-
neers were selected for interview. It is therefore not clear how a
variable representing interviewed should be connected causally to the
rest of the model. If the interviewed variable is not causally con-
nected, it is understandable that participants might ignore the base
rate, assuming that whatever the causal connection is, learning the
man’s personality, a direct cause of career, renders the fact that the
man was interviewed irrelevant to judging the man’s career, just as
learning the agent’s gender rendered the fact that the agent was on the
CIA team selected by gender irrelevant to judging the agent’s height.

General Discussion

Our experimental results suggest that people’s judgments under
uncertainty may be best understood in terms of causal Bayesian
inference: approximately rational statistical inferences over men-
tally represented causal models. Results from four experiments
support several distinct claims. First, people’s judgments under
uncertainty vary depending on the causal structure they believe to
be underlying given statistics, and these judgments correspond
well to the prescriptions of causal Bayesian inference when that
framework makes clear predictions. Second, when provided with a
clear causal model and statistics that can be mapped clearly onto
that model, people typically use base rates appropriately, which
includes ignoring base rates when a causal Bayesian analysis
suggests they should be ignored. Finally, people make approxi-
mately rational judgments that cannot be explained using classical
noncausal Bayesian norms (e.g., people rationally ignore the base
rate of heights when judging height from gender in the CIA
selected-by-gender scenario). In contrast to the heuristics and
biases view, which casts people’s ability to reason from probabi-
listic information as highly suspect, all four experiments found that
participants’ modal judgments are rational by the standards of
causal Bayesian inference.

Figure 12. Histogram of Experiment 4 results showing levels of base-rate use compared with base-rate neglect
across gender-versus-height scenarios. A two-way analysis of variance shows a significant interaction between
the type of team (selected by gender vs. selected by height) and the judgment required (inferring gender from
height vs. inferring height from gender), �2(2, N � XXX) � 9.7, p � .001.
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Although we have interpreted the results of our experiments as
supporting the causal Bayesian hypothesis, other interpretations
are possible. Our manipulations in Experiments 1–4 often made
the newly developed versions of the judgment problems seem
easier, more salient, or more engaging, which may have led to
better performance. However, even if our versions of the statistics
were naturally more salient, our results are inconsistent with the
notion that mere salience of statistics drives attention, which drives
usage. For instance, people actually used the false-positive statistic
in Experiment 1 as often as they used the benign cyst statistic; they
just tended to misinterpret it as P(¬cancer��M) instead of
P(�M�¬cancer). We would argue that increased intelligibility of
our new scenarios comes as a result of the change to a more natural
causal structure, and we have attempted to control for confounds
that could have led incidentally to better performance on these
versions. Furthermore, in Experiment 4 both versions of the sce-
nario were descriptively equivalent, and hence arguably equally
salient. Therefore, these experiments confirm that causal structure
influences judgments independently of salience. Another account
of our results could hold that judgment is guided by causal rea-
soning heuristics, which might often approximate causal Bayesian
inference but in some cases fall short of that normative frame-
work’s full capacity. We do not see the use of heuristics as
inconsistent with our view. Rather, we treat causal Bayesian rea-
soning as a rational method of inference that, like any computa-
tion, can be approximated with heuristics. Thus, although future
studies may provide evidence for a more heuristic level of judg-
ment, we expect that these heuristics will be better characterized as
approximations to causal Bayesian inference than as approxima-
tions to classical statistical methods.

Relation to the Heuristics and Biases View

The heuristics and biases view previously identified causality as
playing an important role in base-rate neglect (Ajzen, 1977; Tver-
sky & Kahneman, 1980), but there are two ways in which our
account is more compatible with the results presented here. First,
researchers working in the heuristics and biases tradition predicted
that causal (or otherwise salient) statistics would dominate non-
causal (or nonsalient) base rates. Although this view may seem
close to ours, it runs directly counter to our main finding. We
showed that supposedly noncausal and nonsalient base rates (such
as the rate of breast cancer and the proportion of cabs that are blue)
are more likely to be used correctly when the other statistics given
appear more causal (i.e., when statistics that fit poorly into a causal
model, such as a false alarm rate or a perceptual error rate, are
replaced with statistics that clearly map onto parameters of the
causal model, such as the base rate of an alternative cause).

Second, and more deeply, the heuristics and biases literature did
not address the crucial rational function of causal knowledge in
real-world judgment under uncertainty but rather treated causal
reasoning as a potentially distracting heuristic leading to judgment
errors. In contrast, we view causal inference as one of the foun-
dations of people’s intuitive judgment ability, and we interpret
effects of causality on judgment as core evidence for understand-
ing how judgment works so well. We have attempted to explain
how causal reasoning constitutes a rational system for making
everyday judgments under uncertainty—from a rational analysis
perspective, more rational than classical statistical norms—and we

have shown how people’s judgments under uncertainty, and devi-
ations from normative statistical answers, may reflect sophisticated
causal reasoning abilities. Rather than trying to identify the factors
that induce or reduce errors such as base-rate neglect, as in Bar-
Hillel (1980), we have explained how a rational inference engine
can yield seemingly irrational judgments when people assume a
causal structure different from that of the experimenters or are
presented with statistical data that do not correspond to model
parameters.

Relation to the Natural Frequency Hypothesis

According to the natural frequency hypothesis (Gigerenzer &
Hoffrage, 1995), natural frequencies are the only statistical data
that can be handled by the cognitive engine people have evolved
for statistical inference. Probabilities and relative frequencies (i.e.,
percentages) are described as recently invented statistical formats
that fail to activate people’s natural statistical abilities. Because the
hypothesis does not address how people reason with explicit
probabilities, it cannot account for results that show good perfor-
mance on problems involving probabilities or relative frequencies.
Because people have been shown to be adept at reasoning with
probabilities and percentages under the right circumstances, in the
experiments presented here and in other studies (e.g., Bar-Hillel,
1980; Peterson & Beach, 1967), the natural frequency hypothesis
does not seem to provide a general account of when and why
judgments succeed or fail. Furthermore, because it relies on a
purely statistical framework, the natural frequency hypothesis has
significant limitations in its ability to account for judgment under
uncertainty in the real world, where there are often far too many
variables and far too few prior observations to make valid judg-
ments by natural frequencies alone.

In arguing against the natural frequency hypothesis, we do not
mean to imply that natural frequencies are not useful. On the
contrary, they are an extremely important source of input that can
be used for updating parameters of causal models or for computing
proportions when only two variables are of interest. We also do not
object to the claim that people are skilled at reasoning with natural
frequencies; the data clearly show they are. But rather than con-
clude that evolution has equipped humans only with a natural
frequency engine, we would argue that people do better on these
tasks because the natural frequency format makes them simpler; it
highlights nested sets that can be used in a calculation of propor-
tions. Thus, performance improvements alone are not convincing
evidence that people are naturally better at reasoning about fre-
quencies than about probabilities. Unlike most natural frequency
experiments, our experiments were carefully controlled such that
both conditions required equally complex calculations. Thus, we
can be more confident that the differences in performance between
the conditions are due to the causal content of the scenarios rather
than their mathematical form.

Explaining Other Apparent Errors of Judgment Under
Uncertainty

We anticipate that a number of other seeming fallacies in the
judgment literature may be artifacts of attempting to analyze
people’s causal judgments as approximations to traditional statis-
tical methods and may be more productively explained in terms of
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causal Bayesian reasoning. We do not claim this view can account
for all cases in which intuitive judgments appear to depart from
classical statistical norms, or even for all cases of base-rate ne-
glect, but there are several important classes of judgments for
which it appears to offer some useful insights.

One such class of judgments involves causal asymmetry, the
phenomenon that people more readily infer effects from causes, as
in judgments of P(E�C), than causes from effects, as in judgments
of P(C�E). For example, Tversky and Kahneman (1980) reported
that people expressed more confidence in judging a man’s weight
from his height than in judging a man’s height from his weight. In
the context of causal Bayesian reasoning, this asymmetry is un-
derstandable: P(E�C) is a parameter of a causal model, which
should be available directly from causal domain knowledge,
whereas P(C�E) requires a Bayesian computation that depends on
knowledge of P(E�C) and thus should be more difficult to judge.
Intuitively, when judging P(C�E), one must consider many poten-
tial causes of E and integrate over the possible states of these
causes. No such complexity is involved in judging P(E�C), which
can be obtained directly from the CPD of a causal model.

Another judgment phenomenon that our framework addresses is
the difficulty people have with Simpson’s paradox. An important
version of this paradox is characterized by P(E�C,K) � P(E�¬C,K)
for all subpopulations (K) but P(E�C) � P(E�¬C) when the popu-
lations are combined into one; in each of the subpopulations, C
seems to cause E, but overall, C seems to prevent E. Waldmann
and Hagmayer (2001) showed that if people believe the cofactor
(K) to be a cause of E, they correctly condition on K when inferring
the strength and direction of the contingency (in this case, people
who believe K is a cause of E would conclude that C causes, rather
than prevents, E, because for a given K, C makes E more likely).
However, the study did not address what factors account for the
degree to which the situation seems paradoxical.

Our proposal suggests that Simpson’s paradox seems paradox-
ical because people generally interpret statistical data as parame-
ters of a causal model. If people believe a causal link exists
between C and E, people will interpret the contingency statistic,
P(E�C) � P(E�¬C), to be describing the parameter of that single
causal link. For example, consider the following statistics: Overall,
those who use sunscreen more often are more likely to get skin
cancer, but for sunbathers and nonsunbathers considered sepa-
rately, those who use sunscreen more often are less likely to get
skin cancer. Because we know that a causal link exists between
sunscreen and skin cancer, we naturally interpret the statistic as a
parameter describing the causal power of that link. In this case, the
sense of paradox is driven by the impression that the power of
sunscreen to cause cancer is reversed (from preventive to genera-
tive) when the populations are combined. This paradox does not
occur for the following statistics: Overall, those who wear sun-
glasses more often are more likely to get skin cancer, but for
sunbathers and nonsunbathers considered separately, those who
wear sunglasses more often are no more likely to get skin cancer.
Because we know that sunglasses cannot causally influence skin
cancer, we do not interpret the contingency to be describing the
causal link. There is no paradox because the power of sunglasses
to cause cancer is not being changed when the population is
combined; rather, it is clear that the apparent contingency results
from a common cause (sun exposure).

It is the prior knowledge of the preventive link between sun-
screen and skin cancer that differentiates these two examples;
when a causal or preventive link is known to exist between two
variables, people naturally interpret the statistic to be describing
the power of that causal link. Simpson’s paradox becomes stron-
gest when the causal link between the two variables is well known
but the common cause is not readily apparent. For example, people
who eat vegetables regularly are more likely to get cancer, yet for
every age group, people who eat vegetables regularly are less
likely to get cancer. The paradox is dissolved by discovering that
older people eat more vegetables; thus, old age is a common cause
of both cancer and eating vegetables regularly.

Learning Structure From Statistical Data

Causal Bayesian inference represents a method of combining
statistical data with prior knowledge to make judgments. In the
related area of learning causal structure, an active debate currently
exists between views that emphasize the importance of statistical
data and those that focus on prior knowledge. Glymour and
Cheng’s (1998) approach to causal structure induction seeks to
formalize methods that enable both causal structure and parame-
ters to be learned from statistical data alone. Waldmann (1996)
argued that statistics alone are not enough to explain learning and
demonstrated that prior knowledge of causal directionality and
causal relevance can affect learning causal structure from data.
Taking this idea further, Ahn and Kalish (2000) argued that prior
mechanism knowledge, including knowledge of intermediate
causes in a chain, is crucial for learning causal structure and
especially for resolving ambiguous correlations. Tenenbaum and
Griffiths (2001, 2003) proposed a model that synthesizes the roles
of prior causal knowledge and statistical data, in which knowledge
serves to constrain the space of possible causal structures and the
data can then be used to favor one structure over another. Our
approach to judgment also calls for a synthesis between prior
knowledge and statistics, but like Ahn and Kalish’s, our experi-
ments suggest that understanding how a causal mechanism works
may be crucial to interpreting statistics that describe it.

Deterministic Mechanisms and Randomly Occurring
Causes

Another way to interpret our results is in terms of a bias toward
deterministic mechanisms. In the original mammogram and cab
problems, the statistics given implied that the mechanisms were
fundamentally stochastic, randomly generating positive mammo-
grams 9.6% of the time with no cause or randomly causing the
witness to make a mistake 20% of the time. A number of studies
have cast doubt on people’s abilities to comprehend randomness,
including such well-known phenomena as the gambler’s fallacy,
the hot-hand fallacy (Gilovich, Vallone, & Tversky, 1985), and the
law of small numbers (Tversky & Kahneman, 1971). In Experi-
ments 1–3, as part of clarifying the causal structure of the scenario,
we moved the main source of randomness from the efficacy of the
mechanism to the presence or absence of other causal variables. It
could be that people are good at reasoning about nondeterministic
scenarios when the main source of nondeterminism is in the
random occurrence of causal variables but find it less natural to
reason about mechanisms randomly failing (unless those failures
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can be attributed to some external factor, at which point the source
of randomness becomes the presence of a cause that deterministi-
cally disables the mechanism). The notion that causal reasoning
may be accomplished by modeling deterministic mechanisms, with
indeterminism introduced through uncertainty about the presence
of hidden causal variables, has recently been proposed in both the
artificial intelligence (Pearl, 2000) and psychological literatures
(Luhmann & Ahn, 2005; Schulz, Sommerville, & Gopnik, in
press).

Making Statistics Easy

People clearly have natural abilities to interpret statistics, yet
they are often poor at interpreting published statistical data. Pre-
vious researchers have argued that we can leverage people’s
known natural abilities to teach them how to interpret published
statistics. Sedlmeier and Gigerenzer (2001), for instance, presented
evidence that people can be taught to recast probabilities or rela-
tive frequencies, expressed as percentages, as natural frequencies,
expressed as whole numbers, which improves correct response
rates. However, if one does not hypothesize that people have a
specialized cognitive engine for using natural frequencies, this
effect could be seen as the result of mathematically simplifying a
difficult problem. Just as one can break down a multidigit multi-
plication problem into several single-digit multiplications added
together, one can break down a probability question by considering
nested subsets of a large number of individuals. The problem
certainly becomes easier, but one need not hypothesize a special
cognitive engine to explain it.

Our causal Bayesian hypothesis suggests a different approach to
making statistics easy: replacing statistics that fit poorly into a
causal model with statistics that correspond directly to causal
model parameters. Furthermore, when statistics are embedded
within a causal model, people may be able to understand the world
better than they would with statistics alone, regardless of whether
they are probabilities or natural frequencies. Consider the contrast
in insight between the false-positive and benign cyst mammogram
scenarios of Experiment 1 if one attempts to generalize beyond the
very restricted circumstances given in the problem setup. Imagine
a woman who gets a positive mammogram but hears that it can be
unreliable, and so she decides to get a second mammogram. If that
second mammogram also comes back positive, how much more
confident should we be that she has cancer?

The statistics in the false-positive problem suggest that she
should be much more concerned after the second mammogram
comes back positive: 6% of women without cancer will receive a
positive mammogram, and therefore 0.36% will test positive twice,
assuming the second mammogram result is independent of the
first. The chance of having cancer given two positive mammo-
grams, then, is

2%

2% � 98% � 0.36%
� 85%.

In contrast, the causal structure described by the benign cyst
mammogram scenario of Experiment 1 suggests that the unreli-
ability of the mammogram apparent in the false-positive scenario
is an illusion. The mammogram reliably detects cancer, but it also
reliably detects benign cysts, and if a woman has a benign cyst she

will get a positive mammogram the second time as well. In this
scenario, two positive mammograms are no more diagnostic of
cancer than one positive mammogram. The answer remains

2%

2% � 98% � 6%
� 25%.

It may seem strange that supposedly equivalent statistics lead to
greatly different inferences. This occurs because both sets of
statistics are mere reflections of a much more complex underlying
generative process. For instance, you may believe that any benign
cyst has a 50% chance of being detected, or you may believe that
only 50% of benign cysts are dense enough to be detected but that
those that are dense enough will be detected every time. This
second situation can be modeled causally by adding variables to
represent the size and density of the cyst or tumor and then
specifying a threshold at which it is large enough to be detected
deterministically. Of the views we have considered, we believe
that only the causal Bayesian hypothesis can account for how
people extrapolate meaning by going beyond the statistics to
represent a causal model and then using the model to make new
inferences that are underdetermined with statistics alone.

The most intuitively valuable statistics are those that correspond
transparently to parameters of known causal relationships. How-
ever, for some situations, the true causal structure may not be
obvious to people. In these cases, one should explain to people the
true causal structure, as well as provide statistics that map onto that
structure. For example, consider the statistic that patients are more
likely to survive after being treated by Doctor B than by Doctor A
(from Bar-Hillel, 1990). One could easily get the impression that
Doctor A provides inferior care, unless one is specifically in-
formed that Doctor A specializes in life-threatening diseases and
Doctor B does not. This new information invokes a causal struc-
ture in which a person’s disease state causally influences both the
choice of doctor and the likelihood of survival. With this new
structure, it is easy to see that the low survival rate of Doctor A’s
patients may be due solely to a higher base rate of patients with
life-threatening diseases, and hence the quality of care may be the
same or even better than that of Doctor B. But with the wrong
causal structure in mind, people could easily and understandably
jump to false and dangerous conclusions.

Conclusion

The need to make intuitive statistical judgments is a pervasive
fact of life in human society. But if people relied only on purely
statistical information, they would be in dire straights, as the
remarkable flexibility, success, and inductive potential of common
sense would be impossible. Fortunately, people’s physical, biolog-
ical, and social environments are causally structured, and their
intuitive theories of the world are often— but not always—
sufficient to capture the most relevant structures for enabling
appropriate causal Bayesian inferences. In experimental studies, if
we present participants with a clear causal structure and statistics
that clearly map onto that structure, we can nearly eliminate
traditional judgment errors, such as base-rate neglect, and dramat-
ically boost the incidence of correct Bayesian reasoning. Those
who have a stake in improving statistical reasoning in complex,
everyday settings—scientists, educators, doctors, advertisers, pol-
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iticians, and many others—could do well to follow the same
approach in communicating their questions, their data, and their
conclusions to the lay public.
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