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Abstract

We present a Bayesian framework for explaining how people reason
about and predict the actions of an intentional agent, basedon observ-
ing its behavior. Action-understanding is cast as a problemof inverting
a probabilistic generative model, which assumes that agents tend to act
rationally in order to achieve their goals given the constraints of their en-
vironment. Working in a simple sprite-world domain, we showhow this
model can be used to infer the goal of an agent and predict how the agent
will act in novel situations or when environmental constraints change.
The model provides a qualitative account of several kinds ofinferences
that preverbal infants have been shown to perform, and also fits quantita-
tive predictions that adult observers make in a new experiment.

1 Introduction

A woman is walking down the street. Suddenly, she turns 180 degrees and begins running
in the opposite direction. Why? Did she suddenly realize shewas going the wrong way,
or change her mind about where she should be headed? Did she remember something
important left behind? Did she see someone she is trying to avoid? These explanations for
the woman’s behavior derive from taking theintentional stance: treating her as a rational
agent whose behavior is governed by beliefs, desires or other mental states that refer to
objects, events, or states of the world [5].

Both adults and infants have been shown to make robust and rapid intentional inferences
about agents’ behavior, even from highly impoverished stimuli. In “sprite-world” displays,
simple shapes (e.g., circles) move in ways that convey a strong sense of agency to adults,
and that lead to the formation of expectations consistent with goal-directed reasoning in in-
fants [9, 8, 14]. The importance of the intentional stance ininterpreting everyday situations,
together with its robust engagement even in preverbal infants and with highly simplified
perceptual stimuli, suggest that it is a core capacity of human cognition.

In this paper we describe a computational framework for modeling intentional reasoning in
adults and infants. Interpreting an agent’s behavior via the intentional stance poses a highly
underconstrained inference problem: there are typically many configurations of beliefs and
desires consistent with any sequence of behavior. We define aprobabilistic generative
model of an agent’s behavior, in which behavior is dependenton hidden variables repre-
senting beliefs and desires. We then model intentional reasoning as a Bayesian inference
about these hidden variables given observed behavior sequences.



It is often said that “vision is inverse graphics” – the inversion of a causal physical process
of scene formation. By analogy, our analysis of intentionalreasoning might be called
“inverse planning”, where the observer infers an agent’s intentions, given observations of
the agent’s behavior, by inverting a model of how intentionscause behavior. The intentional
stance assumes that an agent’s actions depend causally on mental states via theprinciple
of rationality: rational agents tend to act to achieve their desires as optimally as possible,
given their beliefs. To achieve their desired goals, agentsmust typically not only select
single actions but must constructplans, or sequences of intended actions. The standards
of “optimal plan” may vary with agent or circumstance: possibilities include achieving
goals “as quickly as possible”, “as cheaply ...”, “as reliably ...”, and so on. We assume a
soft, probabilistic version of the rationality principle,allowing that agents can often only
approximate the optimal sequence of actions, and occasionally act in unexpected ways.

The paper is organized as follows. We first review several theoretical accounts of inten-
tional reasoning from the cognitive science and artificial intelligence literatures, along
with some motivating empirical findings. We then present ourcomputational framework,
grounding the discussion in a specific sprite-world domain.Lastly, we present results of
our model on two sprite-world examples inspired by previousexperiments in developmen-
tal psychology, and results of the model on our own experiments.

2 Empirical studies of intentional reasoning in infants and adults

2.1 Inferring an invariant goal

The ability to predict how an agent’s behavior will adapt when environmental circum-
stances change, such as when an obstacle is inserted or removed, is a critical aspect of
intentional reasoning. Gergely, Csibra and colleagues [8,4] showed that preverbal infants
can infer an agent’s goal that appears to be invariant acrossdifferent circumstances, and
can predict the agent’s future behavior by effectively assuming that it will act to achieve its
goal in an efficient way, subject to the constraints of its environment. Their experiments
used a looking-time (violation-of-expectation) paradigmwith sprite-world stimuli. Infant
participants were assigned to one of two groups. In the “obstacle” condition, infants were
habituated to a sprite (a colored circle) moving (“jumping”) in a curved path over an ob-
stacle to reach another object. The size of the obstacle varied across trials, but the sprite
always followed a near-shortest path over the obstacle to reach the other object. In the “no
obstacle” group, infants were habituated to the sprite following the same curved “jumping”
trajectory to the other object, but without an obstacle blocking its path. Both groups were
then presented with the same test conditions, in which the obstacle was placed out of the
sprite’s way, and the sprite followed either the old, curvedpath or a new direct path to the
other object. Infants from the “obstacle” group looked longer at the sprite following the
unobstructed curved path, which (in the test condition) wasnow far from the most efficient
route to the other object. Infants in the “no obstacle” grouplooked equally at both test stim-
uli. That is, infants in the “obstacle” condition appeared to interpret the sprite as moving in
a rational goal-directed fashion, with the other object as its goal. They expected the sprite
to plan a path to the goal that was maximally efficient, subject to environmental constraints
when present. Infants in the “no obstacle” group appeared more uncertain about whether
the sprite’s movement was actually goal-directed or about what its goal was: was it simply
to reach the other object, or something more complex, such asreaching the object via a
particular curved path?

2.2 Inferring goals of varying complexity: rational means-ends analysis

Gergely et al. [6], expanding on work by Meltzoff [11], showed that infants can infer goals
of varying complexity, again by interpreting agents’ behaviors as rational responses to en-
vironmental constraints. In two conditions, infants saw anadult demonstrate an unfamiliar
complex action: illuminating a light-box by pressing its top with her forehead. In the
“hands occupied” condition, the demonstrator pretended tobe cold and wrapped a blanket



around herself, so that she was incapable of using a more typical means (i.e., her hands)
to achieve the same goal. In the “hands free” condition the demonstrator had no such con-
straint. Most infants in the “hands free” condition spontaneously performed the head-press
action when shown the light-box one week later, but only a fewinfants in the “hands occu-
pied” condition did so; the others illuminated the light-box simply by pressing it with their
hands. Thus infants appear to assume that rational agents will take the most efficient path
to their goal, and that if an agent appears to systematicallyemploy an inefficient means, it
is likely because the agent has adopted a more complex goal that includes not only the end
state but also the means by which that end should be achieved.

2.3 Inductive inference in intentional reasoning

Gergely and colleagues interpret their findings as if infants are reasoning about intentional
action in an almost logical fashion, deducing the goal of an agent from its observed behav-
ior, the rationality principle, and other implicit premises. However, from a computational
point of view, it is surely oversimplified to think that the intentional stance could be imple-
mented in a deductive system. There are too many sources of uncertainty and the inference
problem is far too underconstrained for a logical approach to be successful. In contrast,
our model posits that intentional reasoning is probabilistic. People’s inferences about an
agent’s goal should be graded, reflecting a tradeoff betweenthe prior probability of a can-
didate goal and its likelihood in light of the agent’s observed behavior. Inferences should
become more confident as more of the agent’s behavior is observed.

To test whether human intentional reasoning is consistent with a probabilistic account,
it is necessary to collect data in greater quantities and with greater precision than infant
studies allow. Hence we designed our own sprite-world experimental paradigm, to collect
richer quantitative judgments from adult observers. Many experiments are possible in this
paradigm, but here we describe just one study of statisticaleffects on goal inference.
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Figure 1: (a) Training stimuli in complex and simple goal conditions. (b) Test stimuli 1 and 2. Test
stimuli was the same for each group. (c) Mean of subjects’ ratings with standard error bars (n=16).

Sixteen observers were told that they would be watching a series of animations of a mouse
running in a simple maze (a box with a single internal wall). The displays were shown
from an overhead perspective, with an animated schematic trace of the mouse’s path as it
ran through the box. In each display, the mouse was placed in adifferent starting location
and ran to recover a piece of cheese at a fixed, previously learned location. Observers were
told that the mouse had learned to follow a more-or-less direct path to the cheese, regardless
of its starting location. Subjects saw two conditions in counterbalanced order. In one con-
dition (“simple goal”), observers saw four displays consistent with this prior knowledge.
In another condition (“complex goal”), observers saw movements suggestive of a more
complex, path-dependent goal for the mouse: it first ran directly to a particular location in
the middle of the box (the “via-point”), and only then ran to the cheese. Fig. 1(a) shows
the mouse’s four trajectories in each of these conditions. Note that the first trajectory was
the same in both conditions, while the next three were different. Also, all four trajecto-
ries in both conditions passed through the same hypothetical via-point in the middle of the
box, which was not marked in any conspicuous way. Hence both the simple goal (“get to



the cheese”) and complex goal (“get to the cheese via pointX”) were logically possible
interpretations in both conditions.

Observers’ interpretations were assessed after viewing each of the four trajectories, by
showing them diagrams of two test paths (Fig. 1(b)) running from a novel starting location
to the cheese. They were asked to rate the probability of the mouse taking one or the other
test path using a 1-7 scale: 1 = definitely path 1, 7 = definitelypath 2, with intermediate
values expressing intermediate degrees of confidence. Observers in the simple-goal condi-
tion always leaned towards path 1, the direct route that was consistent with the given prior
knowledge. Observers in the complex-goal condition initially leaned just as much towards
path 1, but after seeing additional trajectories they became increasingly confident that the
mouse would follow path 2 (Fig. 1(c)). Importantly, the latter group increased its average
confidence in path 2 with each subsequent trajectory viewed,consistent with the notion that
goal inference results from something like a Bayesian integration process: prior probability
favors the simple goal, but successive observations are more likely under the complex goal.

3 Previous models of intentional reasoning

The above phenomena highlight two capacities than any modelof intentional reasoning
should capture. First, representations of agents’ mental states should include at least prim-
itive planning capacities, with a constrained space of candidate goals and subgoals (or
intended paths) that can refer to objects or locations in space, and the tendency to choose
action sequences that achieve goals as efficiently as possible. Second, inferences about
agents’ goals should be probabilistic, and be sensitive to both prior knowledge about likely
goals as well as statistical evidence for more complex or less likely goals that better account
for observed actions.

These two components are clearly not sufficient for a complete account of human inten-
tional reasoning, but most previous accounts do not includeeven these capacities. Gergely,
Csibra and colleagues [7] have proposed an informal (noncomputational) model in which
agents are essentially treated as rational planners, but inferences about agents’ goals are
purely deductive, without a role for probabilistic expectations or gradations of confidence.

A more statistically sophisticated computational framework for inferring goals from behav-
ior has been proposed by [13], but this approach does not incorporate planning capacities.
In this framework, the observer learns to represent an agent’s policies, conditional on the
agent’s goals. Within a static environment, this knowledgeallows an observer to infer the
goal of an agent’s actions, predict subsequent actions, andperform imitation, but it does
not support generalization to new environments where the agent’s policy must adapt in re-
sponse. Further, because generalization is not based on strong prior knowledge such as
the principle of rationality, many observations are neededfor good performance. Likewise,
probabilistic approaches to plan recognition in AI (e.g., [3, 10]) typically represent plans
in terms of policies (state-action pairs) that do not generalize when the structure of the
environment changes in some unexpected way, and that require much data to learn from
observations of behavior.

Perhaps closest to how people reason with the intentional stance are methods forinverse
reinforcement learning (IRL) [12], or methods for learning an agent’s utility function [2].
Both approaches assume a rational agent who maximizes expected utility, and attempt to
infer the agent’s utility function from observations of itsbehavior. However, the utility
functions that people attribute to intentional agents are typically much more structured
and constrained than in conventional IRL. Goals are typically defined as relations towards
objects or other agents, and may include subgoals, preferred paths, or other elements. In the
next section we describe a Bayesian framework for modeling intentional reasoning that is
similar in spirit to IRL, but more focused on the kinds of goalstructures that are cognitively
natural to human adults and infants.



4 The Bayesian framework
We propose to model intentional reasoning by combining the inferential power of statistical
approaches to action understanding [12, 2, 13] with simple versions of the representational
structures that psychologists and philosophers [5, 7] haveargued are essential in theory
of mind. This section first presents our general approach, and then presents a specific
mathematical model for the “mouse” sprite-world introduced above.

Most generally, we assume a world that can be represented in terms of entities, attributes,
and relations. Some attributes and relations aredynamic, indexed by a time dimension.
Some entities areagents, who can perform actions at any timet with the potential to change
the world state at timet+1. We distinguish between environmental state, denotedW , and
agent states, denotedS. For simplicity, we will assume that there is exactly one intentional
agent in the world, and that the agent’s actions can only affect its own states ∈ S. Let s0:T

be a sequence ofT+1 agent states. Typically, observations of multiple state sequences of
the agent are available, and in general each may occur in a separate environment. Lets1:N

0:T

be a set ofN state sequences, and letw1:N be a set ofN corresponding environments. Let
As be the set of actions available to the agent from states, and letC(a) be the cost to the
agent of actiona ∈ As. LetP (st+1|at, st, w) be the distribution over the agent’s next state
st+1, given the current statest, an actionat ∈ Ast

, and the environmental statew.

The agent’s actions are assumed to depend on mental states such asbeliefs anddesires. In
our context, beliefs correspond to knowledge about the environmental state. Desires may
be simple or complex. A simple desire is anend goal: a world state or class of states that
the agent will act to bring about. There are many possibilities for more complex goals,
such as achieving a certain end by means of a certain route, achieving a certain sequence
of states in some order, and so on. We specify a particular goal spaceG of simple and
complex goals for sprite-worlds in the next subsection. Theagent draws goalsg ∈ G from
a prior distributionP (g|w1:N ), which constrains goals to be feasible in the environments
w1:N from which observations of the agent’s behavior are available.

Given the agent’s goalg and an environmentw, we can define a valueVg,w(s) for each state
s. The value function can be defined in various ways depending on the domain, task, and
agent type. We specify a particular value function in the next subsection that reflects the
goal structure of our sprite-world agent. The agent is assumed to choose actions according
to a probabilistic policy, with a preference for actions with greater expected increases in
value. LetQg,w(s, a) =

∑
s′ P (s′|a, s, w)Vg,w(s′) − C(a) be the expected value of the

state resulting from actiona, minus the cost of the action. The agent’s policy is

P (at|st, g, w) ∝ exp(βQg,w(st, at)). (1)

The parameterβ controls how likely the agent is to select the most valuable action. This
policy embodies a “soft” principle of rationality, which allows for inevitable sources of
suboptimal planning, or unexplained deviations from the direct path. A graphical model
illustrating the relationship between the environmental state, and the agent’s goals, actions,
and states is shown in Fig. 2.

The observer’s task is to inferg from the agent’s behavior. We assume that state sequences
are independent given the environment and the goal. The observer infersg from s1:N

0:T via
Bayes’ rule, conditional onw1:N :

P (g|s1:N
0:T , w1:N ) ∝ P (g|w1:N )

∏N
i=1

P (si
0:T |g, wi). (2)

We assume that state transition probabilities and action probabilities are conditionally in-
dependent given the agent’s goalg, the agent’s current statest, and the environmentw.
The likelihood of a state sequences0:T given a goalg and an environmentw is computed
by marginalizing over possible actions generating state transitions:

P (s0:T |g, w) =
∏T−1

t=0

∑
at∈Ast

P (st+1|at, st, w)P (at|st, g, w). (3)
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Figure 2: Two time-slice dynamic Bayes net representation
of our model, whereW is the environmental state,G is
the agent’s goal,St is the agent’s state at timet, andAt

is the agent’s action at timet. Beliefs, desires, and actions
intuitively map ontoW , G andA, respectively.

4.1 Modeling sprite-world inferences
Several additional assumptions are necessary to apply the above framework to any specific
domain, such as the sprite-worlds discussed in§2. The size of the grid, the location of
obstacles, and likely goal points (such as the location of the cheese in our experimental
stimuli) are represented byW , and assumed to be known to both the agent and the observer.
The agent’s state spaceS consists of valid locations in the grid. All state sequencesare
assumed to be of the same length. The action spaceAs consists of moves in all compass
directions{N, S, E, W, NE, NW, SE, SW}, except where blocked by an obstacle, and
action costs are Euclidean. The agent can also choose to remain still with cost 1. We assume
P (st+1|at, st, w) takes the agent to the desired adjacent grid point deterministically.

The set of possible goalsG includes both simple and complex goals. Simple goals will just
be specific end states inS. While many kinds of complex goals are possible, we assume
here that a complex goal is just the combination of a desired end state with a desired means
to achieving that end. In our sprite-worlds, we identify “desired means” with a constraint
that the agent must pass through an additional specified location enroute, such as the via-
point in the experiment from§2.3. Because the number of complex goals defined in this
way is much larger than the number of simple goals, the likelihood of each complex goal
is small relative to the likelihood of individual simple goals. In addition, although path-
dependent goals are possible, they should not be likely a priori. We thus set the prior
P (g|w1:N ) to favor simple goals by a factor ofγ. For simplicity, we assume that the agent
draws just a single invariant goalg ∈ G from P (g|w1:N ), and we assume that this prior
distribution is known to the observer. More generally, an agent’s goals may vary across
different environments, and the priorP (g|w1:N ) may have to be learned.

We define the value of a stateVg,w(s) as the expected total cost to the agent of achievingg
while following the policy given in Eq. 1. We assume the desired end-state is absorbing and
cost-free, which implies that the agent attempts thestochastic shortest path (with respect
to its probabilistic policy) [1]. Ifg is a complex goal,Vg,w(s) is based on the stochastic
shortest path through the specified via-point. The agent’s value function is computed using
the value iteration algorithm [1] with respect to the policygiven in Eq. 1.

Finally, to compare our model’s predictions with behavioral data from human observers,
we must specify how to compute the probability of novel trajectoriess′

0:T in a new envi-
ronmentw′, such as the test stimuli in Fig. 1, conditioned on an observed sequences0:T in
environmentw. This is just an average over the predictions for each possible goalg:

P (s′0:T |s0:T , w, w′) =
∑

g∈G P (s′
0:T |g, w′)P (g|s0:T , w, w′). (4)

5 Sprite-world simulations
5.1 Inferring an invariant goal
As a starting point for testing our model, we return to the experiments of Gergely et al. [8,
4, 7], reviewed in§2.1. Our input to the model, shown in Fig. 3(a,b), differs slightly from
the original stimuli used in [8], but the relevant details ofinterest are spared: goal-directed
action in the presence of constraints. Our model predictions, shown in Fig. 3(c), capture
the qualitative results of these experiments, showing a large contrast between the straight
path and the curved path in the condition with an obstacle, and a relatively small contrast
in the condition with no obstacle. In the “no obstacle” condition, our model infers that the
agent has a more complex goal, constrained by a via-point. This significantly increases the



probability of the curved test path, to the point where the difference between the probability
of observing curved and straight paths is negligible.
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Figure 3: Inferring an invariant goal. (a) Training input inobstacle and no obstacle conditions. (b)
Test input is the same in each condition. (c) Model predictions: negative log likelihoods of test paths
1 and 2 given data from training condition. In the obstacle condition, a large dissociation is seen
between path 1 and path 2, with path 1 being much more likely. In the no obstacle condition, there is
not a large preference for either path 1 or path 2, qualitatively matching Gergely et al.’s results [8].

5.2 Inferring goals of varying complexity: rational means-ends analysis

Our next example is inspired by the studies of Gergely et al. [6] described in§2.2. In
our sprite-world version of the experiment, we varied the amount of evidence for a simple
versus a complex goal, by inputting the same three trajectories with and without an obstacle
present (Fig. 4(a)). In the “obstacle” condition, the trajectories were all approximately
shortest paths to the goal, because the agent was forced to take indirect paths around the
obstacle. In the “no obstacle” condition, no such constraint was present to explain the
curved paths. Thus a more complex goal is inferred, with a path constrained to pass through
a via-point. Given a choice of test paths, shown in Fig. 4(b),the model shows a double-
dissociation between the probability of the direct path andthe curved path through the
putative via-point, given each training condition (Fig. 4(c)), similar to the results in [6].

Training paths Test paths

o
b

s
t

n
o

 o
b

s
t

T
ra

in
in

g
 c

o
n

d

(a) (b) (c)

1 2 3 1 2
0

5

10

15

20

−
lo

g
(P
(T

e
s
t|
C

o
n

d
))

Cond: obst Cond: no obst

Test: straight
Test: curved

Figure 4: Inferring goals of varying complexity. (a) Training input in obstacle and no obstacle con-
ditions. (b) Test input in each condition. (c) Model predictions: a double dissociation between
probability of test paths 1 and 2 in the two conditions. This reflects a preference for the straight path
in the first condition, where there is an obstacle to explain the agent’s deflections in the training input,
and a preference for the curved path in the second condition,where a complex goal is inferred.

5.3 Inductive inference in intentional reasoning

Lastly, we present the results of our model on our own behavioral experiment, first de-
scribed in§2.3 and shown in Fig. 1. These data demonstrated the statistical nature of peo-
ple’s intentional inferences. Fig. 5 compares people’s judgments of the probability that the
agent takes a particular test path with our model’s predictions. To place model predictions
and human judgments on a comparable scale, we fit a sigmoidal psychometric transforma-
tion to the computed log posterior odds for the curved test path versus the straight path. The
Bayesian model captures the graded shift in people’s expectations in the “complex goal”
condition, as evidence accumulates that the agent always seeks to pass through an arbitrary
via-point enroute to the end state.
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Figure 5: Experimental results: model fit for behavioral data.
Mean ratings are plotted as hollow circles. Error bars give standard
error. The log posterior odds from the model were fit to subjects’
ratings using a scaled sigmoid function with range(1, 7). The sig-
moid function includes bias and gain parameters, which werefit to
the human data by minimizing the sum-squared error between the
model predictions and mean subject ratings.

6 Conclusion
We presented a Bayesian framework to explain several core aspects of intentional reason-
ing: inferring the goal of an agent based on observations of its behavior, and predicting
how the agent will act when constraints or initial conditions for action change. Our model
captured basic qualitative inferences that even preverbalinfants have been shown to per-
form, as well as more subtle quantitative inferences that adult observers made in a novel
experiment. Two future challenges for our computational framework are: representing and
learning multiple agent types (e.g. rational, irrational,random, etc.), and representing and
learning hierarchically structured goal spaces that vary across environments, situations and
even domains. These extensions will allow us to further testthe power of our computational
framework, and will support its application to the wide range of intentional inferences that
people constantly make in their everyday lives.
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[6] G. Gergely, H. Bekkering, and I. Király. Rational imitation in preverbal infants. Nature,
415:755, 2002.

[7] G. Gergely and G. Csibra. Teleological reasoning in infancy: the naı̈ve theory of rational action.
Trends in Cognitive Sciences, 7(7):287–292, 2003.

[8] G. Gergely, Z. Nádasdy, G. Csibra, and S. Biró. Taking the intentional stance at 12 months of
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