
Learning style translation for the lines of a drawing

An important task of pattern recognition is identifying or synthesizing stylistic variations
on a signal independently of its underlying content [Omohundro 1995; Hofstadter 1995;
Tenenbaum and Freeman 2000; Brand and Hertzmann 2000; Rose et al. 1998]. For exam-
ple, one may want to differentiate stylistic variations in handwriting from the underlying
content, or letters. We study this problem for the particular task of rendering line drawings.
We want to allow the user of a drawing program to apply a new style to selected lines of
the drawing, while keeping the “content”, or the overall shape of those lines, constant.

Present systems typically provide such style control through parametric or interactive
manipulations. For example, the thickness of the line can be adjusted, or the Fourier spec-
trum of the x-y coordinates of the line can be modified to yield a different line character
([Finkelstein and Salesin 1994; Unama et al. 1995; Bruderlin and Williams 1995; Hsu
and Lee 1994]). User guidance is required in the rendering or font appearance models of
[Winkenbach and Salesin 1994; Zongker et al. 2000]. 3-d object properties are used for
the line-rendering methods of [Hamel and Strothotte 1999]. But even advanced parametric
manipulations represent a small subset of the possible stylistic variations that a designer
might consider. Figure 1 shows a set of line strokes each made in a range of different
line styles. This range of styles would be very difficult to describe parametrically. Yet
we would like to build a system which supports content-preserving translation across such
different styles of lines. See, for example, [Borgman 1977], for examples of lines drawn in
different styles.

We propose a learning-based approach to this problem. The system designer collects
examples of many different lines, each drawn in the various styles that the system is to
contain (the “training data”). An artist, not a programmer, decides what it means to render
a particular line over a range of styles. The system refers to this training data in order to
automatically translate lines made by a user into a particular desired style.

Our system has similarities to the interpolation-based style-modification system of [Rose
et al. 1998]. Their “adverbs and verbs” correspond to what we call “style and content”.
However, we emphasize automatic operation at runtime; given new lines, the system must
both identify the corresponding content (training line), as well as translate to a novel style.
Our example-based approach in the domain of line modification is analogous to example-
based texture transfer methods [Hertzmann et al. 2001; Efros and Freeman 2001].
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Fig. 1. Training data. An artist drew the same lines in several different line styles, which we call generic, jaggy,
and brushy. 123 lines were in the training set, in each style. By computer these were scaled in size over 6 scales,
ranging from 0.3 to 2.0, over 4 angles, and flipped left/right. All possible combinations of such manipulations
(6 4 2 = 48) applied to the 123 hand drawn lines yielded a training set of 5904 line elements.

We process drawings that are represented as a collection of lines. Each line follows some
path on the page, with a thickness that can vary along the length of the line. We represent
each line as a vector describing spline control points, with 3 numbers for each control point,
indicating the x and y positions relative to the line origin, and a local thickness parameter.
During a training phase, an artist draws a collection of line strokes, each in some number
of different styles. We had an artist draw a training set of 123 lines, each in 3 different
styles. Some elements of this training set, T , are shown in Fig. 1.

The user makes a drawing of lines in a style that we assume is represented as one of
the styles in the training set, say style 1. Here is the crucial problem we need to solve at
runtime: how should we use the training data to translate that line to style 2, the desired
output style? The algorithms we discuss all involve two steps. The first is fitting, describing
the input image in terms of the strokes in a similar training set style (style 1). The second
step is translation, converting that description to one involving the lines of the output style
(style 2, in this case).

Consider first a very simple algorithm, the nearest neighbor algorithm. In the fitting step,
from all the lines in the training set for style 1, we look for the one closest to the input line.

ACM Journal Name, Vol. V, No. N, Month 20YY.



(We measure distance between lines by the Euclidean distance in a vector representation of
the line’s spline control points and thicknesses, described below). Call the closest training
example the ith line. The training set includes line i in each of the styles, and so, for the
translation step, we simply output the training example of line i in style 2. (Note this is not
the same as outputting the line in style 2 that is most similar to the input line).

Fig. 2. Line drawing traced from photograph of Einstein.

Figure 2 shows a test image we wish to translate to a different style. Figure 3 (a) shows
the nearest neighbor fit of the input drawing in a “generic” style of the training set. (In
this and all subsequent examples, each line segment of the drawing is fit and translated
separately.) Figure 3 (b) shows the drawing translated into a “jaggy” style using the nearest
neighbor algorithm. This algorithm translates style well (i.e. the output lines (b) look like
jaggy versions of the nearest neighbor fits (a)), because the nearest neighbor fit to each
input line is represented explicitly in the artist-designed training set in both styles. But
it doesn’t fit the content of the input drawing well (compare (a) with Fig. 2), because the
algorithm is only able to use lines that are already in the training set. Thus nearest neighbor
is too limited to support content-preserving style translation.

To be of practical use, an algorithm must have the expressiveness to represent lines not
explicitly put into the training data. Consider a second algorithm, the linear combination
algorithm. In order to fit a broader range of lines, this algorithm fits the input line with
the best linear combination of all the training lines in style 1. Define the matrix As to
have as its columns each of the training lines of style s. If the input line is the vector
y, then we find the coefficients x yielding the least squares solution to y A1x, or x
pinv A1 y. This pseudo-inverse solution (pinv) can be over-determined, if the number of
linearly independent lines in the linear combination exceeds the number of line parameters
to be estimated, or under-determined, if the converse is true. For each case, there is a
standard least-squares solution; in Matlab, these are both incorporated into the function
pinv. To render this input line in style 2, we simply output A2x, a linear combination of
lines in style 2 weighted by the same coefficients used to describe the input line in style 1.
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Fig. 3. (a) Nearest neighbor fit of original image to style 1. The fit does not describe the original image very well.
(b) Nearest neighbor algorithm translation to style 2. The style translation is very good, being a look-up into the
line strokes that the artist deemed were the style 2 translations of the best-fitting style 1 lines.

(We expect that other regression methods, such as radial basis functions (e.g. [Rose et al.
1998]) could also be applied).

(a) (b)

Fig. 4. (a) Linear algorithm fit of original image to style 1. The optimum linear combination of all training lines
yields a high fidelity fit. (b) Linear algorithm translation to style 2. Taking a linear combination of the 5904
content elements in style 2 yields an unintelligible result; the translation is very poor.

Even with a small training set, the linear combination algorithm can fit an input line y
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quite well. Fig. 4 (a) shows the linear fit to our test image for style 1 of the training set T .
The fit is very good; the result is almost indistinguishable from the original image, Fig. 2.
However, the translation is terrible. Rendering A2xi using the coefficients xi found for each
line of the test image gives Fig. 4 (b). In general, linear combinations of a large set of the
style-translated training lines will not maintain their style, because characteristic features
such as inflections or loops are scrambled when averaged together across many lines.

These simple experiments demonstrate a tension between “goodness-of-fit” and “goodness-
of-translation” that confronts any example-based approach to content-preserving style trans-
lation. (This is similar to the “overfitting” problem in machine learning [Bishop 1995]).
The nearest neighbor algorithm focuses on one extreme, achieving excellent style trans-
lation on a very limited set of lines which in general cannot fit the content of the input
drawing. The linear combination algorithm goes to the other extreme, achieving an ex-
cellent fit to the content of input lines but in a form that cannot be generically translated
across style.

Our solution to this dilemma is based on the observation that linear combinations of
sufficiently similar lines often do maintain their style. This is particularly true if the vector
representation of lines appropriately models their salient features, as discussed below in
the section on representation. Then, if we only take linear combinations of similar lines,
we may be able to both fit the input image, as well as translate those fit lines well to the
desired output style.

This intuition is the basis for the algorithm we present here, the K-nearest neighbor
algorithm for style translation. For an input line y in style 1, we find the K examples
in the training set of style 1 that are most similar (in Euclidean distance) to that line.
Let these K examples be the columns of a matrix, Ay

1
. We then find the least squares

solution x to y Ay
1
x, which describes the linear combination of the K training examples

that best explains the input line. We translate this fit into style 2 by taking the same linear
combination of the style-translated training examples. That is, we generate a matrix Ay

2
by

replacing each column of Ay
1

with the style-translated version of that example found in the
training set. Then Ay

2
x describes the original input line y translated into style 2.

The K-nearest neighbor algorithm interpolates between the two extreme approaches pre-
sented above. When K 1, it reduces to simple nearest neighbor. When K equals the size
of the training set, it reduces to a simple linear combination. As we show below, inter-
mediate values of K find an acceptable balance between goodness-of-fit and goodness-of-
translation, yielding good style translations of an input drawing. In practice, it is easy to
find a value of K that achieves this balance by starting at K 1 and increasing K until a
satisfactory fit is obtained. For the training set sizes we use here, we have typically set
K between 3 and 8. In general, the optimal values of K will increase with the size of the
training set. Figure 5 illustrates the fitting and translation tradeoffs with varying K for this
drawing. We used K 6 for all the results shown in this paper.

Figure 6 shows the results of K-nearest neighbor style translation for K 6. Panel (a)
shows the fit of the Einstein image using a linear combination of the closest 6 lines in
the style 1 training set to each line of the original image. Taking a linear combination of
several nearby examples allows us to fit the input data well. Panels (b) and (c) show the
Einstein drawing translated into “jaggy” and “brushy” styles, styles 2 and 3, respectively.
Combining only nearby examples allows the re-synthesized output lines to maintain their
styles well. The fitting and translation took 4 seconds in a Matlab implementation on a
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2-NN fit 4-NN fit 6-NN fit 10-NN fit 20-NN fit

2-NN 1 2 4-NN 1 2 6-NN 1 2 10-NN 1 2 20-NN 1 2

2-NN 1 3 4-NN 1 3 6-NN 1 3 10-NN 1 3 20-NN 1 3

Fig. 5. Effect of parameter K in the K-nearest-neighbor fitting algorithm on fitting to style 1 (generic), translation
to style 2 (jaggy), and translation to style 3 (brushy). The fitting accuracy increases with increasing K since
linear combinations of more lines are used to synthesize the fitted lines. The translation accuracy decreases with
increasing K, since linear combinations are taken of more and more disparate lines.

1Ghz PC.
Our algorithm is an application of a general learning method known as locally weighted

regression [Cleveland and Loader 1995; Atkeson et al. 1997], where a weighting func-
tion which decays with distance restricts over which examples regression is performed. In
the context of shape synthesis, Darrell used a related local learning approach to learn a
mapping from end-point position to the rendered image of an articulated linkage [Darrell
1999]. In his work, as in this, simple methods are used to synthesize high-dimensional data
from training examples, provided care is taken to only interpolate over the relevant train-
ing examples. The K-nearest neighbor approach can also be viewed as a locally adaptive
generalization of the bilinear models used in [Tenenbaum and Freeman 2000] to separate
style and content for various synthesis and analysis problems.

The remaining sections present the vector representation of lines that we use, how we
generated the training set, more results of the K-nearest neighbor algorithm, and conclu-
sions and future work.

The K-nearest neighbor algorithm requires a vector representation of lines, and in particu-
lar, one that encourages a linear combination of similar lines in a certain style to maintain
the stylistic quality of those component lines. We first fit an open uniform cubic b-spline
to a set of finely-sampled points along each line [Rogers 1990]. (The origin of this co-
ordinate system is the mean position of all the finely-sampled points on the line). This
allowed us to adjust the amount of data used to represent each line by fitting to fewer or

ACM Journal Name, Vol. V, No. N, Month 20YY.



(a) (b)

(c) (d)

Fig. 6. Style translation using the K-NN algorithm. (a) Original line drawing. (b) 6-NN algorithm fit to image
data in style 1. While not exactly the same as the original, the fit is quite faithful. (c) 6-NN algorithm image
translation to style 2. In addition to fitting well, this algorithm translates well to the new style. (d) Image data
translated to style 3, where the line quality of the training data in that style is still maintained.

more numerous control points. Because an open uniform cubic b-spline can be described
as a sequence of connected cubic bezier curves, this representation can be easily translated
into Postscript format, readable by many drawing tools. The K-nearest neighbor algorithm
sees each stroke as a point in a vector space with one dimension for each component of
each control point. If each stroke was represented as a spline with 20 control points, each
an [x, y , thickness] triple, then the K-nearest-neighbor algorithm would see that stroke as
a point in a 60-dimensional space. We subtract the mean position, averaged over the line,
of the control points before fitting the lines to the training database (also mean zero lines).
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After style translation, we addd back in the original means for each line.
The shape of a spline fit to data can be tuned by appropriately selecting the parametric

value t assigned to each data point [Rogers 1990]. To best preserve the shape of each curve,
we distributed t in a nonuniform fashion, such that greater intervals of t were clustered
around areas of higher curvature. (Denoting arclength by s, the function relating dt ds to
the local curvature had the form of a saturating (sigmoidal) nonlinearity. Defining as
the angular difference between sequential line segments, we used dt

ds 1 2 atan 2 2
3 5 , for in degrees.) Splines fit with t distributed in this manner tend to have

control points clustered around bends and corners, and thus the salient features of a line
are represented more accurately than would be possible with an even control point spacing.

Ideally, to maintain style, stylistic features such as bends or loops should be put in
register from one line to the next, and then averaged. If they are mis-registered, their
average will blur and distort each feature. Adaptively placed control points will tend to
devote the same number of control positions to an uneventful straight segment, independent
of its length. Thus the stylistic features will be more nearly in register with one another
between two perceptually similar lines. Figure 7 illustrates this. The average of the two
similiar lines, using evenly spaced control points, loses a stylistic feature, the sharp corner.
Averaging with more control points devoted to the corner region maintains the stylistic
characteristic of the line. (In order for this averaging to work, the number of bends should
be the same in both lines. However, if the number of bends were different, then the distance
between the two lines would, in general, be large and the lines would not be selected for
averaging by the K-nearest neighbors algorithm.)

line A

line B

(A+B)/2

even
spacing

adaptive
spacing

Fig. 7. Left: two lines in the same style which are similar to each other. We would like to represent them in
such a way that their vector average another line in the same perceived style. Top: Average using a spline with
equally spaced control points. The features of the two lines are blurred. Bottom: The average using a spline with
adaptively space control points. This tends to place the interesting feature points into similar dimensions.

It is not realistic to expect an artist to draw enough examples to span the diversity of lines
expected in the input image. We amplified the training set by taking into account opera-
tions, such as scale change, over which we expected the style translations to be invariant.

Simard et al. [Simard et al. 1994] use a modified distance metric, the tangent distance,
to impose classification invariances in a classifier. Another different approach could be to
rotate every line to a canonical position and scale, both during training and during process-
ing before comparing lines. However, this can introduce problems for curving lines which
have no canonical orientation.
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We selected a different approach which allows for more explicit manipulation of line ori-
entation and scale. Our approach to imposing invariances is to replicate the initial training
set over all the desired invariances. In this case, we replicated each of the 123 hand-drawn
training examples over 6 spatial scales, 4 rotation angles, and a mirror reflection, yielding
a training set of 5904 line elements. Figure 8 shows the benefits both in fitting and style
translation of replicating the training dataset over several different size scales. (A partic-
ularly large or small input drawing may require uniform re-scaling of its lines for them to
be within the sizes of the training set lines.)

1-rep fit 2-rep fit 4-rep fit 6-rep fit

1-rep 1 2 2-rep 1 2 4-rep 1 2 6-rep 1 2

1-rep 1 3 2-rep 1 3 4-rep 1 3 6-rep 1 3

Fig. 8. Effect of the number of scale replications of the database on fitting and style translation (style 1 2
and style 1 3). The multiplicative scale factors by which the position and thickness parameters in the line
representation were scaled are shown in brackets: 1-rep(lication), no scale replications: [1]; 2-rep: [ 0.7 1 ];
4-rep: [ 0.5 0.7 1 1.4] ; 6-rep: [0.3 0.5 0.7 1 1.4 2].
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Figure 6 shows the result of the K-NN style translation algorithm applied to the Einstein
drawing. Figures 9, 10, 11, 12, show four other line drawings, their fits to the “generic”
style of the the training set, and their translation into the “jaggy” and “brushy” styles, using
the same training set and value of K 6. In general, the style translation is good, balancing
the goals of fitting the original with translating to the target style.

(a) (b)

(c) (d)

Fig. 9. 6-NN style translation example. (a) A tracing of the lines of Picasso’s “Mother and Child”. (b) Fit to style
1. (c) Translation to style 2, and (d) to style 3, both using the 6 nearest neighbor algorithm, and fitting assuming
the original was in style 1.

Some insight into the limitations of the algorithm can be obtained by examining what
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appear to be mistakes in the human figures of Figures 6 and 9. Because the algorithm
does not know anything about the shapes of fingers, noses, or other real-world objects de-
picted in these drawings, it may inadvertently distort the contours of these objects in ways
which are stylistically consistent but physically unrealistic. Because each line is modeled
independently, relational properties between lines such as parallelism or perpendicularity
may not be preserved. In addition, this method cannot convert between a thick line and
many cross-hatched lines, or utilize notions of 3-d shape in the style translation. Dramatic
changes in line style may require more information about the context of the line within the
drawing. Such limitations would be expected with any low-level approach to style trans-
lation that treats a drawing as just a set of lines with no additional structure, and are not a
distinctive problem with learning-based approaches.

We have described a system for learning-based style translation in the domain of line draw-
ings. The system is based on a simple and fast K-nearest neighbor algorithm, which is ex-
pressive enough to fit new input data, but constrained enough to translate that fit to different
styles. Successful style translation also depended on finding an appropriate representation
for the input lines, which allowed linear combinations of similar lines to maintain the con-
sistent stylistic quality.

Our example-based approach has a number of advantages over conventional parameteric
approaches: First, it can handle new styles drawn by the user, regardless of how difficult it
may be to describe parametrically. A standard parametric approach to style translation such
as power spectrum modification ([Finkelstein and Salesin 1994]) would have difficulty
with the style translations presented here, because crucial shape information encoded in
the phase component of the frequency signal is ignored.

Second, the repertoire of an example-based system can be easily extended by the user
at any time. While our system produces good results with manageable training set sizes
(around 100 user-entered examples per style), these results can certainly be improved with
more training data. To add a new style, a user only needs to draw examples of the basic set
of training lines in that style. A user who works mainly with drawings of a certain class
of objects (e.g. faces or mechanical parts) can supplement the default training set with
contours from these objects, in order to encourage the system to more faithfully preserve
their essential shape under style translations.

Finally, the example-based approach may be generalized to modify the style of other
kinds of graphics objects, such as the font of a letter or the movement style of an animated
character. The problem of having to compromise between quality of fit to a wide range of
signals and quality of style translation is just as crucial in these domains, and the simplicity
and generality of the K-nearest neighbor algorithm makes it a promising approach in these
other domains. Of course, as in the domain of line drawing, successful example-based style
translation in these other domains will also require a representation of the input signals
which allows linear combinations of similar inputs to maintain their style.

ATKESON, C. G., MOORE, A. W., AND SCHAAL, S. 1997. Locally weighted learning. Artificial Intelligence
Review 11, 11–73.

BISHOP, C. M. 1995. Neural networks for pattern recognition. Oxford.

BORGMAN, H. 1977. Drawing in ink. Watson–Guptill publications.

ACM Journal Name, Vol. V, No. N, Month 20YY.



(a)

(b)

(c)

(d)

Fig. 10. 6-NN style translation example. (a) Original drawing. (b) Fit to generic training style (style 1) (c)
translation from style 1 to style 2 (jaggy) (d) translation from style 1 to style 3 (brushy).

BRAND, M. AND HERTZMANN, A. 2000. Style machines. In Proc. SIGGRAPH 2000. 183–192. In Computer
Graphics, Annual Conference Series.

BRUDERLIN, A. AND WILLIAMS, L. 1995. Motion signal processing. In ACM SIGGRAPH. 97–104. In
Computer Graphics Proceedings, Annual Conference Series.

CLEVELAND, W. S. AND LOADER, C. 1995. Smoothing by local regression: principles and methods. Springer.

DARRELL, T. 1999. Example based image synthesis of articulated figures. In Adv. in Neural Information
Processing Systems, M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Vol. 11. MIT Press, 768–774.

EFROS, A. A. AND FREEMAN, W. T. 2001. Image quilting for texture synthesis and transfer. In ACM SIG-

ACM Journal Name, Vol. V, No. N, Month 20YY.



(a)

(b)

(c)

(d)

Fig. 11. 6-NN style translation example. (a) Original drawing. (b) Fit to generic training style (style 1) (c)
translation from style 1 to style 2 (jaggy) (d) translation from style 1 to style 3 (brushy).
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Fig. 12. 6-NN style translation example. (a) Original drawing. (b) Fit to generic training style (style 1) (c)
translation from style 1 to style 2 (jaggy) (d) translation from style 1 to style 3 (brushy).
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