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Abstract

Accounts of language processing have suggested that it requiiesirgfrconcepts from memory
in response to an ongoing stream of information. This can be facilitated &yimg the gist of a
sentence, conversation, or document, and using that gist to predtetretancepts and
disambiguate words. We analyze the abstract computational problemyingéhne extraction and
use of gist, formulating this problem as a rational statistical inference. Tduils les to a novel
approach to semantic representation in which word meanings are rejeeseterms of a set of
probabilistic topics. The topic model performs well in predicting word assiociand the effects
of semantic association and ambiguity on a variety of language processimgeamory tasks. It
also provides a foundation for developing more richly structured statistiodkls of language, as
the generative process assumed in the topic model can easily be extenuzxporate other

kinds of semantic and syntactic structure.
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Topicsin semantic representation

Many aspects of perception and cognition can be understood by congittee
computational problem that is addressed by a particular human capacidgr@on, 1990; Marr,
1982). Perceptual capacities such as identifying shape from shagiegnian, 1994), motion
perception (Weiss, Adelson, & Simoncelli, 2002), and sensorimotor irttegr@\olpert,
Ghahramani, & Jordan, 1995; Koerding & Wolpert, 2004) appear tebi@pproximate optimal
statistical inferences. Cognitive capacities such as memory and catégorizan be seen as
systems for efficiently making predictions about the properties of an isrgé&nenvironment (e.g.,
Anderson, 1990). Solving problems of inference and prediction regjginsitivity to the statistics
of the environment. Surprisingly subtle aspects of human vision can baregia terms of the
statistics of natural scenes (Geisler, Perry, Super, & Gallogly, 20@igr&elli & Olshausen,
2001), and human memory seems to be tuned to the probabilities with which pantieeihds
occur in the world (Anderson & Schooler, 1991). Sensitivity to relevard statistics also seems
to guide important classes of of cognitive judgments, such as inductiveirfes about the
properties of categories (Kemp, Perfors & Tenenbaum, 2004), pi@wscabout the durations or
magnitudes of events (Griffiths & Tenenbaum, 2006b), or inferencastdlidden common causes
from patterns of coincidence (Griffiths & Tenenbaum, 2006a).

In this paper, we examine how the statistics of one very important aspe& ehtironment
— natural language — influence human memory. Our approach is motivatddnalysis of some
of the computational problems addressed by semantic memory, in the spiriro{2882) and
Anderson (1990). Under many accounts of language processidgrsianding sentences requires
retrieving a variety of concepts from memory in response to an ongoirensiéinformation.

One way to do this is to use the semantic context -gikeof a sentence, conversation, or
document — to predict related concepts and disambiguate words (Er&d€otsch, 1995;

Kintsch, 1988; Potter, 1993). The retrieval of relevant informationbmfacilitated by predicting
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which concepts are likely to be relevant before they are needed. o, if the wordBANK
appears in a sentence, it might become more likely that wordstikeERAL andRESERVEWOUId
also appear in that sentence, and this information could be used to initiatealedfiehe
information related to these words. This prediction task is complicated by théhné&davords have
multiple senses or meaningsaNK should only influence the probabilities BEDERAL and
RESERVEIf the gist of the sentence that it refers to a financial institution. If wordsdikReAM or
MEADOW also appear in the sentence, then it is likely thatik refers to the side of a river, and
words likewoobDsor FIELD should increase in probability.

The ability to extract gist has influences that reach beyond languagessiag, pervading
even simple tasks such as memorizing lists of words. A number of studiesliava that when
people try to remember a list of words that are semantically associated wittdahedidoes not
appear on the list, the associated word intrudes upon their memory (D888 McEvoy, Nelson,
& Komatsu, 1999; Roediger, Watson, McDermott, & Gallo, 2001). Resultsiskind have led to
the development of dual-route memory models, which suggest that peagléesnot just the
verbatim content of a list of words, but also their gist (Brainerd, Re§nglojardin, 1999;
Brainerd, Wright, & Reyna, 2002; Mandler, 1980). These models lepea the question of how
the memory system identifies this gist.

In this paper, we analyze the abstract computational problem of extragtthgsing the gist
of a set of words, and examine how well different solutions to this proloi@mespond to human
behavior. The key difference between these solutions is the way thatgpesent gist. In
previous work, the extraction and use of gist has been modeled usimgjasg&e semantic
networks (e.g., Collins & Loftus, 1975) and semantic spaces (e.g., Lan@aDumais, 1997,
Lund & Burgess, 1996). Examples of these two representations amshd-igure 1 (a) and (b),
respectively. We take a step back from these specific proposalsravidgpa more general
formulation of the computational problem that these representations at¢ousalve. We express

the problem as one of statistical inference: given some data — the setdd winferring the latent
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structure from which it was generated. Stating the problem in these terms ihakasible to

explore forms of semantic representation that go beyond networks andssp

Insert Figure 1 about here

Identifying the statistical problem underlying the extraction and use of gikemiapossible
to use any form of semantic representation: all that needs to be specHiptdbabilistic process
by which a set of words are generated using that representation ofjtbteiln machine learning

and statistics, such a probabilistic process is callgdreerativanodel. Most computational

approaches to natural language have tended to focus exclusiveithenstructured
representations (e.g., Chomsky, 1965; Pinker, 1999) or statisticaigdmg., EIman, 1990;
Plunkett & Marchman, 1993; Rumelhart & McClelland, 1986). Generatiedels provide a way
to combine the strengths of these two traditions, making it possible to use statistitelds to
learn structured representations. As a consequence, generatieésthade recently become
popular in both computational linguistics (e.g., Charniak, 1993; Jurafska&in, 2000; Manning
& Shitze, 1999) and psycholinguistics (e.g., Baldewein & Keller, 2004; skyal 996), although
this work has tended to emphasize syntactic structure over semantics.

The combination of structured representations with statistical inferencesrgekerative
models the perfect tool for evaluating novel approaches to semanteseyation. We use our
formal framework to explore the idea that the gist of a set of words caapgresented as a
probability distribution over a set of topics. Each topic is a probability distrilbudier words, and
the content of the topic is reflected in the words to which it assigns high pilapaFor example,
high probabilities fowvoobsandsTREAM would suggest a topic refers to the countryside, while
high probabilities forEDERAL andRESERVEWOUId suggest a topic refers to finance. A schematic
illustration of this form of representation appears in Figure 1 (c). Followiatk in the

information retrieval literature (Blei, Ng, & Jordan, 2003), we use a simpteegative model that
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defines a probability distribution over a set of words, such as a list ocandent, given a
probability distribution over topics. Using methods from Bayesian statistics, @ $opics can be
learned automatically from a collection of documents, as a computational arsfdiogr human
learners might form semantic representations through their linguistic erper{&riffiths &
Steyvers, 2002, 2003, 2004).

The topic model provides a starting point for an investigation of new fornsgfantic
representation. Representing words using topics has an intuitive poneksnce to feature-based
models of similarity. Words that receive high probability under the same topicend to be
highly predictive of one another, just as stimuli that share many featuhldsesighly similar. We
show that this intuitive correspondence is supported by a formal gamegence between the topic
model and Tversky’s (1977) feature-based approach to modeling stgiince the topic model
uses exactly the same input as Latent Semantic Analysis (LSA; Landauan&id, 1997), a
leading model of the acquisition of semantic knowledge in which the associafaeén words
depends on the distance between them in a semantic space, we can coegmatethmodels as a
means of examining the implications of different kinds of semantic represenmtaist as featural
and spatial representations have been compared as models of human sijudaritents
(Tversky, 1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1R88urthermore, the topic
model can easily be extended to capture other kinds of latent linguistic stutiitroducing new
elements into a generative model is straightforward, and by adding contpdoghe model that
can capture richer semantic structure or rudimentary syntax we can beafgudmp more
powerful statistical models of language.

The plan of the paper is as follows. First, we provide a more detailed seicificof the
kind of semantic information we aim to capture in our models, and summarize trseinvasnich
this has been done in previous work. We then analyze the abstract compaitptioblem of
extracting and using gist, formulating this problem as one of statistical irder@nd introducing

the topic model as one means of solving this computational problem. The belly paper is
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concerned with assessing how well the representation recovered toptbenodel corresponds
with human semantic memory. In an analysis inspired by Tversky’s (19itiuer of spatial
measures of similarity, we show that several aspects of word associaiorathbe explained by
the topic model are problematic for LSA. We then compare the performartbe bko models in a
variety of other tasks tapping semantic representation, and outline somevedthie which the

topic model can be extended.

Approaches to semantic representation

Semantic representation is one of the most formidable topics in cognitivegieggh The
field is fraught with murky and potentially never-ending debates; it is haiagine that one
could give a complete theory of semantic representation outside of a comgetg t cognition
in general. Consequently, formal approaches to modeling semanticertatsn have focused on
various tractable aspects of semantic knowledge. Before presentiagomach we must clarify
where its focus lies.

Semantic knowledge can be thought of as knowledge about relations ameergl types of
elements, including words, concepts, and percepts. Some relationswhdtden studied include

the following:

Wor d-concept relations. Knowledge that the wordogG refers to the conceplog, the word

ANIMAL refers to the conceptnimal, or that the wordoASTERrefers to the concepoaster.

Concept-concept relations. Knowledge thatogs are a kind aiinimal, thatdogs haveails and

canbark, or thatanimals havédvodies and camove.

Concept-percept or concept-action relations. Knowledge about whatogs look like, how alog

can be distinguished fromaat, how to pet @og or operate toaster.

Word-word relations. Knowledge that the word oG tends to be associated with or co-occur

with words such asAIL, BONE or CAT, or the wordTOASTERtends to be associated with
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KITCHEN, OVEN, Or BREAD.

These different aspects of semantic knowledge are not necessaepeindent. For instance, the
word CAT may be associated with the wope G because AT refers tocats,DOG refers todogs,

andcats andlogs are both common kinds ahimals. Yet different aspects of semantic knowledge

can influence behavior in different ways and seem to be best capityditferent kinds of formal
representations. As a result, different approaches to modeling semaoitekige tend to focus on
different aspects of this knowledge, depending on what fits most tigtwiith the representational
system they adopt, and there are corresponding differences in theitweth phenomena they
emphasize. Computational models also differ in the extent to which their semegmtasentations
can be learned automatically from some naturally occuring data or must Heniged by the
modeler. Although many different modeling approaches can be imagined withibroad
landscape, there are two prominent traditions.

One tradition emphasizes abstract conceptual structure, focusintations between
concepts and relations between concepts and percepts or actionsndlsdige is traditionally

represented in terms of systems of abstract propositions, such asafisugbird), (hasbird

wings), and so on (Collins & Quillian, 1969). Models in this tradition have ésclion explaining
phenomena such as the development of conceptual hierarchies thattquppositional
knowledge (e.g., Keil, 1979), reaction time to verify conceptual propositiomormal adults
(Collins & Quillian, 1969), and the decay of propositional knowledge witing@r brain damage
(e.g., Warrington, 1975). This approach does not worry much abeuh#ppings between words
and concepts, or associative relations between words; in practicastimetibn between words
and concepts is typically collapsed. Actual language use is addredyaddirectly: the relevant
experiments are often conducted with linguistic stimuli and responses, bptithary interest is
not in the relation between language use and conceptual structuresiefations of abstract
semantic knowledge of this kind have traditionally been hand-crafted bylersd€ollins &

Quillian, 1969), in part because it is not clear how they could be leammedretically. Recently
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there has been some progress in learning distributed representatiamceptual relations
(Rogers & McClelland, 2004), although the input to these learning modeidl iguste idealized,
in the form of hand-coded databases of simple propositions. Learniper$aale representations
of abstract conceptual relations from naturally occuring data remainasuived problem.

A second tradition of studying semantic representation has focused mtre stiucture of
associative relations between words in natural language use, andnelagittveen words and
concepts, along with the contextual dependence of these relations skorda, when one hears
the wordBIRD, it becomes more likely that one will also hear words &G, FLY, or NESTin the
same context — but perhaps less so if the context also contains the WEESGIVING,
TURKEY, andDINNER. These expectations reflect the fact thRsD has multiple senses, or
multiple concepts it can refer to, including both a taxonomic category anddectategory. The
semantic phenomena studied in this tradition may appear to be somewhat siparficat they
typically do not tap deep conceptual understanding. The data tend to lmedreddirectly to
language use and the memory systems that support online linguistic processih as word
association norms (e.g., Nelson, McEvoy, & Schreiber, 1998), wading times in sentence
processing (e.g., Sereno, Pacht, & Rayner, 1992), semantic primingT(i#,dross, & Kintsch,
1988), and effects of semantic context in free recall (e.g., RoedigecRavimott, 1995).
Compared to approaches focusing on deeper conceptual relatigsic cteodels of semantic
association tend to invoke much simpler semantic representations, such asicspaces or
holistic spreading-activation networks (e.g., Deese, 1959; Collins & Lof®i85). This simplicity
has its advantages: there has recently been considerable successifg léee structure of such
models from large-scale linguistic corpora (e.g., Landauer & Dumais,;196% & Burgess,
1996).

We recognize the importance of both these traditions in studying semantic kigavi€hey
have complementary strengths and weaknesess, and ultimately ideas froaneblikely to be

important. Our work here is more clearly in the second tradition, with its emphaseatively
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light representations that can be learned from large text corporaraexiplaining the structure of
word-word and word-concept associations, rooted in the contextdudldanguage use. While the
interpretation of sentences requires semantic knowledge that goegltbgse contextual
associative relationships, many theories still identify this level of knowledgaaying an
important role in the early stages of language processing (Ericsson &Kirit995; Kintsch,

1988; Potter, 1993). Specifically, it supports solutions to three core gi@atipnal problems:

Prediction Predict the next word or concept, facilitating retrieval
Disambiguation Identify the senses or meanings of words
Gist extraction Pick out the gist of a set of words

Our goal is to understand how contextual semantic association is refg@sesed, and acquired.
We will argue that considering relations between latent semantic topics aadzabke word forms
provides a way to capture many aspects of this level of knowledge: itd@®yprincipled and
powerful solutions to these three core tasks and it is also easily learnatmen&tural linguistic
experience. Before introducing this modeling framework, we will summarizétb dominant
approaches to the representation of semantic association, semantic seamddemantic spaces,

establishing the background to the problems we consider.

Semanticmetworks

In an associative semantic network, such as that shown in Figure 1sgt)pwords or
concepts are represented as nodes connected by edges that ingiveisemssociations (e.g.,
Collins & Loftus, 1975). Seeing a word activates its node, and activagoeasls through the
network, activating nodes that are nearby. Semantic networks pravidéuitive framework for
expressing the semantic relationships between words. They also prowigle solutions to the
three problems for which contextual knowledge might be used. Treatiisg fhr@blems in the
reverse of the order identified above, gist extraction simply consistdigédtieg each word that

occurs in a given context, and allowing that activation to spread throwghetwork. The gist is
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represented by the pattern of node activities. If different meaning®aoisare represented as
different nodes, then disambiguation can be done by comparing thetaetiohthose nodes.
Finally, the words that one might expect to see next in that context will berdinds that have high
activations as a result of this process.

Most semantic networks that are used as components of cognitive moeletsresiderably
more complex than the example shown in Figure 1 (a), allowing multiple differedslof nodes
and connections (e.g., Anderson, 1983; Norman, Rumelhart, & the LNéRdReh Group, 1975).
In addition to “excitatory” connections, in which activation of one nodeeases activation of
another, some semantic networks feature “inhibitory” connections, alloagtigation of one node
to decrease activation of another. The need for inhibitory connectiongicated by empirical
results in the literature on priming. A simple network without inhibitory connectaamsexplain
why priming might facilitate lexical decision, making it easier to recognize thaget# an
English word. For example, a word likeuRSE primes the wordOCTORbecause it activates
concepts that are closely relatedtocTOR, and the spread of activation ultimately activates
doctor. However, not all priming effects are of this form. For examplesl\WEL976) showed that
priming with irrelevant cues could have an inhibitory effect on lexical dewisTo use an example
from Markman (1998), priming withOCKEY could produce a slower reaction time fdoCTOR
than presenting a completely neutral prime. Effects like these suggestdeheted to incorporate
inhibitory links between words. Interestingly, it would seem that a greayreach links would be
required, because there is no obvious special relationship betngsexeY andDOCTOR the two
words just seem unrelated. Thus, inhibitory links would seem to be ndedegen all pairs of

unrelated words in order to explain inhibitory priming.

Semanticspaces

An alternative to semantic networks is the idea that the meaning of words captged

using a spatial representation. In a semantic space, such as that shHeguranl (b), words are



Topics in semantic representation 12

nearby if they are similar in meaning. This idea appears in early work exgltrause of
statistical methods to extract representations of the meaning of words énorarhjudgments
(Deese, 1959; Fillenbaum & Rapoport, 1971). Recent researgbusagd this idea in two
directions. First, connectionist models using “distributed representationg/ords — which are
commonly interpreted as a form of spatial representation — have beetouysedlict behavior on a
variety of linguistic tasks (e.g., Kawamoto, 1993; Plaut, 1997; Rodd, @a&klarslen-Wilson,
2004). These models perform relatively complex computations on thelymdgrepresentations
and allow words to be represented as multiple points in space, but are typiaaigd on
artificially generated data. A second thrust of recent research leassaploring methods for
extracting semantic spaces directly from real linguistic corpora (LamdaDeimais, 1997; Lund
& Burgess, 1996). These methods are based upon comparatively simgddsrdor example,
they assume each word is represented as only a single point — but paadigket means of
investigating the influence of the statistics of language on semantic repitesenta

Latent Semantic Analysis (LSA; Landauer & Dumais, 1997) is one of the prostinent
methods for extracting a spatial representation for words from a multirdeticorpus of text.
The input to LSA is a word-document co-occurrence matrix, such asfioan in Figure 2. In a
word-document co-occurrence matrix, each row represents a aact,column represents a
document, and the entries indicate the frequency with which that wordrectcurthat document.
The matrix shown in Figure 2 is a portion of the full co-occurrence matrixHferTASA corpus
(Landauer & Dumais, 1997), a collection of passages excerpted flacagonal texts used in

curricula from the first year of school to the first year of college.

Insert Figure 2 about here

The output from LSA is a spatial representation for words and documaftes applying

various transformations to the entries in a word-document co-occerraatrix (one standard set
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of transformations is described in Griffiths & Steyvers, 2003), singwdareszdecomposition is
used to factorize this matrix into three smaller matrié¢ésD, andV/, as shown in Figure 3 (a).
Each of these matrices has a different interpretation. T Imeatrix provides an orthonormal basis
for a space in which each word is a point. Thematrix, which is diagonal, is a set of weights for
the dimensions of this space. Thematrix provides an orthonormal basis for a space in which
each document is a point. An approximation to the original matrix of transfoooedts can be
obtained by remultiplying these matrices, but choosing to use only the initial psrioeach

matrix, corresponding to the use of a lower-dimensional spatial refiet&sn

Insert Figure 3 about here

In psychological applications of LSA, the critical result of this procedarthe first matrix,
U, which provides a spatial representation for words. Figure 1 (b) shiog/first two dimensions
of U for the word-document co-occurence matrix shown in Figure 2. Thétseshown in the
figure demonstrate that LSA identifies some appropriate clusters of wewsdexamplepiL,
PETROLEUMandCRUDE are close together, as s#eDERAL, MONEY, andRESERVE The word
DEPOSITSlies between the two clusters, reflecting the fact that it can appear in eithixe.

The cosine of the angle between the vectors corresponding to words ienttamtic space
defined byl has proven to be an effective measure of the semantic association bétwsen
words (Landauer & Dumais, 1997). The cosine of the angle betweendwatorgw; andws (both
rows of U, converted to column vectors) is

T
w w
cos(wl,wg)zil 2 , (@)
[Jwn [[[[we]|

wherew! w, is the inner product of the vectors andw,, and||w|| denotes the norm/ w7 w.
Performance in predicting human judgments is typically better when using onfiyshizw

hundred derived dimensions, since reducing the dimensionality of thesegiation can decrease
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the effects of statistical noise and emphasize the latent correlations amaoug (wandauer &
Dumais, 1997).

Latent Semantic Analysis provides a simple procedure for extracting algegtiasentation
of the associations between words from a word-document co-ocoa@raatrix. The gist of a set
of words is represented by the average of the vectors associated veewtioods. Applications of
LSA often evaluate the similarity between two documents by computing the codinedrethe
average word vectors for those documents (Landauer & Dumais, R&dider, Schreiner, Wolfe,
Laham, Landauer, & Kintsch, 1998; Wolfe, Schreiner, Rehder, tmaliltz, Kintsch, & Landauer,
1998). This representation of the gist of a set of words can be uselditess the prediction
problem: we should predict that words with vectors close to the gist veadikaty to occur in
the same context. However, the representation of words as points in gierterdiated Euclidean
space makes it difficult for LSA to solve the disambiguation problem. The leexeiss that this
relatively unstructured representation does not explicitly identify therdiffiesenses of words.
While DEPOSITSlies between words having to do with finance and words having to do with oil,

the fact that this word has multiple senses is not encoded in the representatio

Extracting and using gist as statistical problems

Semantic networks and semantic spaces are both proposals for a foemanitic
representation that can guide linguistic processing. We now take a stefrdmacthese specific
proposals, and consider the abstract computational problem that thiyerrded to solve, in the
spirit of Marr’s (1982) notion of the computational level, and Anders@¢h990) rational analysis.
Our aim is to clarify the goals of the computation and to identify the logic by whicketigpals
can be achieved, so that this logic can be used as the basis for explvémgpproaches to
semantic representation.

Assume we have seen a sequence of werds (wy, ws, .. ., w,). Thesen words manifest

some latent semantic structuteWe will assume thaf consists of the gist of that sequence of
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wordsg, and the sense or meaning of each ware; (21, 22, . . ., 2,,), SO€ = (g,z). We can now

formalize the three problems identified in the previous section:

Prediction Predictw,,4+1 fromw
Disambiguation Infer z from w
Gist extraction Infer g from w

Each of these problems can be formulated as statistical problems. Thetipregioblem requires
computing the conditional probability af,, ;1 givenw, P(w,+1|w). The disambiguation
problem requires computing the conditional probabilitg@fivenw, P(z|w). The gist extraction
problem requires computing the probabilitygpgivenw, P(g|w).

All of the probabilities needed to solve the problems of prediction, disambigyatia gist
extraction can be computed from a single joint distribution over words and Etteictures,
P(w,£). The problems of prediction, disambiguation, and gist extraction can thssied by
learning the joint probabilities of words and latent structures. This cammbe dsing a generative
model for language. Generative models are widely used in machine leamingjatistics as a
means of learning structured probability distributions. A generative mpéeifies a hypothetical
causal process by which data are generated, breaking this prasessnto probabilistic steps.
Critically, this procedure can involve unobserved variables, correlipg to latent structure that
plays a role in generating the observed data. Statistical inference caeddolidentify the latent
structure most likely to have been responsible for a set of observations.

A schematic generative model for language is shown in Figure 4 (a). Imibitel, latent
structuref generates an observed sequence of werds (wy, . .., w,). This relationship is
illustrated usinggraphicalmodel notation (e.g., Jordan, 1998; Pearl, 1988). Graphical models
provide an efficient and intuitive method of illustrating structured probabilgtributions. In a
graphical model, a distribution is associated with a graph in which nodearalem variables and
edges indicate dependence. Unlike artificial neural networks, in whicitla typically indicates a

single unidimensional variable, the variables associated with nodes cabitoardy complex.£
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can be any kind of latent structure, awdrepresents a set afwords.

Insert Figure 4 about here

The graphical model shown in Figure 4 (a) idieected graphical model, with arrows

indicating the direction of the relationship among the variables. The resulfiis@atl graph, in
which “parent” nodes have arrows to their “children”. In a generatioglel, the direction of these
arrows specifies the direction of the causal process by which datzaeeaged: a value is chosen
for each variable by sampling from a distribution that conditions on the fmoéhat variable in
the graph. The graphical model shown in the figure indicates that woedgeaerated by first
sampling a latent structuré, from a distribution over latent structureB(£), and then sampling a
sequence of wordsy, conditioned on that structure from a distributiitw |£).

The process of choosing each variable from a distribution condition&d parents defines
a joint distribution over observed data and latent structures. In theg@memodel shown in

Figure 4 (a), this joint distribution is
P(w,£) = P(w|€)P(2).

With an appropriate choice d@f this joint distribution can be used to solve the problems of
prediction, disambiguation, and gist extraction identified above. In partjcb&aprobability of the

latent structure given the sequence of woraks can be computed by applying Bayes’ rule:

P(w|e)P(£)

PUw) = =0

2
where
P(w) =Y _P(wl|e)P(e).
l

This Bayesian inference involves computing a probability that goes aghandirection of the

arrows in the graphical model, inverting the generative process.
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Equation 2 provides the foundation for solving the problems of predictisantbiguation,
and gist extraction. The probability needed for predictiBfw,,1|w), can be written as

Plwai|w) = 37 Plwn1/€, w)P(e]w), (3)
£

whereP(w,+1|£) is specified by the generative process. Distributions over the sensesds,z,

and their gistg, can be computed by summing out the irrelevant aspe€t of

Palw) = Y P(tlw) (4)
Piglw) = S Pew), (5)

where we assume that the gist of a set of words takes on a discretevaiasf — if it is
continuous, then Equation 5 requires an integral rather than a sum.

This abstract schema gives a general form common to all generativdafiodianguage.
Specific models differ in the latent structu¢hat they assume, the process by which this latent
structure is generated (which defin@gf)), and the process by which words are generated from
this latent structure (which definé¥w|£)). Most generative models that have been applied to
language focus on latent syntactic structure (e.g., Charniak, 19%8sku& Martin, 2000;
Manning & Shutze, 1999). In the next section, we describe a generative modetfirasents the

latent semantic structure that underlies a set of words.

Representing gist with topics

A topic model is a generative model that assumes a latent struttargy, z), representing
the gist of a set of wordg;, as a distribution over topics, and the sense or meaning used for the
ith word, z;, as an assignment of that word to one of these tonEach topic is a probability
distribution over words. A document — a set of words — is generated ysafgthe distribution
over topics reflecting its gist, using this distribution to choose a tepiiar each wordw;, and then

generating the word itself from the distribution over words associated withdpe. Given the
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gist of the document in which it is contained, this generative processeddfie probability of the

7th word to be

T
P(wilg) = ) P(wi|z:)P(zilg), (6)

zi=1

in which the topics, specified b (w|z), are mixed together with weights given B(z|g), which
vary across documentsThe dependency structure among variables in this generative model is
shown in Figure 4 (b).

Intuitively, P(w|z) indicates which words are important to a topic, whiéz|g) is the
prevalence of those topics in a document. For example, if we lived in a wirdderxpeople only
wrote about finance, the English countryside, and oil mining, then we coattel all documents
with the three topics shown in Figure 1 (c). The content of the three topiefiésted inP(w|z):
the finance topic gives high probability to words likRe SERVEandFEDERAL, the countryside
topic gives high probability to words likeTREAM andMEADOW, and the oil topic gives high
probability to words likeePETROLEUMandGASOLINE. The gist of a document, indicates
whether a particular document concerns finance, the countryside, @gilgnor financing an oil
refinery in Leicestershire, by determining the distribution over togis|g).

Equation 6 gives the probability of a word conditioned on the gist of a dontiriiée can
define a generative model for a collection of documents by specifyingihewist of each
document is chosen. Since the gist is a distribution over topics, this reqsiresa distribution
over multinomial distributions. The idea of representing documents as mixtupestbilistic
topics has been used in a number of applications in information retrievatatigtisal natural
language processing, with different models making different assumztong the origins of the
distribution over topics (e.g., Bigi, De Mori, El Beze, & Spriet, 1997; Bleakt2003; Hofmann,
1999; lyer & Ostendorf, 1996; Ueda & Saito, 2003). We will use a gainee model introduced by
Blei et al. (2003) called Latent Dirichlet Allocation. In this model, the multinomialrdhigtion
representing the gist is drawn from a from a Dirichlet distribution, a stahgiebability

distribution over multinomials (e.g., Gelman, Carlin, Stern, & Rubin, 1995).
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Having defined a generative model for a corpus based upon sonmagiers, it is possible
to use statistical methods to infer the parameters from the corpus. In @jitisssmeans finding a
set of topics such that each document can be expressed as a mixturseofdhics. An algorithm
for extracting a set of topics is described in Appendix A, and a more det@dsctiption and
application of this algorithm can be found in Griffiths and Steyvers (20Ddis algorithm takes as
input a word-document co-occurrence matrix. The output is a set mfstogach being a
probability distribution over words. The topics shown in Figure 1 (c) ateadly the output of this
algorithm when applied to the word-document co-occurrence matrix shorigure 2. These
results illustrate how well the topic model handles words with multiple meaningseesgIELD
appears in both the oil and countryside topi&sNK appears in both finance and countryside, and
DEPOSITSappears in both oil and finance. This is a key advantage of the topic mgdaetshming
a more structured representation, in which words are assumed to belopirs) the different

meanings or senses of ambiguous words can be differentiated.

Prediction,disambiguationandgist extraction

The topic model provides a direct solution to the problems of prediction, digamation,
and gist extraction identified in the previous section. The details of theseutatigns are
presented in Appendix A. To illustrate how these problems are solved by ttiel e will
consider a simplified case where all words in a sentence are assumee théaame topic. In this
casey is a distribution that puts all of its probability on a single topicandz; = z for all i. This
“single topic” assumption makes the mathematics straightforward, and is anaddesovorking
assumption in many of the settings we epr%re.

Under the single topic assumption, disambiguation and gist extraction becaiwealent:

the senses and the gist of a set of words are both expressed in theipigle, that was
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responsible for generating wores = {wy, ws, ..., w, }. Applying Bayes’ rule, we have
_ Pwlz)P(z)
P(zlw) = W
[T Pwil2)P(2) @
22 [Ty Plwilz) P(2)”

where we have used the fact that thgare independent given If we assume a uniform prior over
topics,P(z) = % the distribution over topics depends only on the product of the probabiities
each of thaw; under each topie. The product acts like a logical “and”: a topic will only be likely
if it gives reasonably high probability to all of the words. Figure 5 showas this functions to
disambiguate words, using the topics from Figure 1. On seeing thesyord, both the finance
and the countryside topics have high probability. SesmgeAM quickly swings the probability in

favor of the bucolic interpretation.

Insert Figure 5 about here

Solving the disambiguation problem is the first step in solving the predictiongarob
Incorporating the assumption that words are independent given thais fofo Equation 3, we
have

P(wni1|w) =Y P(wpi|2) P(z|w). (8)
The predicted distribution over words is thus a mixture of topics, with each bsiig weighted
by the distribution computed in Equation 7. This is illustrated in Figure 5: on s&ing, the
predicted distribution over words is a mixture of the finance and countrysgdes, butSTREAM

moves this distribution towards the countryside topic.

Topicsandsemantimetworks

The topic model provides a clear way of thinking about how and why “atitim” might

spread through a semantic network, and can also explain inhibitory prinfexjsfThe standard
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conception of a semantic network is a graph with edges between word, medgdsown in Figure 6
(a). Such a graph mnipartite: there is only one type of node, and those nodes can be
interconnected freely. In contragipartite graphs consist of nodes of two types, and only nodes of
different types can be connected. We can form a bipartite semantic tkdtywantroducing a

second class of nodes that mediate the connections between wordsa@tethink about the
representation of the meanings of words provided by the topic model is in téitims bipartite

semantic network shown in Figure 6 (b), where the second class of acelése topics.

Insert Figure 6 about here

In any context, there is uncertainty about which topics are relevant tadhégxt. On seeing
a word, the probability distribution over topics moves to favor the topics &gsdowith that word:
P(z|w) moves away from uniformity. This increase in the probability of those topicgugively
similar to the idea that activation spreads from the words to the topics thabrameated with
them. Following Equation 8, the words associated with those topics alsoedtgher probability.
This dispersion of probability throughout the network is again reminisdespireading activation.
However, there is an important difference between spreading actiaiprobabilistic inference:
the probability distribution over topics}(z|w) is constrained to sum to one. This means that as
the probability of one topic increases, the probability of another topic deese

The constraint that the probability distribution over topics sums to one is iguitio
produce the phenomenon of inhibitory priming discussed above. Inhilptoning occurs as a
necessary consequence of excitatory priming: when the probabilityeafoqic increases, the
probability of another topic decreases. Consequently, it is possibleéword to decrease the
predicted probability with which another word will occur in a particular contEer example,
according to the topic model, the probability of the wordcToRis 0.000334. Under the single

topic assumption, the probability of the wopdcTOR conditioned on the worduRsEis 0.0071,
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an instance of excitatory priming. However, the probabilitypofc Tor drops t00.000081 when
conditioned orHOCKEY. The wordHOCKEY suggests that the topic concerns sports, and
consequently topics that gimocTORhigh probability have lower weight in making predictions.
By incorporating the constraint that probabilities sum to one, generatidelnare able to capture
both the excitatory and the inhibitory influence of information without requitivegintroduction of

large numbers of inhibitory links between unrelated words.

Topicsandsemanticspaces

Our claim that models that can accurately predict which words are likelyde gra given
context can provide clues about human language processing is stitiréde spirit of many
connectionist models (e.g., Elman, 1990). However, the strongest pabatereen our approach
and work being done on spatial representations of semantics are pénbap that exist between
the topic model and Latent Semantic Analysis (Landauer & Dumais, 199¥eth the
probabilistic topic model developed by Hofmann (1999) was motivated byuiteess of LSA, and
provided the inspiration for the model introduced by Blei et al. (2003)wleatise here. Both LSA
and the topic model take a word-document co-occurrence matrix as ingilt | BA and the topic
model provide a representation of the gist of a document, either as a psade or a distribution
over topics. And both LSA and the topic model can be viewed as a formimiigsionality
reduction”, attempting to find a lower-dimensional representation of thetsteuexpressed in a
collection of documents. In the topic model, this dimensionality reduction consistsrg to
express the large number of probability distributions over words proviglgte different
documents in terms of a small number of topics, as illustrated in Figure 3 (b).

However, there are two important differences between LSA and the toplelmbhe major
difference is that LSA is not a generative model. It does not identifymthetical causal process
responsible for generating documents, and the role of the meaningsas imahis process. As a

consequence, it is difficult to extend LSA to incorporate different kisfdsemantic structure, or to
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recognize the syntactic roles that words play in a document. This leads tedbedsdifference
between LSA and the topic model: the nature of the representation. Larean8e Analysis is
based upon the singular value decomposition, a method from linear algabcathonly yield a
representation of the meanings of words as points in an undifferentiatdidé&an space. In
contrast, the statistical inference techniques used with generative moeléiesxéble, and make it
possible to use structured representations. The topic model providesla stmgtured
representation: a set of individually meaningful topics, and informati@ugvhich words belong
to those topics. We will show that even this simple structure is sufficient to allewotiic model

to capture some of the qualitative features of word association that probkematic for LSA, and
to predict quantities that cannot be predicted by LSA, such as the nuhime&ramings or senses of

aword.

Comparing topics and spaces

The topic model provides a solution to extracting and using the gist of sebrafswin this
section, we evaluate the topic model as a psychological account of ttentofihuman semantic
memory, comparing its performance with LSA. The topic model and LSA botlhgssame input
— a word-document co-occurrence matrix — but they differ in how thistirgpanalyzed, and in the
way that they represent the gist of documents and the meaning of wordsniparing these
models, we hope to demonstrate the utility of generative models for explorirsioyue of
semantic representation, and to gain some insight into the strengths and limit&iitiferent
kinds of representation.

Our comparison of the topic model and LSA will have two parts. In this sectiergnalyze
the predictions of the two models in depth using a word association task, edngithoth the
guantitative and the qualitative properties of these predictions. In partistdashow that the topic
model can explain several phenomena of word association that ademtkc for LSA. These

phenomena are analogues of the phenomena of similarity judgments thatlaleatic for
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spatial models of similarity (Tversky, 1977; Tversky & Gati, 1982; Tvgr&kHutchinson, 1986).
In the next section we compare the two models across a broad rangeyfdaswing that the
topic model produces the phenomena that were originally used to suf@yiand describing

how the model can be used to predict different aspects of human lamguagessing and memory.

Quantitativepredictionsfor word association

Are there any more fascinating data in psychology than tables of asso@iation

Deese (1965, p. viii)

Association has been part of the theoretical armory of cognitive psygists since Thomas
Hobbes used the notion to account for the structure of our “Trayndofights” (Hobbes,
1651/1998; detailed histories of association are provided by Deesg, 49@ Anderson & Bower,
1974). One of the first experimental studies of association was comtlogi@alton (1880), who
used a word association task to study different kinds of associatione Sialton, several
psychologists have tried to classify kinds of association or to otherwiggedis structure (e.g.,
Deese, 1962; 1965). This theoretical work has been supplemented dgublopment of extensive
word association norms, listing commonly named associates for a variety d§\(@g., Cramer,
1968; Kiss, Armstrong, Milroy, & Piper, 1973; Nelson, McEvoy & Sdber, 1998). These norms
provide a rich body of data, which has only recently begun to be adsttessng computational
models (Dennis, 2003; Nelson, McEvoy, & Dennis, 2000; Steyveri§ri@h& Nelson, 2004).

While, unlike Deese (1965), we suspect that there may be more fascipatiogological
data than tables of associations, word association provides a usethinbark for evaluating
models of human semantic representation. The relationship between wocihties and
semantic representation is analogous to that between similarity judgments a@egptmh
representation, being an accessible behavior that provides cluesmstaints that guide the
construction of psychological models. Also, like similarity judgments, assoniatiores are

highly predictive of other aspects of human behavior. Word associationsyare commonly used
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in constructing memory experiments, and statistics derived from these nax@dben shown to
be important in predicting cued recall (Nelson, McKinney, Gee, & JarecZ1998), recognition
(Nelson, McKinney, et al., 1998; Nelson, Zhang, & McKinney, 20@txl false memories (Deese,
1959; McEvoy, Nelson, & Komatsu, 1999; Roediger, Watson, McDerr&oBallo, 2001). Itis

not our goal to develop a model of word association, as many factorstbesemantic
association are involved in this task (e.g., Ervin, 1961; McNeill, 1966)wauibelieve that issues
raised by word association data can provide insight into models of semgnigseatation.

We used the norms of Nelson et al. (1998) to evaluate the performan&?ohihd the topic
model in predicting human word association. These norms were collectegaiBiee association
task, in which participants were asked to produce the first word that camthair head in
response to a cue word. The results are unusually complete, with assdeiatg derived for every
word that was produced more than once as an associate for any otlterR@oeach word, the
norms provide a set of associates and the frequencies with which theynasered, making it
possible to compute the probability distribution over associates for each&eill denote this
distribution P(w2|w, ) for a cuew; and associate,, and order associates by this probability: the
first associate has highest probability, the second next highest, dodtso

We obtained predictions from the two models by deriving semantic repréissstérom the
TASA corpus (Landauer & Dumais, 1997), which is a collection of exisefifom reading
materials commonly encountered between the first year of school andstheefir of college. We
used a smaller vocabulary than previous applications of LSA to TASA, cerisglonly words that
occurred at least 10 times in the corpus and were not included in a stiistizp” list containing
function words and other high frequency words with low semantic contdmis. [&ft us with a
vocabulary of 26,243 words, of which 4,235,314 tokens appeared Bitle®1 documents
contained in the corpus. We used the singular value decomposition to ex#@0tdimensional
representation of the word-document co-occurrence statistics, andreed the performance of

the cosine as a predictor of word association using this and a variety sppatds of lower
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dimensionality. We also computed the inner product between word vectarsaternative
measure of semantic association, which we will discuss in detail later in the @yorechoice to
use 700 dimensions as an upper limit was guided by two factors, one thabagtitthe other
practical: previous analyses suggested that the performance of LSRegawith only a few
hundred dimensions (Landauer & Dumais, 1997), an observation tlsatavesistent with
performance on our task, and 700 dimensions is the limit of standard algofithisiagular value
decomposition with a matrix of this size on a workstation with 2GB of RAM.

We applied the algorithm for finding topics described in Appendix A to the same
word-document co-occurrence matrix, extracting representations it 1i700 topics. Our
algorithm is far more memory efficient than the singular value decompositiatl, @fsthe
information required throughout the computation can be stored in sparseesattonsequently,
we ran the algorithm at increasingly high dimensionalities, until predictioropmgnce began to
level out. In each case, the set of topics found by the algorithm was higkhpretable,
expressing different aspects of the content of the corpus. A selaifttopics from the 1700 topic
solution are shown in Figure 7.

The topics found by the algorithm pick out some of the key notions addtégséocuments
in the corpus, including very specific subjects like printing and combustigimes. The topics are
extracted purely on the basis of the statistical properties of the words @d/elvoughly, that these
words tend to appear in the same documents — and the algorithm does et aeguspecial
initialization or other human guidance. The topics shown in the figure weigecho be
representative of the output of the algorithm, and to illustrate how polysear@somonymous
words are represented in the model: different topics capture diffecgrexts in which words are
used, and thus different meanings or senses. For example, the fitsitie® shown in the figure

capture two different meanings 0HARACTERS the symbols used in printing, and the personas in

aplay.
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Insert Figure 7 about here

To model word association with the topic model, we need to specify a probalijistiatity
that corresponds to the strength of association. The discussion ofaiblerprof prediction above
suggests a natural measure of semantic associdtign;|w ), the probability of wordw, given

word wy. Using the single topic assumption, we have

P(walwr) =) P(ws|2)P(z[uwn), 9)

which is just Equation 8 witlh = 1. The details of evaluating this probability are given in
Appendix A. This conditional probability automatically compromises betweel fwequency and
semantic relatedness: higher frequency words will tend to have higblealpitities across all
topics, and this will be reflected iR(w-|z), but the distribution over topics obtained by
conditioning onw;, P(z|w;), will ensure that semantically related topics dominate the sum; If
is highly diagnostic of a particular topic, then that topic will determine the priibadistribution
overws. If w; provides no information about the topic, thBtws|w, ) will be driven by word
frequency.

The overlap between the words used in the norms and the vocabulargdifom TASA
was 4,471 words, and all analyses presented in this paper are batbedsnset of the norms that
uses these words. Our evaluation of the two models in predicting wordiassnavas based upon
two performance measures: the median rank of the first five associatesstbe ordering imposed
by the cosine or the conditional probability, and the probability of the fisbeiate being included
in sets of words derived from this ordering. For LSA, the first of theeasures was assessed by
computing the cosine for each woig with each cueu,, ranking the choices af, by
cos(wy, wz) such that the highest ranked word had highest cosine, and then fihdingnks of the

first five associates for that cue. After applying this procedure t, dlf1 cues, we computed the
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median ranks for each of the first five associates. An analogousduereas performed with the
topic model, using®(ws|w1 ) in the place ofos(w, w2). The second of our measures was the
probability that the first associate is included in the set ofith&ords with the highest ranks under
each model, varyingn. These two measures are complementary: the first indicates central
tendency, while the second gives the distribution of the rank of the fisstige.

The topic model outperforms LSA in predicting associations between wolasresults of
our analyses are shown in Figure 8. We tested LSA solutions with 1003200400, 500, 600
and 700 dimensions. In predicting the first associate, performance teued$ around 500
dimensions, being approximately the same at 600 and 700 dimensions. Weenhleug00
dimensional solution for the remainder of our analyses, although our Ediotg the qualitative
properties of LSA hold regardless of dimensionality. The median rank dirdiessociate in the
700 dimensional solution was 31 out of 4470, and the word with highesteass the first
associate in 11.54% of cases. We tested the topic model with 500, 700,1900,1800, 1500, and
1700 topics, finding that performance levels out at around 1500 toplesvill use the 1700
dimensional solution for the remainder of our analyses. The median rahk fifst associate in
P(wz|wy) was 18, and the word with highest probability under the model was the $setate in

16.15% of cases, in both cases an improvement of around 40 perceSton

Insert Figure 8 about here

The performance of both models on the two measures was far better tharechdich
would be 2235.5 and 0.02% for the median rank and the proportion coesgmtctively. The
dimensionality reduction performed by the models seems to improve predictibasohditional
probability P(w2|w;) computed directly from the frequencies with which words appeared in
different documents gave a median rank of 50.5 and predicted the 8atiate correctly in

10.24% of cases. Latent Semantic Analysis thus improved on the raw cor@ace probability by
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between 20 and 40 percent, while the topic model gave an improvementrd@@percent. In both
cases, this improvement results purely from having derived a lower-giorel representation
from the raw frequencies.

Figure 9 shows some examples of the associates produced by peopletardwo
different models. The figure shows two examples randomly chosen faciaf four sets of cues:
those for which both models correctly predict the first associate, thosehioh only the topic
model predicts the first associate, those for which only LSA predicts steafisociate, and those
for which neither model predicts the first associate. These examples hilstiate how the two
models sometimes fail. For example, LSA sometimes latches onto the wrong senserof, as
with PEN, and tends to give high scores to inappropriate low-frequency wotsaswHALE,
COMMA, andMILDEW. Both models sometimes pick out correlations between words that do not
occur for reasons having to do with the meaning of those waddsk andBUMBLE both occur
with DESTRUCTIONIN a single document, which is sufficient for these low frequency words to
become associated. In some cases, ashvitlt, the most salient properties of an object are not
those that are reflected in its use, and the models fail despite producinghgfegn

semantically-related predictions.

Insert Figure 9 about here

Qualitativepropertiesof word association

Quantitative measures such as those shown in Figure 8 provide a simplegheans
summarizing the performance of the two models. However, they mask somed#eher
qualitative differences that result from using different kinds of espntations. Tversky (1977;
Tversky & Gati, 1982; Tversky & Hutchinson, 1986) argued agaie$inihg the similarity

between two stimuli in terms of the distance between those stimuli in an internaliagal sp
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representation. Tversky's argument was founded upon violationgah#tric axioms — formal
principles that hold for all distance measures, which are also known agsein similarity
judgments. Specifically, similarity can be asymmetric, since the similaritytofy can differ from

the similarity ofy to z, violates the triangle inequality, sinaecan be similar tq; andy to z

without z being similar toz, and shows a neighborhood structure inconsistent with the constraints
imposed by spatial representations. Tversky concluded that contsauali are better

represented in terms of sets of features.

Tversky’s arguments about the adequacy of spaces and featumepfaring the similarity
between conceptual stimuli have direct relevance to the investigation ohemepresentation.
Words are conceptual stimuli, and Latent Semantic Analysis assumes tlust @zor be
represented as points in a space. The cosine, the standard meass@caiteon used in LSA, is a
monotonic function of the angle between two vectors in a high dimensionat sphe angle
between two vectors is a metric, satisfying the metric axioms of being zero fatiddkvectors,
being symmetric, and obeying the triangle inequality. Consequently, the eodiitats many of
the constraints of a metric.

The topic model does not suffer from the same constraints. In fact, tiertwulel can be
thought of as providing a feature-based representation for the meafivayds, with the topics
under which a word has high probability being its features. In AppendixeBshow that there is
actually a formal correspondence between evaluatifigs|w, ) using Equation 9 and computing
similarity in one of Tversky’s (1977) feature-based models. The adsucidetween two words is
increased by each topic that assigns high probability to both, and dedrepsopics that assign
high probability to one but not the other, in the same way that Tverksy claiowdon and
distinctive features should affect similarity.

The two models we have been considering thus correspond to the two kKinds o
representation considered by Tversky. Word association also exHilgitemena that parallel

Tversky’s analyses of similarity, being inconsistent with the metric axioms. Wecuss three
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qualitative phenomena of word association — effects of word frequeiatgtion of the triangle
inequality, and the large scale structure of semantic networks — conneaseyghenomena to the
notions used in Tversky’s (1977; Tversky & Gati, 1982; Tversky &ethinson, 1986) critique of
spatial representations. We will show that LSA cannot explain theseopiama (at least when the
cosine is used as the measure of semantic association), due to the cortstaaentise from the use
of distances, but that these phenomena emerge naturally when wordpi@sented using topics,

just as they can be produced using feature-based representatisimifarity.

Asymmetriesandword frequency.

The asymmetry of similarity judgments was one of Tversky’s (1977) objectmti®e use of
spatial representations for similarity. By definition, any medritas to be symmetric:
d(z,y) = d(y,x). If similarity is a function of distance, similarity should also be symmetric.
However, it is possible to find stimuli for which people produce asymmetric sityifadgments.
One classic example involves China and North Korea: people typically havettlition that
North Korea is more similar to China than China is to North Korea. Tverskyita@ation for this
phenomenon appealed to the distribution of features across these objgatspresentation of
China involves a large number of features, only some of which are shattetlorth Korea, while
our representation of North Korea involves a small number of featuresy nfavhich are shared
with China.

Word frequency is an important determinant of whether a word will be nameoh
associate. This can be seen by looking for asymmetric associations: jpamsds w, , ws in
which one word is named as an associate of the other much more often thaengadi.e. either
P(wa|wy) >> P(wi|ws) or P(w;|wz) >> P(wz|w;)). The effect of word frequency can then be
evaluated by examining the extent to which the observed asymmetries cacoomiacl for by the
frequencies of the words involved. We defined two wardsw to be associated if one word was
named as an associate of the other at least once (i.e. élthefw;) or P(w;|ws2) > 0), and

assessed asymmetries in association by computing the ratio of cue-assabatsaljpies for all
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associated word gﬂz;g Of the 45,063 pairs of associated words in our subset of the norms,
38,744 (85.98%) had ratios indicating a difference in probability of at Eastrder of magnitude
as a function of direction of association. Good examples of asymmetric pelusi@kEG-BEER,
TEXT-BOOK, TROUSERSPANTS, MEOW-CAT andCOBRA-SNAKE. In each of these cases, the first
word elicits the second as an associate with high probability, while the secantikisly to elicit

the first. Of the 38,744 asymmetric associations, 30,743 (79.35%) couladberded for by the
frequencies of the words involved, with the higher frequency wordgoeamed as an associate
more often.

Latent Semantic Analysis does not predict word frequency effectsidimg asymmetries in
association. The cosine is used as a measure of the semantic associatesntietiawords partly
because it counteracts the effect of word frequency. The cositsigderently symmetric, as can
be seen from Equation tos(wi, ws) = cos(ws,w;) for all wordsw; , we. This symmetry means
that the model cannot predict asymmetries in word association without adaptitage complex
measure of the association between words (c.f. Krumhansl, 1978; $kgs@b91). In contrast, the
topic model can predict the effect of frequency on word associatiard\fvequency is one of the
factors that contributes t8 (w2 |w). The model can account for the asymmetries in the word
association norms. As a conditional probabil®(ws|w; ) is inherently asymmetric, and the
model correctly predicted the direction 24, 905 (79.77%) of the3g, 744 asymmetric
associations, including all of the examples given above. The topic modeatuounted for almost
exactly the same proportion of asymmetries as word frequency — the difgeveas not
statistically significanty?(1) = 2.08, p = 0.149).

The explanation for asymmetries in word association provided by the topiclisode
extremely similar to Tversky’s (1977) explanation for asymmetries in similarityruetgs.
Following Equation 9P (w2|w; ) reflects the extent to which the topics in whieh appears give
high probability to topiaws. High frequency words tend to appear in more topics than low

frequency words. livy, is a high frequency word ang; is a low frequency wordy;, is likely to
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appear in many of the topics in whieh appears, buiv; will appear in only a few of the topics in

which wy, appears. Consequently(wp|w;) will be large, butP (w;|wy) will be small.

Violation of thetriangleinequality.

The triangle inequality is another of the metric axioms: for a metric
d(z,z) <d(xz,y) + d(y, z). Thisis referred to as the triangle inequality because if, andz are
interpreted as points comprising a triangle, it indicates that no side of thagleiaan be longer
than the sum of the other two sides. This inequality places strong constmaidistance measures,
and strong constraints on the locations of points in a space given a sstaofags. If similarity is
assumed to be a monotonically decreasing function of distance, then thiglibetranslates into a
constraint on similarity relations: if is similar toy andy is similar toz, thenz must be similar to
z. Tversky and Gati (1982) provided several examples where this neshiio does not hold. These
examples typically involve shifting the features on which similarity is assessedns$tance,
taking an example from James (1890), a gas jet is similar to the moon, sincealsotiybt, and the
moon is similar to a ball, because of its shape, but a gas jet is not at all similaatb a b

Word association violates the triangle inequality. A triangle inequality in assotiatiold
mean that ifP (wq|w1) is high, andP (ws|ws) is high, thenP(ws|w;) must be high. It is easy to
find sets of words that are inconsistent with this constraint. For exargalerol1D s highly
associated witBELT, andBELT is highly associated witBUCKLE, butASTEROID andBUCKLE
have little association. Such cases are the rule rather than the excepsbowasin Figure 10 (a).
Each of the histograms shown in the figure was produced by selectingsatifdaree words
w1, wa, ws such thatP (wz|w; ) and P(ws|ws) were greater than some thresheldand computing
the distribution ofP(ws|w ). Regardless of the value of there exist a great many triples in

whichw; andws are so weakly associated as not to be named in the norms.
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Insert Figure 10 about here

Latent Semantic Analysis cannot explain violations of the triangle inequalitg As
monotonic function of the angle between two vectors, the cosine obeysatgas of the triangle
inequality. Given three vectots;, w,, andws, the angle betweem, andws must be less than or
equal to the sum of the angle betwaenandw-, and the angle between, andws. Consequently,
cos(w1, ws) must be greater than the cosine of the sum ofuthe- we andws — w3 angles. Using

the trigonometric expression for the cosine of the sum of two angles, winabginequality

cos(wy,ws) > cos(wi, wg) cos(ws, w3) — sin(wy, we) sin(ws, ws),

wheresin(w;, w9) can be defined analogously to Equation 1. This inequality restricts the [@ssib
relationships between three wordsuif andws are highly associated, angh, andws are highly
associated, them; andws must be highly associated. Figure 10 (b) shows how the triangle
inequality manifests in LSA. High values ofs(w;, wy) andcos(ws, w3) induce high values of
cos(wi, ws). The implications of the triangle inequality are made explicit in Figure 10 (d)y eve
for the lowest choice of threshold, the minimum value@f(w;, w3) was above the 97th
percentile of cosines between all words in the corpus.

The expression of the triangle inequality in LSA is subtle. It is hard to find sifdewhich
a high value of:os(w;, wy) andcos(ws, w3) induce a high value afos(wy, ws), although
ASTEROID-BELT-BUCKLE is one such example: of the 4470 words in the norms (excluding self
associationsBELT has the 13th highest cosine witls TEROID, BUCKLE has the second highest
cosine withBeLT, and consequentlguckLE has the 41st highest cosine witBTEROID, higher
thanTAIL, IMPACT, or SHOWER The constraint is typically expressed not by inducing spurious
associations between words, but by locating words that might violate thgl&imequality

sufficiently far apart that they are unaffected by the limitations it imposeshagn in Figure
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10(b), the theoretical lower bound ons(w1, w3) only becomes an issue when btk (w;, w2)
andcos(ws, ws) are greater thaf.7.

As illustrated in Figure 7, the topic model naturally recovers the multiple senses of
polysemous and homonymous words, placing them in different topics. Thissmigkossible for
violations of the triangle inequality to occur:«f; has high probability in topic 1 but not topic 2,
ws has high probability in both topics 1 and 2, aiglhas high probability in topic 2 but not topic
1, thenP(ws|wy) and P(ws|ws) can be quite high whilé’(ws|w;) stays low. An empirical
demonstration that this is the case for our derived representation is $méigure 10 (c): low
values ofP(ws|w; ) are observed even whet(ws|w;) and P(ws|ws) are both high. As shown in
Figure 10 (e), the percentile rank of the minimum value’§fvs|w, ) starts very low, and increases

far more slowly than the cosine.

Predictingthe structureof semanticetworks.

Word association data can be used to construct semantic networks, wéth remtesenting
words and edges representing a hon-zero probability of a word bamgahas an associate. The
semantic networks formed in this way can be directed, marking whether ayparticord acted as
a cue or an associate using the direction of each edge, or undirectedyvatiye between words
regardless of which acted as the cue. Steyvers and Tenenbaun) é2@0&ed the large scale
properties of both directed and undirected semantic networks formedfiemord association
norms of Nelson et al. (1998), finding that they have some statistical piep#rat distinguish
them from classical random graphs. The properties that we will foousece are scale-free degree
distributions and clustering.

In graph theory, the “degree” of a node is the number of edges assbuitkethat node,
equivalent to the number of neighbors. For a directed graph, thealegnediffer based on the
direction of the edges involved: the in-degree is the number of incomingedgd the out-degree
the number outgoing. By aggregating across many nodes, it is possibld todidegree

distribution for a particular graph. Research on networks arising in @&ias found that for many
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such networks the degréefollows a power-law distribution, witP(k) ~ k=7 for some constant
~. Such a distribution is often called “scale free”, because power-lawtiistins are invariant
with respect to mutiplicative changes of the scale. A power-law distributioteancognized by
plotting log P(k) againstog k: if P(k) ~ k7 then the result should be a straight line with slope
—.

Steyvers and Tenenbaum (2005) found that semantic networks ctiestftom word
association data have power-law degree distributions. We reprodusiedrtialyses for our subset
of Nelson et al.’s (1998) norms, computing the degree of each wotabfbrdirected and
undirected graphs constructed from the norms. The degree distribatessown in Figure 11. In
the directed graph, the out-degree (the number of associates forwgdoltows a distribution
that is unimodal and exponential-tailed, but the in-degree (the numbeesffouwhich a word is
an associate) follows a power-law distribution, indicated by the linearitygP (k) as a function
of log k. This relationship induces a power-law degree distribution in the undirgcégdh. We
computed three summary statistics for these two power-law distributions: thedegeeef, the
standard deviation df, s;, and the best-fitting power-law exponeft,The mean degree serves to
describe the overall density of the graph, whileand~ are measures of the rate at whielk)
falls off ask becomes large. IP(k) is strongly positively skewed, as it should be for a power-law
distribution, thers;, will be large. The relationship betweerand P(k) is precisely the opposite,
with large values ofy indicating a rapid decline i?(k) as a function of. The values of these
summary statistics are given in Table 1.

The degree distribution characterizes the number of neighbors foresy igode. A second
property of semantic networks, clustering, describes the relationshipgsaldeamong those
neighbors. Semantic networks tend to contain far more clusters of denta&lyoinnected nodes
than would be expected to arise if edges were simply added between nodedan. A standard
measure of clustering (Watts & Strogatz, 1998) is the “clustering coeffici€h the mean

proportion of the neighbors of a node that are also neighbors of mteemFor any node, this
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proportion is
Tw 2T
(gw) kw(kw — 1)’

whereT, is the number of neighbors af that are neighbors of one another, dndis the number

Cw =

of neighbors ofw. If a node has no neighbors,, is defined to be 1. The clustering coefficieft,

is computed by averaging,, over all wordsw. In a graph formed from word association data, the
clustering coefficient indicates the proportion of the associates of ativatdre themselves
associated. Steyvers and Tenenbaum (2005) found that the clusteeiffigient of semantic
networks is far greater than that of a random graph. The clusterimpgionsC,, have been

found to be useful in predicting various phenomena in human memory, ingleded recall
(Nelson, McKinney, et al., 1998), recognition (Nelson et al., 2001d,@iming effects (Nelson &

Goodmon, 2002), although this quantity is typically referred to as the “aivitg” of a word.

Insert Figure 11 about here

Insert Table 1 about here

Power-law degree distributions in semantic networks are significant betlagy indicate
that some words have extremely large numbers of neighbors. In partitidgrower-law in
in-degree indicates that there are a small number of words that appessasates for a great
variety of cues. As Steyvers and Tenenbaum (2005) pointed out, tiokphenomenon is
difficult to reproduce in a spatial representation. This can be demomsbpiEtempting to
construct the equivalent graph using LSA. Since the cosine is symmetrisiniple approach of
connecting each word; to all wordsws such thatos(w;, ws) > 7 for some threshola results

in an undirected graph. We used this procedure to construct a graptheidlame density as the
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undirected word association graph, and subjected it to the same andlisagsults of these
analyses are presented in Table 1. The degree of individual nodeslis#graph is weakly
correlated with the degree of nodes in the association graph(.104). However, word
frequency is a far better predictor of degree<{ 0.530). Furthermore, the form of the degree
distribution is incorrect, as is shown in Figure 11. The degree distributmiritieg from using the
cosine initially falls off much more slowly than a power-law distribution, resultinthaestimate
~v = 1.972, lower than the observed value = 2.999, and then falls off more rapidly, resulting
in a value ofs;, of 14.51, lower than the observed value 1§.08. Similar results are obtained with
other choices of dimensionality, and Steyvers and Tenenbaum (200%) fbat several more
elaborate methods of constructing graphs (both directed and undirécted) SA were also
unable to produce the appropriate degree distribution.

While they exhibit a different degree distribution from semantic networkstracted from
association data, graphs constructed by thresholding the cosine sedmbibthe appropriate
amount of clustering. We foun@,, for each of the words in our subset of the word association
norms, and used these to compute the clustering coeffiCieWe performed the same analysis on
the graph constructed using LSA, and found a similar but slightly higheteclog coefficient.
However, LSA differs from the association norms in predicting which wattbuld belong to
clusters: the clustering proportions for each word in the LSA graphrayevweakly correlated
with the corresponding quantities in the word association graph(.146. Again, word
frequency is a better predictor of clustering proportion, wite —0.462.

The neighborhood structure of LSA seems to be inconsistent with thergiespef word
association. This result is reminiscent of Tversky and Hutchinson&g18nalysis of the
constraints that spatial representations place on the configurationstsf polow dimensional
spaces. The major concern of Tversky and Hutchinson (1986) waettkborhood relations that
could hold among a set of points, and specifically the number of points to \apoint could be

the nearest neighbor. In low dimensional spaces, this quantity is heasfiticted: in one
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dimension, a point can only be the nearest neighbor of two others; in twadiares, it can be the
nearest neighbor of five. This constraint seemed to be at odds with tthe ddistructure that can
be expressed by conceptual stimuli. One of the examples considereeiskirand Hutchinson
(1986) was hierarchical structure: it seems that apple, orange aauraché should all be extremely
similar to the abstract notion of fruit, yet in a low-dimensional spatial reptasien fruit can only
be the nearest neighbor of a small set of points. In word associatiorergaw degree
distributions mean that a few words need to be neighbors of a large numbkkreofvords,
something that is difficult to produce even in high dimensional spatial reptatsons.

Semantic networks constructed from the predictions of the topic model gravietter
match to those derived from word association data. The asymmeiftyof|w;) makes it possible
to construct both directed and undirected semantic networks by threshdiéiconditional
probability of associates given cues. We constructed directed anceatatirgraphs by choosing
the threshold to match the densiky,of the semantic network formed from association data. The
semantic networks produced by the topic model were extremely consistenheitemantic
networks derived from word association, with the statistics are givenhbleTa

As shown in Figure 11 (a), the degree distribution for the undirectechgras power-law
with an exponent ofy = 2.746, and a standard deviation gf = 21.36, providing a closer match
to the true distribution than LSA. Furthermore, the degree of individuaésadthe semantic
network formed by thresholding (w2|w; ) correlated well with the degree of nodes in the
semantic network formed from the word association data,0.487. The clustering coefficient
was close to that of the true gragh,= 0.303, and the clustering proportions of individual nodes
were also well correlated across the two grapks 0.396.

For the directed graph, the topic model produced appropriate distribditiobsth the
out-degree (the number of associates per cue) and the in-degreerfitbemof cues for which a
word is an associate), as shown in Figure 11 (b). The in-degree digiribwas power-law, with an

exponent ofy = 1.948 ands;, = 21.65, both being close to the true values. The clustering
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coefficient was similar but slightly higher than the dafas= 0.308, and the predicted in-degree
and clustering proportions of individual nodes correlated well with thosthe association graph,

p = 0.606 andp = 0.391 respectively.

Innerproductsasanalternativemeasuref association

In our analyses so far, we have focused on the cosine as a measerearitic association in
LSA, consistent with the vast majority of uses of the model. However, in afmlications, it has
been found that the unnormalized inner product gives better predi¢gans Rehder et al., 1998).
While it is symmetric, the inner product does not obey a triangle inequalitywar @asily defined
constraints on neighborhood relations. We computed the inner produatsdreall pairs of words
from our derived LSA representations, and applied the procedexttodest the cosine and the
topic model. We found that the inner product gave better quantitativerpgafce than the cosine,
but worse than the topic model, with a median rank for the first associate &f @fal of 14.23%
of the empirical first associates matched the word with the highest innengirothese results are
shown in Figure 8. As is to be expected for a measure that does not abtiatigle inequality,
there was little effect of the strength of association(for, w2 ) pairs andw,, ws) pairs on the
strength of association f@tv,, ws) pairs, as shown in Figure 10 (d) and (e).

As with the other models, we constructed a semantic network by thresholdiimtre
product, choosing the threshold to match the density of the association gitagmner product
does poorly in reproducing the neighborhood structure of word &dgmt, producing a degree
distribution that falls off too slowly+{ = 1.176, s, = 33.77) and an extremely high clustering
coefficient C' = 0.625). However, it does reasonably well in predicting the degpee (0.465)
and clustering coefficienp(= 0.417) of individual nodes. The explanation for this pattern of
results is that the inner product is strongly affected by word frequemzythe frequency of words
is an important component in predicting associations. However, the inoéugrgives too much

weight to word frequency in forming these predictions, and high frequemrds appear as
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associates for a great many cues. This results in the low exponent dnstéunglard deviation of
the degree distribution. The two measures of semantic association used irep®aent two
extremes in their use of word frequency: the cosine is only weakly affdstevord frequency,
while the inner product is strongly affected. Human semantic memory is sernsitword

frequency, but its sensitivity lies between these extremes.

Summary

The results presented in this section provide analogues in semantic assdoidlie
problems that Tversky (1977; Tversky & Gati, 1982; Tversky & Hutehim 1986) identified for
spatial accounts of similarity. Tversky’s argument was not against spgpiesentations per se,
but against the idea that similarity is a monotonic function of a metric, such aschsia
psychological space (c.f. Shepard, 1987). Each of the phenoneamatéd — asymmetry, violation
of the triangle inequality, and neighborhood structure — could be produoe a spatial
representation under a sufficiently creative scheme for assessing symiaymmetry provides
an excellent example, as several methods for producing asymmetriesgedial representations
have already been suggested (Krumhansl, 1978; Nosofsky, 198dever, his argument shows
that the distance between two points in psychological space should nidemegsan absolute
measure of the similarity between the objects that correspond to those paiategausly, our
results suggest that the cosine (which is closely related to a metric) shdlid teken as an
absolute measure of the association between two words.

One way to address some of the problems that we have highlighted in this seetydre to
use spatial representations in which each word is represented as multigke pather than a
single point. This is the strategy taken in many connectionist models of semareseatation
(e.g., Kawamoto, 1993; Plaut, 1997; Rodd et al., 2004), where diffpants in space are used to
represent different meanings or senses of words. However, tiyplicase representations are not

learned from text, but from data consisting of labelled pairs of wordglasid meanings.



Topics in semantic representation 42

Automatically extracting such a representation from text would involve soméfisint
computational challenges, such as deciding how many senses eacthwolidl fzave, and when
those senses are being used.

The fact that the inner product does not exhibit some of the problemseméfidd with the
cosine reinforces the fact that the issue is not with the information extrbgte8A, but with
using a measure of semantic association that is related to a metric. The inthectgroLSA has
an interesting probabilistic interpretation that explains why it should be sogiraffected by
word frequency. Under weak assumptions about the properties opag;dt can be shown that the
inner product between two word vectors is approximately proportionasto@thed version of
the joint probability of those two words (Griffiths & Steyvers, 2003). Whretjuency will be a
major determinant of this joint probability, and hence has a strong influentteednner product.
This analysis suggests that while the inner product provides a means sdinimgesemantic
association that is nominally defined in terms of an underlying semantic spack ahits success
may actually be a consequence of approximating a probability.

The topic model provides an alternative to LSA which automatically solves tit#gm of
understanding the different senses in which a word might be used j\awdagnatural probabilistic
measure of association that is not subject to the constraints of a metrieedtmgore accurate
guantitative predictions of word association data than using either the ardimeinner product in
the representation extracted by LSA. It also produces predictionsrthabasistent with the
gualitative properties of semantic association that are problematic for segtiasentations. In the
remainder of the paper, we consider some further applications of this niclatling other
comparisons to LSA, and how it can be extended to accommodate more complaxtic and

syntactic structures.
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Further applications

Our analysis of word association provided an in-depth exploration ofiffezehces
between LSA and the topic model. However, these models are intended idepaovaccount of a
broad range of empirical data, collected through a variety of tasks th#i¢appresentations used
in processing language. In this section, we present a series of exarhplgdications of these
models to other tasks. These examples show that the topic model reprotarcesf the
phenomena that were originally used to support LSA, provide a brdedés for comparison
between the two models, and illustrate how the representation extracted bpithentmlel can be

used in other settings.

Synonymtests

One of the original applications of LSA was to the TOEFL synonym test, tesadsess
fluency in English for non-native speakers (Landauer & Dumais, 19%vallow direct
comparison between the predictions of LSA and the topic model, we replicasel tesults and
evaluated the performance of the topic model on the same task. The teshedr@@ questions,
consisting of a probe word and four answers. Our analyses only itlgdestions for which all
five words (probe and answers) were in our 26,243 word vocahuksylting in a set of 44
guestions. We used the solutions obtained from the TASA corpus, askeabsin the previous
section. For LSA, we computed the cosine and inner product betwer prabanswers for LSA
solutions with between 100 and 700 dimensions. For the topic model, we computed
P (Wprobe|[ Wanswer) @NAP (Wanswer|Wprobe) fOr between 500 and 1700 topics, wherg. ;. and
Wanswer are the probe and answer words respectively, and Equation 8 wésousaculate the
conditional probabilities.

Ouir first step in evaluating the models was to examine how often the answeattamodel
identified as being most similar to the probe was the correct answer. Laratai®umais (1997)

reported that LSA (trained on the TASA corpus, but with a larger voeajpthan we used here)
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produced 64.4% correct answers, close to the average of 64.5%ceby college applicants
from non-English-speaking countries. Our results were similar: thepeekirmance using the
cosine was with a solution using 500 dimensions, resulting in 63.6% corsgminees. There were
no systematic effects of number of dimensions, and only a small amountiafiear The inner
product likewise produced best performance with 500 dimensions, géttidb correct.

The topic model performed similarly to LSA on the TOEFL test: usit@pyobe | Wanswer)
to select answers, the best performance was obtained with 500 topius,/05% correct. Again,
there was no systematic effect of number of topics. Selecting answegsRI8IN, .swer |Wprobe )
produced results similar to the cosine for LSA, with the best performaring 68.6% correct,
obtained with 500 topics. The difference between these two ways of évajule conditional
probability lies in whether the frequencies of the possible answers amitstkeaccount.
ComputingP (wWpyobe | Wanswer) CONtrols for the frequency with which the words,, ;... generally
occur, and is perhaps more desirable in the context of a vocabulary test.

As a final test of the two models, we computed the correlation between thdicfiwas and
the actual frequencies with which people selected the different respolRer the LSA solution
with 500 dimensions, the mean correlation between the cosine and respemsentcies (obtained
by averaging across items) was= 0.30, with » = 0.25 for the inner product. For the topic model
with 500 topics, the corresponding correlations were 0.46 and0.34 for log P(wpyobe | Wanswer)
andlog P(wanswer | Wprobe) reSpectively. Thus, these models produced predictions that were not

just correct, but captured some of the variation in human judgments on this task

Semantigriming of differentword meanings

Till, Mross, and Kintsch (1988) examined the time-course of the proces$iwvgrd
meanings using a priming study in which participants read sentences coni@mnimiguous words
and then performed a lexical decision task. The sentences were abadtio provide contextual

information about the meaning of the ambiguous word. For example, two oétfierses used in
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the study were

1A. The townspeople were amazed to find that all of the buildings had cedaps

except the mint. Obviously, it has been built to withstand natural disasters.

1B. Thinking of the amount of garlic in his dinner, the guest asked for a rHietsoon

felt more comfortable socializing with the others.

which are intended to pick out the different meaningsofT. The target words used in the lexical
decision task corresponded either to the different meanings of the ambigwod (in this case
beingMONEY andCANDY), or were inferentially related to the content of the sentence (in this case
beingEARTHQUAKE andBREATH). The delay between the presentation of the sentence and the
decision task was varied, making it possible to examine how the timecourseocefsging affected

the facilitation of lexical decisions (i.e. priming) for different kinds of tamge

The basic result reported by Till et al. (1988) was that both of the meamifipe
ambiguous word and neither of the inference targets were primed whenwhasra short delay
between sentence presentation and lexical decision, and that thereswaseguent shift to favor
the appropriate meaning and infentially related target when the delay wassed. Landauer and
Dumais (1997) suggested that this effect could be explained by LSAg tlsncosine between the
ambiguous word and the targets to model priming at short delays, and the besween the
entire sentence and the targets to model priming at long delays. They sttavedfects similar to
those reported by Till et al. (1988) emerged from this analysis.

We reproduced the analysis of Landauer and Dumais (1997) usingateseatations we
extracted from the TASA corpus. Of the 28 pairs of sentences used!ley dl. (1988), there were
20 for which the ambiguous primes and all four target words appearad wogabulary. To
simulate priming early in processing, we computed the cosine and inner plzetueen the
primes and the target words using the representation extracted by LSnilitate priming in the

later stages of processing, we computed the cosine and inner protiueebehe average vectors
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for each of the full sentences (including only those words that apgéaieir vocabulary) and the
target words. The values produced by these analyses were thegedeaver all 20 pairs. The
results for the 700 dimensional solution are shown in Table 2 (similar resulesolatained with

different numbers of dimensions).

Insert Table 2 about here

The results of this analysis illustrate the trends identified by Landauer amaiS§1997).
Both the cosine and the inner product give reasonably high scorestiwdheeanings when just
the prime is used (relative to the distributions shown in Figure 10), and shijitechigher scores
to the meaning and inferentially related target appropriate to the sentennodhehentire sentence
is used. To confirm that the topic model makes similar predictions in the coritegt@@ntic
priming, we used the same procedure with the topic-based representatigryting the
conditional probabilities of the different targets based just on the printehased on the entire
sentences, then averaging the log probabilities over all pairs of seatéifueresults for the 1700
topic solution are shown in Table 2 (similar results were obtained with diffenemtoers of
topics). The topic model produces the same trends: it initially gives higrapiliy to both

meanings, and then switches to give high probabilities to the sentencepapfdargets.

Sensitivityof readingtime to frequencyof meanings

Examining the time that people take to read words and sentences has befheneost
widely used methods for evaluating the contributions of semantic represerttatinguistic
processing. In particular, several studies have used reading timeltwesige representation of
ambiguous words (e.g., Duffy, Morris, & Rayner, 1988; Rayner &fuE986; Rayner & Frazier,
1989). Developing a complete account of how the kind of contextualnmdtion we have been

discussing influences reading time is beyond the scope of this papervelowe used the topic
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model to predict the results of one such study, to provide an illustrationveithzan be applied to
a task of this kind.

Sereno, Pacht, and Rayner (1992) conducted a study in which the eyeraots of
participants were monitored while they read sentences containing ambiguads Whese
ambiguous words were selected to have one highly dominant meaning, lsernteaces

established a context that supported the subordinate mearning. Forlexangsentence read

The dinner party was proceeding smoothly when, just as Mary was gehérport,

one of the guests had a heart attack.

where the context supported the subordinate meanirgafr. The aim of the study was to
establish whether reading time for ambiguous words was better explained byetall frequency
with which a word occurs in all its meanings or senses, or the frequereyafticular meaning.
To test this, participants read sentences containing either the ambigualisawasrd with
frequency matched to the subordinate sense (the low-frequency Ipootraword with frequency
matched to the dominant sense (the high-frequency control). For exahmplEgntrol words for
PORTWereVEAL andsouprespectively. The results are summarized in Table 3: ambiguous words
using their subordinate meaning were read more slowly than words withwzefniey
corresponding to the dominant meaning, although not quite as slowly as #aidmatch the
frequency of the subordinate meaning. A subsequent study by S@dponnell, and Rayner
(2006, Experiment 3) produced the same pattern of results.

Reading time studies present a number of challenges for computational mblelstudy
of Sereno et al. (1992) is particularly conducive to modeling, as all tiarget words are
substituted into the same sentence frame, meaning that the results arecatetidifesentences
differing in the number of words in the vocabulary of the models or othéofac¢hat introduce
additional variance. However, in order to model these data we still needk® amassumption
about the factors influencing reading time. The abstract computation&blesiyses provided by

generative models do not make assertions about the algorithmic prooeseslying human
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cognition, and can consequently be difficult to translate into predictiond #mamount of time it
should take to perform a task. In the topic model, there are a variety of$abttat could produce
an increase in the time taken to read a particular word. Some possible casdlidhide
uncertainty about the topic of the sentence, as reflected in the entropy dithibution over
topics, a sudden change in perceived meaning, producing a difeeiretite distribution over
topics before and after seeing the word, or simply encountering an ectxpword, resulting in
greater effort for retrieving the relevant information from memory. Wesethio use only the last of
these measures, being the simplest and the most directly related to our aboistine
computational problem underlying linguistic processing, but suspecathabd model of reading
time would need to incorporate some combination of all of these factors.

Letting wiqrger b€ the target word andrc,,scnce be the sequence of words in the sentence
before the occurrence of the target, we want to COMPUte;q,get | Wsentence). APPlying Equation
8, we have

P(wtarget|wsentence) = ZP(wtarget’Z)P(Z‘Wsentence) (10)
z

whereP(z|Wsentence ) 1S the distribution over topics encoding the gistvof.,ience. We used the
1700 topic solution to compute this quantity for the 21 of the 24 sentences ys=téno et

al. (1992) for which all three target words appeared in our vocayawdad averaged the resulting
log probabilities over all sentences. The results are shown in Table 3opivemodel predicts the
results found by Sereno et al. (1992): the ambiguous words are eddmmer probabilities than
the high-frequency controls, although not quite as low as the low-freyueontrols. The model
predicts this effect because the distribution over topi€s|w sentence ) favors those topics that
incorporate the subordinate sense. As a consequence, the probdhiiytarget word is reduced,
sinceP(wyqrqet|2) IS lower for those topics. However, if there is any uncertainty, providorges
residual probability to topics in which the target word occurs in its dominardesehe probability
of the ambiguous word will be slightly higher than the raw frequency of theiinate sense

suggests.
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Insert Table 3 about here

For comparison, we computed the cosine and inner product for the thi@es\ofw;,,ge:
and the average vectors f@f;cptence in the 700 dimensional LSA solution. The results are shown
in Table 3. The cosine does not predict this effect, with the highest mesamesdcbeing obtained by
the control words, with little effect of frequency. This is due to the fact the cosine is relatively
insensitive to word frequency, as discussed above. The innergiradhich is sensitive to word

frequency, produces predictions that are consistent with the resi8erefo et al. (1992).

Semantiantrusionsin freerecall

Word association involves making inferences about the semantic relatisrsshigng a pair
of words. The topic model can also be used to make predictions aboutdtienships between
multiple words, as might be needed in episodic memory tasks. Since Bartle?) (h%any
memory researchers have proposed that episodic memory might not dvdgbe on specific
memory of the experiences episodes but also on reconstructive pesdbat extract the overall
theme or gist of a collection of experiences.

One procedure for studying gist-based memory is the Deese-Roedid2eriott (DRM)
paradigm (Deese, 1959; Roediger & McDermott, 1995). In this paradignticipants are
instructed to remember short lists of words that are all associatively retatesingle word (the
critical lure) that is not presented on the list. For example, one DRM listisisns the words
BED, REST, AWAKE, TIRED, DREAM, WAKE, SNOOZE BLANKET, DOZE, SLUMBER, SNORE, NAP,
PEACE, YAWN, andDROWSY. At test, 61% of subjects falsely recall the critical l@eser, which
is associatively related to all the presented words.

The topic model may be able to play a part in a theoretical account for teesmsic

intrusions in episodic memory. Previous theoretical accounts of semantisiartsthave been
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based on “dual route” models of memory. These models distinguish betiésemt routes to
retrieve information from memory, a verbatim memory route based on the plhgsicurrence of
an input and the gist memory route that is based on semantic content (eigerBet al., 1999;
Brainerd et al., 2002; Mandler, 1980). The representation of the gibegrocesses involved in
computing the gist itself have not been specified within the dual route frarke@omputational
modeling in this domain has been mostly concerned with the estimation of the retetivgth
different memory routes within the framework of multinomial processing treeatsq®atchelder
& Riefer, 1999).

The topic model can provide a more precise theoretical account of gistilmaemory by
detailing both the representation of the gist and the inference processes ¢n the gist. We can
model the retrieval probability of a single word at test based on a setdiéstwords by

ComMpUtingP (Wyecair| Wstudy)- With the topic model, we can use Equation 8 to obtain

P(wrecalllwstudy) - ZP(wrecall|z)P(2’Wstudy)- (11)

The gist of the study list is represented Byz|w .4, ) which describes the distribution over topics
for a given study list. In the DRM paradigm, each list of words will lead to fed#nt distribution
over topics. Lists of relatively unrelated words will lead to flat distributionsrdopics where no
topic is particularly likely, whereas more semantically focused lists will lead toildigtons where
only a few topics dominate. The terfw,..q;;|2) captures the retrieval probability of words
given each of the inferred topics.

We obtained predictions from this model for the 55 DRM lists reported by igeedt al.
(2001), using the 1700 topic solution derived from the TASA corpuse@DRM lists were
excluded because the critical items were absent from the vocabulary widtiel. Of the
remaining 52 DRM lists, a median of 14 out of 15 original study words wereiirvocabulary.
For each DRM list, we computed the retrieval probability over the whole 26,248 vocabulary

which included the studied words as well as extra-list words. For exafriglere 12 shows the
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predicted gist-based retrieval probabilities for theePlist. The retrieval probabilities are
separated into two lists: the words on the study list and the 8 most likely extuaslids. The
results shows that the wosld EePis the most likely word to be retrieved which qualitatively fits

with the observed high false recall rate of this word.

Insert Figure 12 about here

To assess the performance of the topic model, we correlated the retrielabgity of the
critical DRM words as predicted by the topic model with the observed intrusites reported by
Roediger et al. (2001). The rank-order correlation wd87 with a 95% confidence interval
(estimated by 1000 sample bootstrap)@R217,0.621). We compared this performance with the
predictions of the 700-dimensional LSA solution. Using LSA, the gist of thdyslist was
represented by the average of all word vectors from the study list. Viectmaputed the cosine of
the critical DRM word with the average word vector for the DRM list and elated this cosine
with the observed intrusion rate. The correlation @295, with a 95% confidence interval
(estimated by 1000 sample bootstrap)@b41,0.497). The improvement in predicting semantic
intrusions produced by the topic model over LSA is thus not statistically signifibut suggests
that the two models might be discriminated through further experiments.

One interesting observation from Figure 12 is that words that do nobappehe study list,
such assLEEPR, can be given higher probabilities than the words that actually do appehbedist.
Since participants in free recall studies generally do well in retrieving the itieatgppear on the
study list, this illustrates that the kind of gist-based memory that the topic modeldéeshie not
sufficient to account for behavior on this task. The gist-based rekpevaess would have to be
complemented with a verbatim retrieval process in order to account foeldug/ely high retrieval
probability for words on the study list, as assumed in the dual-route models methtdnove

(Brainerd et al., 1999; Brainerd et al., 2002; Mandler, 1980). Thesses could be addressed by
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extending the topic model to take into account the possible interaction betveegistiand

verbatim routes.

Meanings sensesandtopics

The topic model assumes a simple structured representation for wordseunehts, in
which words are allocated to individually interpretable topics. This reptatien differs from that
assumed by LSA, in which the dimensions are not individually interpretallerensimilarity
between words is invariant with respect to rotation of the axes. The t@siechrepresentation also
provides the opportunity to explore questions about language thattdamposed using less
structured representations. As we have seen already, differers tgmccapture different
meanings or senses of a word. As a final test of the topic model, we exahvnedell the
number of topics in which a word participates predicts its the number of meamirsgnses of that
word, and how this quantity can be used in modeling recognition memory.

The number of meanings or senses that a word possesses has gecistéiradistribution, as
was first noted by Zipf (1965). Zipf examined the number of entries thaeaed in dictionary
definitions for words, and found that this quantity followed a power-lawribistion. Steyvers and
Tenenbaum (2005) conducted similar analyses using Roget’s (19F5hAuttis and WordNet
(Miller & Fellbaum, 1998). They also found that the number of entries foltba@ower-law
distribution, with an exponent of ~ 3. Plots of these distributions in log-log coordinates are

shown in Figure 13.

Insert Figure 13 about here

The number of topics in which a word appears in the topic model correspoaliwith the
number of meanings or senses of words as assessed using Rogatsukesd WordNet, both in

distribution and in the values for individual words. The distribution of themmaamber of topics
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to which a word was assigned in the 1700 topic solution is shown in Figuf‘eTIGz tail of this
distribution matches the tail of the distributions obtained from Roget’s thesamadi\WordNet,
with all three distributions being power-law with a similar parameter. Furthernmimeerumber of
topics in which a word appears is closely correlated with these other meatuggank-order
correlation between number of topics and number of entries in Roget'atiussap = 0.328,

with a 95% confidence interval (estimated by 1000 sample bootstrgp)300, 0.358), and the
correlation between number of topics and WordNet sensesgiv®.508, with a 95% confidence
interval of (0.486, 0.531). For comparison, the most obvious predictor of the number of meanings
or senses of a word — word frequency — gives correlations thatdbdibthese confidence
intervals: word frequency predicts Roget entries with a rank-ordeeledion ofp = 0.243, and
WordNet senses with = 0.431. More details of the factors affecting the distribution of the

number of topics per word are given in Griffiths and Steyvers (2002).

Capturingcontextvariability

The number of topics in which a word appears also provides a novel roéareasuring an
important property of words: context variability. Recent researchdogrition memory has
suggested that the number of contexts in which words appear might exgigisome words are
more likely than others to be confused for items appearing on the study listdgmition memory
experiments (Dennis & Humphreys, 2001; McDonald & Shillcock, 200y\&tes & Malmberg,
2003). The explanation for this effect is that when a word is encouhtera larger number of
contexts, the study list context becomes less discriminable from theseys@&xposures (Dennis
& Humphreys, 2001). Steyvers and Malmberg (2003) operationally el&fiontext variability as
the number of documents in which a word appears in a large database af texasure we will

refer to agdlocumenfrequency. Steyvers and Malmberg found that this measure has ahaife

recognition memory independent of word frequency. The documesuidirecy measure is a rough

proxy for context variability because it does not take the other wordsrdag in documents into



Topics in semantic representation 54

account. The underlying assumption is that documents are equally diffeseneach other.
Consequently, if there are many documents that cover very similar setsad,ttpen context
variability will be overestimated.

The topic model provides an alternative way to assess context variabibigd/that are
used in different contextual uses tend to be associated with differanstdherefore, we can
assess context variability by the number of different topics a word i<i&ded with, a measure we
will refer to astopic variability. Unlike document frequency, this measure does take into atcoun
the similarity between different documents in evaluating context variability.

To understand how topic variability compares with word frequency antegtual
variability, we performed analyses on the data from the experiment by Stegmnd Malmberg
(2003). There were 287 distinct words in the experiment each beirmjasseither a target or a
distractor. For each word, we computed the sensitivityfieasuring the degree to which subjects
could distinguish that word as a target or distractor in the recognition mempeyieent. Table 4
shows the correlations betweéhand the three measures: topic variabilifyi{), word frequency

(W F) and document frequency)(F). All three word measures were logarithmically scaled.

Insert Table 4 about here

The results show that word frequency, context variability, and topiabdity all correlate
with recognition memory performance as expected — high word frequiigtydocument
frequency, and high topic variability are all associated with poor recognitiemory performance.
Topic variability correlates more strongly with performance than the otherumesg < 0.05)
and is also less correlated with the other measures. This suggests thatrogdidity is a good
predictive measure for recognition memory confusability and is at leasiabsapredictor as word

frequency or document frequency, and potentially a more direct meafapntext variability.
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Summary

The results presented in this section illustrate that the topic model can be ysediti
behavior on a variety of tasks relating to linguistic processing and semanticrperfhe model
reproduces many of the phenomena that have been used to suppaott3ermantic Analysis, and
consistently provides better performance than using the cosine or thepioaierct between word
vectors to measure semantic association. The form of the representdtexteck by the topic
model also makes it possible to define novel measures of propertiesasd aach as the number of
topics in which they appear, which seems to be a good guide to the numbeisesse meanings

of a word, as well as an effective predictor of recognition memory perdnce.

Extending the generative model

Formulating the problem of extracting and using gist in terms of generativelsmatiowed
us to explore a novel form of semantic representation, through the topielmidds formulation
of the problem also has other advantages. Generative models prowds fiexible framework for
specifying structured probability distributions, and it is easy to extend the topdel to
incorporate richer latent structure by adding further steps to the gemgpeocess. We will discuss
five extensions to the model: determining the number of topics, learning topiosdfther kinds of

data, incorporating collocations, inferring topic hierarchies, and inctudidimentary syntax.

Learningthe numberof topics

In the preceding discussion, we assumed that the number of t@picsthe model was
fixed. This assumption seems inconsistent with the demands of human laqgoegssing, where
more topics are introduced with every conversation. Fortunately, this atisarigonot necessary.
Using methods from non-parametric Bayesian statistics (Muller & Quintar@a; 20eal, 2000),
we can assume that our data are generated by a model with an unboundeet of dimensions,

of which only a finite subset have been observed. The basic idea tblese non-parametric
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approaches is to define a prior probability distribution on the assignmentsrdéuo topicsg,

that does not assume an upper bound on the number of topics. Inféreingpic assignments for
the words that appears in a corpus simultaneously determines the numbacsf &s well as their
content. Blei, Griffiths, Jordan, and Tenenbaum (2004) and TetladpBeal, and Blei (2004)
have applied this strategy to learn the dimensionality of topic models. These metteoclosely
related to the rational model of categorization proposed by Anders@®)1®hich represents
categories in terms of a set of clusters, with new clusters being added aictlinas more data

becomes available (see Neal, 2000).

Learningtopicsfrom otherdata

Our formulation of the basic topic model also assumes that words are divitbed
documents, or otherwise broken up into units that share the same gist. A sissilengtion is
made by LSA, but this is not true of all methods for automatically extracting sienan
representations from text (e.g., Dennis, 2004; Lund & Burgess,;18fs & Mewhort, 2006).
This assumption is not appropriate for all settings in which we make linguisticeinées: while
we might differentiate the documents we read, many forms of linguistic interastich as
meetings or conversations, lack clear markers that break them up intd s&tsids with a common
gist. One approach to this problem is to define a generative model in whiclothenent
boundaries are also latent variables, a strategy pursued by Puoesdikg, Griffiths, and
Tenenbaum (2006). Alternatively, meetings or conversations mighttber ineodeled by
associating the gist of a set of words with the person who utters those watter than words in
temporal proximity. Rosen-2vi, Griffiths, Steyvers, and Smyth, 2004)&tegvers, Smyth,

Rosen-2vi, and Griffiths (2004) have extensively investigated modetgsform.

Inferring topic hierarchies

We can also use the generative model framework as the basis for definogls that use

richer semantic representations. The topic model assumes that topicesea amdependently
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when generating a document. However, people know that topics beainaelations to one
another, and that words have relationships that go beyond topic merghdétshexample, some
topics are more general than others, subsuming some of the contentebthestopics. The topic
of sport is more general than the topic of tennis, and the we@RThas a wider set of associates
thanTENNIS. These issues can be addressed by developing models in which the tiatetotre
concerns not just the set of topics that participate in a document, butigiemships among those
topics. Generative models that use topic hierarchies provide one exahtipig onaking it
possible to capture the fact that certain topics are more general than. @y Griffiths, Jordan
and Tenenbaum (2004) provided an algorithm that simultaneously learssticture of a topic
hierarchy, and the topics that are contained within that hierarchy. Ttosidlgn can be used to
extract topic hierarchies from large document collections. Figure 14stite results of applying
this algorithm to the abstracts of all papers published in Psychological\iRReuiee 1967. The
algorithm recognizes that the journal publishes work in cognitive pstyghé social psychology,
vision research, and biopsychology, splitting these subjects into sepapate at the second level
of the hierarchy, and finds meaningful subdivisions of those subjetie #hird level. Similar
algorithms can be used to explore other representations that assumeeatepesidmong topics

(Blei & Lafferty, 2006).

Insert Figure 14 about here

Collocationsandassociation®asedn word order

In the basic topic model, the probability of a sequence of words is notteffdxy the order
in which they appear. As a consequence, the representation extrgdtezirnodel can only
capture coarse-grained contextual information, such as the factdinds wend to appear in the

same sort of conversations or documents. This is reflected in the fatthéhaput to the topic
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model, as with LSA, is a word-document co-occurrence matrix: the ordehich the words
appear in the documents does not matter. However, it is clear that wadisiichportant to many
aspects of linguistic processing, including the simple word association taskethdiscussed
extensively earlier in the paper (Ervin, 1961; Hutchinson, 2003; MEtENSG66).

A first step towards relaxing the insensitivity to word order displayed bydpie model is
to extend the model to incorporate collocations — words that tend to followrastéer with high
frequency. For example, the basic topic model would treat the plmeiseED KINGDOM occurring
in a document as one instancewfITED and one instance afiINGDOM. However, these two
words carry more semantic information when treated as a single chunk thyathctiadone. By
extending the model to incorporate a sensitivity to collocations, we also hawpgortunity to
examine how incorporating this additional source of predictive informafi@cts predictions
about the associations that exist between words.

To extend the topic model to incorporate collocations, we introduced an additiet of
variables that indicate whether a word is part of a collocation. Each wptkus has a topic
assignment; and a collocation assignmeny. Thex; variables can take on two valuesaif = 1,
thenw; is part of a collocation and is generated from a distribution that depenidsrjuise
previous word P (w;|w;—1,z; = 1). If z; = 0, thenw; is generated from the distribution
associated with its topid? (w;|z;, z; = 0). Importantly, the value aof; is chosen based on the
previous wordyw;_1, being drawn from the distributioff (z;|w;_1). This means that the model
can capture dependencies between words; ifi is UNITED, it is likely thatx; = 1, meaning that
w; is generated based just on the fact that it follawsTED, and not on the topic. The graphical
model corresponding to this extended generative process is showruire Bif. A more detailed
description of the model appears in the Appendix C, together with an algadfiincan be used to

simultaneously lear® (w;|w;—_1, z; = 1), P(w;|z;, z; = 0), andP(z; = 1|w;—;) from a corpus.
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Insert Figure 15 about here

Using this extended topic model, the conditional probability of one word giwverther is

simply

P(wglwl) = P(wg\wl,xg = 1)P(.732 = 1"[1)1) + P(w2|w1,x2 = O)P(:L'Q = 0|w1) (12)

whereP(wq|wy, 2 = 0) is computed as in the basic topic model, using Equation 9. Thusill

be highly associated witty; either ifw, tends to followwy, or if the two words tend to occur in
the same semantic contexts. We used the algorithm described in Appendixtnateshe
probabilities required to compufe(w.|w; ) from the TASA corpus, using the same procedure to
remove stop words as in our previous analyses, but supplying the veottoks algorithm in the
order that they actually occurred within each document. We then examimeddlbsolutions

with 500, 900, 1300, and 1700 topics predicted the word association rmotiasted by Nelson et
al. (1998).

Introducing the capacity to produce collocations changes the associtésatimodel
identifies. One way to see this is to examine cue-associate pairs produpedpig that are in the
set of ten words for whict (w2 |w1 ) is highest under the collocation model, but not in this set for
the basic topic model. Considering just the first associates people praddaessing the 1700 topic
model, we find pairs such asNITED-KINGDOM, BUMBLE-BEE, STORAGESPACE,

METRIC-SYSTEM, MAIN -STREET, EVIL-DEVIL, FOREIGN-LANGUAGE, FRIED-CHICKEN,
STOCK-MARKET, INTERSTATE-HIGHWAY , BOWLING-BALL , andSERIAL-NUMBER. These
examples thus show how the collocation model is able to predict some assacthtibare based

on word order rather than semantic context. Table 5 compares the medkarofdhe associates
under the ordering imposed B(ws|w;) for the collocation model and the basic topic model. The

results show that the models perform very similarly: adding the capacity tareagssociations
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based on word order does not result in a major improvement in the perioentdi the model.
Hutchinson (2003) suggests that 11.6% of associations result frochavder, which would lead
us to expect some improvement in performance. The lack of improvementeragdnsequence
of the fact that incorporating the extra process for modeling collocateshsces the amount of
data that is available for estimating topics, meaning that the model fails to captaeesemantic

associations.

Insert Table 5 about here

Integratingtopicsandsyntax

The model described in the previous section provides an extremely simpl@sdtuthe
guestion of how topic models can be extended to capture word ordemibapproach also
supports more sophisticated solutions. Generative models can be useddong a major
weakness of most statistical models of language — that they tend to modelsgititeex or
semantics (although recent work provides some exceptions, includingd)@004, and Jones and
Mewhort, 2006). Many of the models used in computational linguistics, ssitidaden Markov
models and probabilistic context-free grammars (Charniak, 1993; Byr@fslartin, 2000;
Manning & Shutze, 1999), generate words purely based on sequential dep&wiamong
unobserved syntactic classes, not modeling the variation in content thas@rross documents,
while topic models generate words in a way that is intended to capture the vadatiass
documents, but ignores sequential dependencies. In cognitive scraathods such as
distributional clustering (Redington, Chater, & Finch, 1998) are useddo ihe syntactic classes
of words, while methods such as LSA are used to analyze their meaninig,isndt clear how
these different forms of statistical analysis should be combined.

Generative models can be used to define a model that captures bothtsqlemendencies

and variation in content across contexts. This hybrid model illustrates grealipg modularity of
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generative models. Because a probabilistic language model specifigsadbitity distribution over
words in a document in terms of components which are themselves probabiiitipudisns over
words, different models are easily combined by mixing their predictions oeddibg one inside
the other. Griffiths, Steyvers, Blei, and Tenenbaum (2005; see aifthS& Steyvers, 2003)
explored a composite generative model for language, in which one ofdbalpility distributions
over words used in defining a syntactic model was replaced with a semantd.riibis allows the
syntactic model to choose when to emit a semantically appropriate word, aselrtfaatic model
to choose which word to emit. The syntactic model used in this case was extr@melg, but this
example serves to illustrate two points: that a simple model can discover dagegiowords that
are defined both in terms of their syntactic roles and their semantic roles,araefining a
generative model that incorporates both of these factors is straightfdré similar strategy could
be pursued with a more complex probabilistic model of syntax, such as alplishic context-free
grammar.

The structure of the composite generative model is shown in Figure 16simtdel, a
word can appear in a document for two reasons: because it fulfillscidnal syntactic role, or
because it contributes to the semantic content. Accordingly, the model hasittspone
responsible for capturing sequential dependencies produced taxsgnd the other expresssing
semantic dependencies. The syntactic dependencies are introducddddamMarkov model, a
popular probabilistic model for language that is essentially a probabilistidalegrammar
(Charniak, 1993; Jurafsky & Martin, 2000; Manning &i8he, 1999). In a hidden Markov model,
each wordw; is generated by first choosing a clas$érom a distribution that depends on the class
of the previous wordg;_1, and then generating; from a distribution that depends en The
composite model simply replaces the distribution associated with one of thescleiis@ topic
model, which captures the long-range semantic dependencies among Moigorithm similar
to that described in Appendix A can be used to infer the distributions ovetsrassociated with

the topics and classes from a corpus (Griffiths et al., 2005).
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Insert Figure 16 about here

The results of applying the composite model to a combination of the TASA anelBro
(Kucera & Francis, 1967) corpora are shown in Figure 17. The ffaetiion of words into those
that appear as a result of syntactic dependencies (as represetivedctyss distributions) and
those that appear as a result of semantic dependencies (represetiteddpic distributions) pulls
apart function and content words. In addition to learning a set of sentaptizs, the model finds a
set of syntactic classes of words that discriminate determiners, prepogitionsuns, adjectives,
and present- and past-tense verbs. The model performs about @swedtandard hidden Markov
model — which is a state-of-the-art method — for identifying syntactic claaselsoutperforms
distributional clustering (Redington et al., 1998) in this task (Griffiths et @D52.

The ability to identify categories of words that capture their syntactic andrg@males,
based purely on their distributional properties, could be a valuable buitdidrods for the initial
stages of language learning or for facilitating the extraction of gist. Fanplg learning the
syntax of natural language requires a child to discover the rules of #mergar as well as the
abstract syntactic categories over which those rules are definece 3ymsictic categories and
rules are defined only with respect to each other, making it hard to seer®aould learn both
starting with neither. The syntactically organized word classes discolgredr simple statistical
model could provide a valuable starting point for learning syntax, evargtinthe notion of
syntactic structure used in the model is far too simplistic to capture the syntangb$k or any
other natural language. The capacity to separate out the critical semamtgnitwords in a
document, from those words playing primarily syntactic functions, couldtssealuable for
modeling adult language processing or in machine information-retrievétappns. Only the
semantic content words would be relevant, for example, in identifying thefgstiocument or

sentence. The syntactic function words can be — and usually are, byt épguage processors —
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safely ignored.

Insert Figure 17 about here

Summary

Using generative models as a foundation for specifying psychologicaluats of linguistic
processing and semantic memory provides a way to define models that caergeel to
incorporate more complex aspects of the structure of language. Theiexteto the topic model
described in this section begin to illustrate this potential. We hope to use this faakendevelop
statistical models that allow us to infer rich semantic structures that providser ctatch to the
human semantic representation. In particular, the modularity of generatielsnarovides the
basis for exploring the interaction between syntax and semantics in humamaggngrocessing,
and suggests how different kinds of representation can be combinelyimgscomputational

problems that arise in other contexts.

Conclusion

Part of learning and using language is identifying the latent semantic seuesponsible
for generating a set of words. Probabilistic generative models proeildéans to this problem,
making it possible to use powerful statistical learning to infer structuregseptations. The topic
model is one instance of this approach, and is a starting point for explooingyenerative models
can be used to address questions about human semantic representatitperforms Latent
Semantic Analysis, a leading model of the acquisition of semantic knowledgesdicting word
association and a variety of other linguistic processing and memory tas#so kxplains several
aspects of word association that are problematic for LSA: word frezyusmd asymmetry,
violation of the triangle inequality, and the properties of semantic networkes stibcess of the

model on these tasks comes from the structured representation thatiezsdiy expressing the
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meaning of words in terms of different topics, the model is able to capturediffeirent meanings
and senses.

Going beyond the topic model, generative models provide a path towardsea mor
comprehensive exploration of the role of structured representatiahstatistical learning in the
acquisition and application of semantic knowledge. We have sketched sahewdys in which
the topic model can be extended to bring it closer to the richness of humaraigsgAlthough we
are still far from understanding how people comprehend and acquigadge, these examples
illustrate how increasingly complex structures can be learned using statisttabds, and they
show some of the potential for generative models to provide insight into jfehplegical
questions raised by human linguistic abilities. Across many areas of cogmigaeption, and
action, probabilistic generative models have recently come to offer a ugifsamework for
understanding aspects of human intelligence as rational adaptations tdigteatatructure of
the environment (Anderson, 1990; Anderson & Schooler, 1991 & aital., 2001; Griffiths &
Tenenbaum, 2006b, 2006a; Kemp et al., 2004; Koerding & Wolpert,;Z8i@doncelli &
Olshausen, 2001; Wolpert et al., 1995). It remains to be seen howidaythroach can be carried
in the study of semantic representation and language use, but the existéarge corpora of
linguistic data and powerful statistical models for language clearly make thisatidn worth

pursuing.
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Appendix A: Statistical formulation of the topic model

A number of approaches to statistical modeling of language have beeah Ujame
probabilistic topics. The notion that a topic can be represented as a probdisiiitipution over
words appears in several places in the natural language procesgiaititge.g., lyer &
Ostendorf, 1996). Completely unsupervised methods for extractingfdeisics from large
corpora were pioneered by Hofmann (1999), in his Probabilistic Latemia®tic Indexing method
(also known as the aspect model). Blei, Ng, and Jordan (2003) exténdeapproach by
introducing a prior on the distribution over topics, turning the model into aigergenerative
model for collections of documents. Ueda and Saito (2003) explored a similde!l, in which
documents are balanced mixtures of a small set of topics. All of theseagh@® use a common
representation, characterizing the content of words and documentais @é&probabilistic topics.

The statistical model underlying many of these approaches has alsopygied 40 data
other than text. Erosheva (2002) describes a model equivalent to ariopigl, applied to
disability data. The same model has been applied to data analysis in genetat®(Br Stephens,
& Donnelly, 2000). Topic models also make an appearance in the psyatallttprature on data
analysis (Yantis, Meyer, & Smith, 1991). Buntine (2002) pointed out mébicorrespondence
between topic models and principal component analysis, providing a fuxdh@ection to LSA.

A multi-document corpus can be expressed as a vector of words{w, . .., wy,}, where
eachw; belongs to some documedht, as in a word-document co-occurrence matrix. Under the
generative model introduced by Blei et al. (2003), the gist of eachrdeat,g, is encoded using a
multinomial distribution over th& topics, with parameter®®, so for a word in document,
P(z|g) = 0.V, Thezth topic is represented by a multinomial distribution overitrievords in the
vocabulary, with parameters®), soP(w|z) = ¢\7). We then take a symmetric Dirichlet) prior

on 6@ for all documents, a symmetric Dirichlgt) prior on¢(?) for all topics. The complete
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statistical model can thus be written as

w; |z, %) ~ Discretdp*))
o ~ Dirichlet(g)
2z |04 ~ Discretgg(®))

6(?) ~ Dirichlet(c)

The user of the algorithm can specifyand 3, which are hyperparameters that affect the

granularity of the topics discovered by the model (see Griffiths & Stey2€4).

An algorithmfor finding topics

Several algorithms have been proposed for learning topics, including
expectation-maximization (EM; Hofmann, 1999), variational EM (Blei et &0 Buntine,
2002), expectation propagation (Minka & Lafferty, 2002), and ssvferms of Markov chain
Monte Carlo (MCMC; Buntine & Jakulin, 2004; Erosheva, 2002; GrifféSteyvers, 2002;
2003; 2004; Pritchard et al., 2000). We use Gibbs sampling, a form dféddahain Monte Carlo.
We extract a set of topics from a collection of documents in a completely engspd
fashion, using Bayesian inference. The Dirichlet priors are conjugdtes multinomial
distributionse, 0, allowing us to compute the joint distributid?(w, z) by integrating out andé.
SinceP(w,z) = P(w|z)P(z) and¢ andd only appear in the first and second terms respectively,
we can perform these integrals separately. Integrating gixes the first term

AN 1 LT +8)
poe = (v ) L @

in which n§.’”) is the number of times word has been assigned to topiin the vector of

assignments andI'(-) is the standard gamma function. The second term results from integrating

outé, to give

(Ta)\"” & I1; F(n§'d)+a)
) c]l;Il F(n.(d)+Ta) 7
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wheren?

; is the number of times a word from documelrtias been assigned to togicWe can

then ask questions about the posterior distribution egivenw, given by Bayes rule:

_ P(w,z)
P(zlw) = 722 Piw.2)’

Unfortunately, the sum in the denominator is intractable, ha¥ifgerms, and we are forced to
evaluate this posterior using Markov chain Monte Carlo.

Markov chain Monte Carlo (MCMC) is a procedure for obtaining samplasftomplicated
probability distributions, allowing a Markov chain to converge to the targétildigion and then
drawing samples from the Markov chain (see Gilks, Richardson & Spialjeth1996). Each state
of the chain is an assignment of values to the variables being sampled, asitddres between
states follow a simple rule. We use Gibbs sampling, where the next state isddackequentially
sampling all variables from their distribution when conditioned on the cuxanes of all other

variables and the data. We sample only the assignments of words to tgpics,
The conditional posterior distribution fef is given by

(wq) (di)
n_; s+ n_;+ao
P(z; = jlz—i, w) x 0 SR (d-)J , (14)
n.’ »—i—Wﬁn_;}, +Ta

—%J

wherez_; is the assignment of all, such that: # i, andn(_“;f; is the number of words assigned

to topicj that are the same as, n(_)” is the total number of words assigned to topi@(_d;’)j is
)

)

the number of words from documedhtassigned to topig, andn(f;' is the total number of words
in document/;, all not counting the assignment of the current ward

The MCMC algorithm is then straightforward. Theare initialized to values betwedrand
T, determining the initial state of the Markov chain. The chain is then run fonzbeu of
iterations, each time finding a new state by running sampling gafcbm the distribution specified
by Equation 14. After enough iterations for the chain to approach the @igjgbution, the current
values of they; are recorded. Subsequent samples are taken after an appropri&beciagure that

their autocorrelation is low. Further details of the algorithm are providediifitts and Steyvers

(2004), where we show how it can be used to analyze the content ofrint collections.
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The variables involved in the MCMC algorithm, and their modification across lesygre
illustrated in Figure 18, which uses the data from Figure 2. Each word iakée corpusw;, has
a topic assignment,, at each iteration of the sampling procedure. In this case, we have 90
documents and a total of 731 words, each with their owr;. In the figure, we focus on the
tokens of three wordsvONEY, BANK, andSTREAM. Each word token is initially randomly
assigned to a topic, and each iteration of MCMC results in a new set of assigs of tokens to
topics. After a few iterations, the topic assignments begin to reflect theathtfesage patterns of
MONEY andSTREAM, with tokens of these words ending up in different topics, and the multiple

senses OBANK.

Insert Figure 18 about here

The result of the MCMC algorithm is a set of samples fr&tz|w ), reflecting the posterior
distribution over topic assignments given a collection of documents. Froreiaghe sample we

can obtain an estimate of the parameteendd from z via

(w)
s n, +0
¢g) — 7(?) (15)
n;” + WG
(d)
R n: +ao
o = (16)
n( ) + Ta

These values correspond to the predictive distributions over new wogth& new topicg

conditioned orw andz, and the posterior means @and¢ givenw andz.

Prediction disambiguationandgist extraction

The generative model allows documents to contain multiple topics, which is impuauttem

modeling long and complex documents. Assume we have an estimate of the t@picepans.
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Then the problems of prediction, disambiguation, and gist extraction cadbeed to computing

P(wpyi1|w; ) = Z P(wni1|znt1; @) P(2ny1|2) P(zlw; ¢) (17)
P

P(z]w; ¢) % (18)

P(glw;¢) = ZP (g]2) P (z|w; ¢) (19)

respectively. The sums overthat appear in each of these expressions quickly become intractable,
being overl™ terms, but they can be approximated using MCMC.
In many situations, such as processing a single sentence, it is reasoreddante that we
are dealing with words that are drawn from a single topic. Under this assumgpi®represented
by a multinomial distributior that puts all of its mass on a single topicandz; = z for all i. The

problems of disambiguation and gist extraction thus reduce to infetridgplying Bayes’ rule,

P(w|z; ) P(z)

>, P(wlz;9)P(2)
[T P(wilz; ¢)P(z)

> sy P(wilz;0)P(2)
[T, 04!

Z Hz 1 wzz)’

where the last line assumes a uniform pridfz) = 7, consistent with the symmetric Dirichlet

P(z|w; )

priors assumed above. We can then form predictions via

Pwpy1|lw;¢) = Z P(wny1, 2|w; ¢)
= Z P(wn 1]z 6) P(=|w; 6)
Z H?+11 wz
Z ]._[z 1 ’551)
This predictive distribution can be averaged over the estimatgeyigfided by a set of samples
from the MCMC algorithm.

For the results described in the paper, we ran three Markov chain80@0riterations at each

value ofT’, usinga = 50/7" and = 0.01. We started sampling after 800 iterations, taking one
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sample every 100 iterations thereafter. This gave a total of 24 samplesctockoice of

dimensionality. The topics shown in Table 7 are taken from a single sampldtieMarkov chain

for the 1700 dimensional model. We computed an estimateusfing Equation 15 and used these
values to computé (w2 |w;) for each sample, then averaged the results across all of the samples to
get an estimate of the full posterior predictive distribution. This averagtdiaition was used in

evaluating the model on the word association data.
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Appendix B: Topicsand features

Tversky (1977) considered a number of different models for the similagtyween two
stimuli, based upon the idea of combining common and distinctive features fahosts is the

contrast model, in which the similarity betwe&handY’, S(X,Y), is given by
SXY)=0f(XxNY)—af(Y—X) - Bf(X=D),

whereX is the set of features to whicki belongs,y is the set of features to which belongs,

X NY is the set of common featurey,— X is the set of distinctive features &f, f(-) is a
measure over those sets, a&hd, 5 are parameters of the model. Another model considered by
Tversky, which is also consistent with the axioms used to derive the contoakel, is the ratio

model, in which

JQ—=X)+6f(X-))
0f(xXnNY)

As in the contrast model, common features increase similarity and distinctivedealecrease

SX,v)=1/ |14 %

similarity. The only difference between the two models is the form of the funtiyomhich they

are combined.

Tversky’s (1977) analysis assumes that the feature§ ahdY are known. However, in
some circumstances, possession of a particular feature may be undestasome hypothetical
featureh, we might just have a probability thaf possessek, P(X € h). One means of dealing
with this uncertainty is replacing(-) with its expectation with respect to the probabilities of
feature possession. If we assume th@j is linear (as in additive clustering models, e.g., Shepard

& Arabie, 1979) and gives uniform weight to all features, the ratio mbdebmes

ady ,(1-P(X eh)P(Yeh)+(>,1—-PY €h))P(X eh)

SEY)=1/11+ 0>, P(X € h)P(Y € h)

(20)

where we takeé’(X € h) to be independent for ak’ andh. The sums in this Equation reduce to
counts of the common and distinctive features if the probabilities all take oewval or 1.

In the topic model, semantic association is assessed in terms of the conditimietbitity
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P(ws|wy). This quantity reduces to

S Plun|2) P(un]2)
. Plunl?)
S Pws]2) P(un )
S Plwa]2) Plwn]2) £ 5. (1 — Pws]2)) Plun]2)
B 51— P(uws]2)Plus]2)
= Y TS Plune) Pl |

P(wa|wy) =

which can be seen to be of the same form as the probabilistic ratio model spétiEquation 20,
witha =1, 8 =0, § = 1, topicsz in the place of features, andP(w|z) replacingP (X € h).
This result is similar to that of Tenenbaum and Griffiths (2001), who sHdtvat their Bayesian

model of generalization was equivalent to the ratio model.



Topics in semantic representation 85

Appendix C: The collocation model
Using the notation introduced above, the collocation model can be written as

wi | 2,z = 0, ) ~ Discretéo(*!))

w; | wi—1,2; = 1,¢!"-1) ~ Discretdgp(*i-1))

¢ ~ Dirichlet()
o) ~ Dirichlet(s)
2|01 ~ Discretgf(®))
9(4) ~ Dirichlet(a)
i | wi ~ Discretdr(vi-1))
) ~ Betay0,71)

whereg(¥i) is the distribution ovetv; givenw;_1, andr(*i-1) is the distribution over; given
w;_1. The Gibbs sampler for this model is as followsz)f= 0, thenz; is drawn from the

distribution
nG) 48 Ny +a
n#) +Wwgn+ Ta

where all counts exclude the current case and only refer to the wardgichx; = 0, which are

P(zilz_s, w,c) (21)

the words assigned to the topic model (exgis the total number of words for whick = 0, not

the total number of words in the corpus)if = 1, thenz; is sampled from

Ny + «
n+Ta

P(z|z—i, w,c) (22)

where again the counts are only for the words for which= 0. Finally, z; is drawn from the

distribution
ngff)%g néwFl)-‘rvo 2 =0
(23) (wi—1) L
)
P($i|x—iawvz) (8 " <wi_1>ﬁ s (wfjf;rvl (23)
N, 0 my T4y =1
anFl)—&-W(S ani71)+'yo+'y1 !
wherenéw”l) andngw“l) are the number of times the woug_; has been drawn from a topic or

formed part of a collocation resectively, and all counts exclude thectucase.
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To estimate the parameters of the model for each sample, we can again ussténmp
mean. The estimator fat*) is justy(?) from Equation 15. A similar estimator exists for the

distribution associated with successive words

(w1)
~w Ny + 0
o) = s (24)
n. 4+ Wé
For (1) which is the estimate of the probability that = 1 givenw;, we have
(w1)
50— % (25)
n 40 +m
Using these estimates, Equation 12 becomes
Pwn|wy) = a0 + (1 - a) 37 o) = (26)

The results described in the paper were averaged over 24 samplesguidny the MCMC
algorithm, with3 = 0.01, « = 50/T', 70 = 0.1, 1 = 0.1 andé = 0.1. The samples were collected

from three chains in the same way as for the basic topic model.
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Footnotes

1This formulation of the model makes the assumption that each topic capturésrardif
sense or meaning of a word. This need not be the case — there may be-toroa@yrelationship
between topics and the senses or meanings in which words are usedididive topic
assignment still communicates information that can be used in disambiguationealictipn in
the way that the sense or meaning must be used. Henceforth, we willdodhs use ot; to
indicate a topic assignment, rather than a sense or meaning for a particudar wo

2\We have suppressed the dependence of the probabilities discussedsecthiia on the
parameters specifying(w|z) and P(z|g), assuming that these parameters are known. A more
rigorous treatment of the computation of these probabilities is given in Ajppénd

3ltis also possible to define a generative model that makes this assumptidiydivagdng
just one topic per sentence, and to use techniques like those describgpdndi A to identify
topics using this model. We did not use this model because it uses additiamrah@ifon about the
structure of the documents, making it harder to compare against alterapfiveaches such as
Latent Semantic Analysis (Landauer & Dumais, 1997). The single topicrgsn can also be
derived as the consequence of having a hyperparamdéemoring choices of that employ few
topics: the single topic assumption is produced by allowirtg approach.

4As the number of topics to which a word is assigned will be affected by the euailbopics
in the solution, these values cannot be taken as representing the numiEarohgs or senses of a
word directly. As mentioned previously, the correspondence will be niauose.

>0r, more precisely, psychology based upon an information-proceapprgach to studying

the mind.
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Table 1

StructuralStatisticsandCorrelationdor SemantidNetworks

Undirected(k = 20.16) Directed(k = 11.67)

Association Cosine Inner product Topics Association Topics

Statistics
Sk 18.08 14.51 33.77 21.36 18.72 21.65
0 2.999 1.972 1.176 2.746 2.028 1.948
C 0.187 0.267 0.625 0.303 0.187 0.308
L 3.092 3.653 2.939 3.157 4.298 4.277
Correlations
k (0.530)  0.104 0.465 0.487 (0.582)  0.606
C (-0.462)  0.146 0.417 0.396 (-0.462)  0.391

Note: k and s are the mean and standard deviation of the degree distributitiie power law
exponent,C the mean clustering coefficient, adidthe mean length of the shortest path between

pairs of words. Correlations in parentheses show the results of usibfseguency as a predictor.
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Table 2

Predictionsof modelsfor semantigoriming taskof Till etal. (1988)

MeaningA InferenceA MeaningB  InferenceB

€.0.MONEY €e.g.EARTHQUAKE e€.g.CANDY €.J.BREATH

Cosine
early 0.099 0.038 0.135 0.028
late A 0.060 0.103 0.046 0.017
late B 0.050 0.024 0.067 0.046

Innerproduct

early 0.208 0.024 0.342 0.017
late A 0.081 0.039 0.060 0.012
late B 0.060 0.009 0.066 0.024

Topics(log;, probability)

early -3.22 -4.31 -3.16 -4.42
late A -4.03 -4.13 -4.58 -4.77

late B -4.52 -4.73 -4.21 -4.24
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Table 3

Predictionsof modelsfor readingtime taskof Serencetal. (1992)

Ambiguous word Low-frequency control High-frequency control

Human gaze duration (ms) 281 287 257
Cosine 0.021 0.048 0.043
Inner product 0.011 0.010 0.025

Topics (og;, probability) -4.96 -5.26 -4.68
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Table 4

Correlationsof recognition memory sensitivities (d') with word frequency (W F), document

frequency(D F') andtopic variability (T'V).

Variable d logWF logDF
log WF —0.50* ; ;
log DF —0.58* 0.97* -
log TV —-0.67*  0.69* 0.82*

logTV|logWF** —0.53* - -

logTV|log DF**  —0.43* - -
Note: ¢) Correlations are significant at< .0001. (xx) Partial correlations where the effect of the

second variable is partialled out of the effect of the first variable.
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Table 5

Medianranksof the collocationmodelandbasictopic modelin predictingword association

Associate
Number of topics 1st 2nd 3rd 4th 5th
500 27 (29) 66 (70) 104 (106) 139 (141) 171(175)
900 22 (22) 59(57) 105(101) 134(131) 159 (159)
1300 20(20) 58(56) 105(99) 131(128) 160 (163)
1700 19 (18) 57(54) 102 (100) 131 (130) 166 (164)

Note: Numbers in parentheses show the performance of the basic topitwiiibaert collocations.
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Figure Captions

Figure 1.Approaches to semantic representation. (a) In a semantic network, arerdspresented
as nodes, and edges indicate semantic relationships. (b) In a semangicvepals are represented
as points, and proximity indicates semantic association. These are the fidintewsions of a
solution produced by Latent Semantic Analysis (Landauer & Dumais, 199i€)black dot is the
origin. (c) In the topic model, words are represented as belonging tooh gedbabilistic topics.
The matrix shown on the left indicates the probability of each word undér efattiree topics. The
three columns on the right show the words that appear in those topicsedifdem highest to

lowest probability.

Figure 2.A word-document co-occurrence matrix, indicating the frequencie8 efdrds across

90 documents extracted from the TASA corpus. A total of 30 documentdhaseordvMoNEY, 30
use the woraiL, and 30 use the womlIVER. Each row corresponds to a word in the vocabulary,
and each column to a document in the corpus. Grayscale indicates therfogoguith which the

731 tokens of those words appeared in the 90 documents, with black being trestigequency

and white being zero.

Figure 3.(a) Latent Semantic Analysis (LSA) performs dimensionality reduction usieg th
singular value decomposition. The transformed word-document carecme matrix, X, is
factorized into three smaller matricd$, D, andV. U provides an orthonormal basis for a spatial
representation of word4) weights those dimensions, aidprovides an orthonormal basis for a
spatial representation of documents. (b) The topic model performs dimatgigeduction using
statistical inference. The probability distribution over words for eacludwnt in the corpus
conditioned upon its gist?(w|g), is approximated by a weighted sum over a set of probabilistic
topics, represented with probability distributions over waRi®|z), where the weights for each

document are probability distributions over topi€¥:|g), determined by the gist of the document,

g.
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Figure 4.Generative models for language. (a) A schematic representation abgjgaenodels for
language. Latent structufegenerates worde. This generative process defines a probability
distribution overt, P(£), andw given£, P(w|€). Applying Bayes’ rule with these distributions
makes it possible to invert the generative process, infe#iingm w. (b) Latent Dirichlet
Allocation (Blei et al., 2003), a topic model. A document is generated bysihga distribution
over topics that reflects the gist of the documenthoosing a topie; for each potential word
from a distribution determined by, and then choosing the actual warg from a distribution

determined by;.

Figure 5.Prediction and disambiguation. (a) Words observed in a sentend®) The distribution
over topics conditioned on those word¥z|w). (c) The predicted distribution over words
resulting from summing over this distribution over topi€¥w, 1|w) = >, P(wnt1|2)P(z|w).
On seein®BANK, the model is unsure whether the sentence concerns finance or theysae
Subsequently seeirgTREAM results in a strong conviction thaaNK does not refer to a financial

institution.

Figure 6.Semantic networks. (a) In a unipartite network, there is only one classiefsndn this
case, all nodes represent words. (b) In a bipartite network, thettsvarclasses, and connections
only exist between nodes of different classes. In this case, oneaflasdes represents words and

the other class represents topics.

Figure 7.A sample of 1700 topics derived from the TASA corpus. Each column cwnthe 20
highest probability words in a single topic, as indicated®{yv|z). Words in boldface occur in
different senses in neighboring topics, illustrating how the model deals wiflsgmy and
homonymy. These topics were discovered in a completely unsupervisedrfagsing just

word-document co-occurrence frequencies.

Figure 8.Performance of LSA and the topic model in predicting word associatio.H@median
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ranks of the first five empirical associates in the ordering predicted farelit measures of
semantic association at different dimensionalities. Smaller ranks indicate fpetimmance. The
dotted line shows baseline performance, corresponding to the use aftttieequencies with
which words occur in the same documents. (b) The probability that a seticoy themn highest
ranked words under the different measures would contain the firstieal@Eissociate, with plot
markers corresponding te = 1, 5, 10, 25, 50, 100. The results for the cosine and inner product
are thebest results obtained over all choices of between 100 and 700 dimenstatesthe results
for the topic model use just the 1700 topic solution. The dotted line is baselif@mpance

derived from co-occurrence frequency.

Figure 9.Actual and predicted associates for a subset of cues. Two cuesaneiemly selected
from the sets of cues for which (from left to right) both models correctbdpated the first
associate, only the topic model made the correct prediction, only LSA madettest prediction,
and neither model made the correct prediction. Each column lists the cuenlassaciates,
predictions of the topic model, and predictions of LSA, presenting the fisstifords in order. The

rank of the first associate is given in parentheses below the predicfitims topic model and LSA.

Figure 10.Expression of the triangle inequality in association, Latent Semantic Anadygishe
topic model. (a) Each row gives the distribution of the association probaliflity; |w, ), for a
triple wy, wy, ws such thatP (wq|w; ) and P(ws|w2) are both greater than with the value ofr
increasing down the column. Irrespective of the choice,ahere remain cases where

P(ws|wy) = 0, suggesting violation of the triangle inequality. (b) Quite different behasior
obtained from LSA, where the triangle inequality enforces a lower bosimol{n with the dotted
line) on the value o€os(w;, ws) as a result of the values obs(ws, ws) andcos(wy, ws). (c) The
topic model shows only a weak effect of increasingd) as does the inner product in LSA. In
(a)-(d), the value of for each plot was chosen to make the number of triples above threshold

approximately equal across each row. (e) The significance of thgehanlistribution can be seen
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by plotting the percentile rank among all word pairs of the lowest valuesifv, , w3) and
P(ws|wy) as a function of the number of triples selected by some valae ©he plot markers
show the percentile rank of the left-most values appearing in the histogrgims(ih), for different
values ofr. The minimum value ofos(w;, w3) has a high percentile rank even for the lowest
value ofr, while P(ws|w, ) increases more gradually as a functionroffhe minimum inner

product remains low for all values of

Figure 11 Degree distributions for semantic networks. (a) The power-law degstédtion for
the undirected graph, shown as a linear function on log-log coordin@t&3.Neither the cosine
nor the inner product in LSA produce the appropriate degree distribytipihe topic model
produces a power-law with the appropriate exponent. (e) In the dirgcagdh, the out-degree is
unimodal and exponential-tailed. (f) The topic model produces a similar digtib (g) The
in-degree distribution for the directed graph is power-law. (h) The topidehalso provides a

close match to this distribution.

Figure 12 Retrieval probabilitieSP (wyecair| Wstudy ), fOr a study list containing words
semantically associated wihLeeP. The upper panel shows the probabilities of each of the words
on the study list. The lower panel shows the probabilities of the most likely-éstnaords. SLEEP

has a high retrieval probability, and would thus be likely to be falsely recalled

Figure 13.The distribution of the number of contexts in which a word can appear has a
characteristic form, whether computed from the number of senses in Wortiid number of

entries in Roget’s thesaurus, or the number of topics in which a word eppea

Figure 14 A topic hierarchy, learned from the abstracts of articles appeariRgychological

Review since 1967. Each document is generated by choosing a patthiowot (the top node) to

a leaf (the bottom nodes). Consequently, words in the root topic appekuidiocuments, the

second level topics pick out broad trends across documents, and itedbfhe leaves pick out
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specific topics within those trends. The model differentiates cognitivéalseision, and
biopsychological research at the second level, and identifies fineegrdistinctions within these

subjects at the leaves.

Figure 15.Graphical model indicating dependencies among variables in the collocatigel.mo
The variabler; determines whether the wotd is generated from a distribution that depends only

on the previous word, being a collocation, or from a distribution that dégenly on the topic;.

Figure 16.Graphical model indicating dependencies among variables in the composiéd, inod
which syntactic dependencies are captured by a hidden Markov moitletiec; variables being
the classes from which words are generated) and semantic depesdeecdaptures by a topic

model.

Figure 17 Results of applying a composite model that has both syntactic and semantic latent
structure to a concatenation of the TASA and Brown corpora. The maodeltaneously finds the
kind of semantic topics identified by the topic model and syntactic classes afth@toduced by

a hidden Markov model.

Figure 18.lllustration of the Gibbs sampling algorithm for learning topics, using the data fr
Figure 2. Each word tokemw; appearing in the corpus has a topic assignmgni he figure shows
the assignments of all tokens of three typ@seNEY, BANK, andSTREAM — before and after
running the algorithm. Each marker corresponds to a single token app@adrparticular
document, and shape and color indicates assignment: topic 1 is a blacktopde? is a gray
square, and topic 3 is a white triangle. Before running the algorithm, assigamme relatively
random, as shown in the left panel. After running the algorithm, tokemsoofey are almost
exclusively assigned to topic 3, tokensaafREAM are almost exclusively assigned to topic 1, and
tokens ofBANK are assigned to whichever of topic 1 and topic 3 seems to dominate a given

document. The algorithm consists of iteratively choosing an assignmesadbrtoken, using a
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probability distribution over tokens that guarantees convergence to #terjgw distribution over

assignments.
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semantic dependencies:
topic model

syntactic dependencies:

hidden Markov model
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Semantic topics
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