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Abstract

Accounts of language processing have suggested that it requires retrieving concepts from memory

in response to an ongoing stream of information. This can be facilitated by inferring the gist of a

sentence, conversation, or document, and using that gist to predict related concepts and

disambiguate words. We analyze the abstract computational problem underlying the extraction and

use of gist, formulating this problem as a rational statistical inference. This leads us to a novel

approach to semantic representation in which word meanings are represented in terms of a set of

probabilistic topics. The topic model performs well in predicting word association and the effects

of semantic association and ambiguity on a variety of language processing and memory tasks. It

also provides a foundation for developing more richly structured statisticalmodels of language, as

the generative process assumed in the topic model can easily be extended toincorporate other

kinds of semantic and syntactic structure.
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Topics in semantic representation

Many aspects of perception and cognition can be understood by considering the

computational problem that is addressed by a particular human capacity (Andersion, 1990; Marr,

1982). Perceptual capacities such as identifying shape from shading (Freeman, 1994), motion

perception (Weiss, Adelson, & Simoncelli, 2002), and sensorimotor integration (Wolpert,

Ghahramani, & Jordan, 1995; Koerding & Wolpert, 2004) appear to closely approximate optimal

statistical inferences. Cognitive capacities such as memory and categorization can be seen as

systems for efficiently making predictions about the properties of an organism’s environment (e.g.,

Anderson, 1990). Solving problems of inference and prediction requires sensitivity to the statistics

of the environment. Surprisingly subtle aspects of human vision can be explained in terms of the

statistics of natural scenes (Geisler, Perry, Super, & Gallogly, 2001; Simoncelli & Olshausen,

2001), and human memory seems to be tuned to the probabilities with which particular events

occur in the world (Anderson & Schooler, 1991). Sensitivity to relevantworld statistics also seems

to guide important classes of of cognitive judgments, such as inductive inferences about the

properties of categories (Kemp, Perfors & Tenenbaum, 2004), predictions about the durations or

magnitudes of events (Griffiths & Tenenbaum, 2006b), or inferences about hidden common causes

from patterns of coincidence (Griffiths & Tenenbaum, 2006a).

In this paper, we examine how the statistics of one very important aspect of the environment

– natural language – influence human memory. Our approach is motivated byan analysis of some

of the computational problems addressed by semantic memory, in the spirit of Marr (1982) and

Anderson (1990). Under many accounts of language processing, understanding sentences requires

retrieving a variety of concepts from memory in response to an ongoing stream of information.

One way to do this is to use the semantic context – thegist of a sentence, conversation, or

document – to predict related concepts and disambiguate words (Ericsson& Kintsch, 1995;

Kintsch, 1988; Potter, 1993). The retrieval of relevant information canbe facilitated by predicting
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which concepts are likely to be relevant before they are needed. For example, if the wordBANK

appears in a sentence, it might become more likely that words likeFEDERAL andRESERVEwould

also appear in that sentence, and this information could be used to initiate retrieval of the

information related to these words. This prediction task is complicated by the fact that words have

multiple senses or meanings:BANK should only influence the probabilities ofFEDERAL and

RESERVEif the gist of the sentence that it refers to a financial institution. If words likeSTREAM or

MEADOW also appear in the sentence, then it is likely thatBANK refers to the side of a river, and

words likeWOODSor FIELD should increase in probability.

The ability to extract gist has influences that reach beyond language processing, pervading

even simple tasks such as memorizing lists of words. A number of studies have shown that when

people try to remember a list of words that are semantically associated with a word that does not

appear on the list, the associated word intrudes upon their memory (Deese, 1959; McEvoy, Nelson,

& Komatsu, 1999; Roediger, Watson, McDermott, & Gallo, 2001). Results ofthis kind have led to

the development of dual-route memory models, which suggest that people encode not just the

verbatim content of a list of words, but also their gist (Brainerd, Reyna, & Mojardin, 1999;

Brainerd, Wright, & Reyna, 2002; Mandler, 1980). These models leaveopen the question of how

the memory system identifies this gist.

In this paper, we analyze the abstract computational problem of extractingand using the gist

of a set of words, and examine how well different solutions to this problemcorrespond to human

behavior. The key difference between these solutions is the way that theyrepresent gist. In

previous work, the extraction and use of gist has been modeled using associative semantic

networks (e.g., Collins & Loftus, 1975) and semantic spaces (e.g., Landauer & Dumais, 1997;

Lund & Burgess, 1996). Examples of these two representations are shown in Figure 1 (a) and (b),

respectively. We take a step back from these specific proposals, and provide a more general

formulation of the computational problem that these representations are used to solve. We express

the problem as one of statistical inference: given some data – the set of words – inferring the latent
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structure from which it was generated. Stating the problem in these terms makes it possible to

explore forms of semantic representation that go beyond networks and spaces.

Insert Figure 1 about here

Identifying the statistical problem underlying the extraction and use of gist makes it possible

to use any form of semantic representation: all that needs to be specified isa probabilistic process

by which a set of words are generated using that representation of theirgist. In machine learning

and statistics, such a probabilistic process is called agenerativemodel. Most computational

approaches to natural language have tended to focus exclusively on either structured

representations (e.g., Chomsky, 1965; Pinker, 1999) or statistical learning (e.g., Elman, 1990;

Plunkett & Marchman, 1993; Rumelhart & McClelland, 1986). Generativemodels provide a way

to combine the strengths of these two traditions, making it possible to use statisticalmethods to

learn structured representations. As a consequence, generative models have recently become

popular in both computational linguistics (e.g., Charniak, 1993; Jurafsky &Martin, 2000; Manning

& Shütze, 1999) and psycholinguistics (e.g., Baldewein & Keller, 2004; Jurafsky, 1996), although

this work has tended to emphasize syntactic structure over semantics.

The combination of structured representations with statistical inference makes generative

models the perfect tool for evaluating novel approaches to semantic representation. We use our

formal framework to explore the idea that the gist of a set of words can berepresented as a

probability distribution over a set of topics. Each topic is a probability distribution over words, and

the content of the topic is reflected in the words to which it assigns high probability. For example,

high probabilities forWOODSandSTREAM would suggest a topic refers to the countryside, while

high probabilities forFEDERAL andRESERVEwould suggest a topic refers to finance. A schematic

illustration of this form of representation appears in Figure 1 (c). Followingwork in the

information retrieval literature (Blei, Ng, & Jordan, 2003), we use a simple generative model that
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defines a probability distribution over a set of words, such as a list or a document, given a

probability distribution over topics. Using methods from Bayesian statistics, a set of topics can be

learned automatically from a collection of documents, as a computational analogof how human

learners might form semantic representations through their linguistic experience (Griffiths &

Steyvers, 2002, 2003, 2004).

The topic model provides a starting point for an investigation of new forms ofsemantic

representation. Representing words using topics has an intuitive correspondence to feature-based

models of similarity. Words that receive high probability under the same topics will tend to be

highly predictive of one another, just as stimuli that share many features will be highly similar. We

show that this intuitive correspondence is supported by a formal correspondence between the topic

model and Tversky’s (1977) feature-based approach to modeling similarity. Since the topic model

uses exactly the same input as Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), a

leading model of the acquisition of semantic knowledge in which the association between words

depends on the distance between them in a semantic space, we can compare these two models as a

means of examining the implications of different kinds of semantic representation, just as featural

and spatial representations have been compared as models of human similarityjudgments

(Tversky, 1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1986). Furthermore, the topic

model can easily be extended to capture other kinds of latent linguistic structure. Introducing new

elements into a generative model is straightforward, and by adding components to the model that

can capture richer semantic structure or rudimentary syntax we can begin todevelop more

powerful statistical models of language.

The plan of the paper is as follows. First, we provide a more detailed specification of the

kind of semantic information we aim to capture in our models, and summarize the ways in which

this has been done in previous work. We then analyze the abstract computational problem of

extracting and using gist, formulating this problem as one of statistical inference and introducing

the topic model as one means of solving this computational problem. The body ofthe paper is
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concerned with assessing how well the representation recovered by thetopic model corresponds

with human semantic memory. In an analysis inspired by Tversky’s (1977) critique of spatial

measures of similarity, we show that several aspects of word association that can be explained by

the topic model are problematic for LSA. We then compare the performance ofthe two models in a

variety of other tasks tapping semantic representation, and outline some of theway in which the

topic model can be extended.

Approaches to semantic representation

Semantic representation is one of the most formidable topics in cognitive psychology. The

field is fraught with murky and potentially never-ending debates; it is hard toimagine that one

could give a complete theory of semantic representation outside of a complete theory of cognition

in general. Consequently, formal approaches to modeling semantic representation have focused on

various tractable aspects of semantic knowledge. Before presenting ourapproach we must clarify

where its focus lies.

Semantic knowledge can be thought of as knowledge about relations amongseveral types of

elements, including words, concepts, and percepts. Some relations that have been studied include

the following:

Word-concept relations. Knowledge that the wordDOG refers to the conceptdog, the word

ANIMAL refers to the conceptanimal, or that the wordTOASTERrefers to the concepttoaster.

Concept-concept relations. Knowledge thatdogs are a kind ofanimal, thatdogs havetails and

canbark, or thatanimals havebodies and canmove.

Concept-percept or concept-action relations. Knowledge about whatdogs look like, how adog

can be distinguished from acat, how to pet adog or operate atoaster.

Word-word relations. Knowledge that the wordDOG tends to be associated with or co-occur

with words such asTAIL , BONE or CAT, or the wordTOASTER tends to be associated with
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KITCHEN, OVEN, or BREAD.

These different aspects of semantic knowledge are not necessarily independent. For instance, the

word CAT may be associated with the wordDOG becauseCAT refers tocats,DOG refers todogs,

andcats anddogs are both common kinds ofanimals. Yet different aspects of semantic knowledge

can influence behavior in different ways and seem to be best capturedby different kinds of formal

representations. As a result, different approaches to modeling semantic knowledge tend to focus on

different aspects of this knowledge, depending on what fits most naturally with the representational

system they adopt, and there are corresponding differences in the behavioral phenomena they

emphasize. Computational models also differ in the extent to which their semantic representations

can be learned automatically from some naturally occuring data or must be hand-wired by the

modeler. Although many different modeling approaches can be imagined withinthis broad

landscape, there are two prominent traditions.

One tradition emphasizes abstract conceptual structure, focusing on relations between

concepts and relations between concepts and percepts or actions. This knowledge is traditionally

represented in terms of systems of abstract propositions, such as (is-acanarybird), (hasbird

wings), and so on (Collins & Quillian, 1969). Models in this tradition have focused on explaining

phenomena such as the development of conceptual hierarchies that support propositional

knowledge (e.g., Keil, 1979), reaction time to verify conceptual propositions in normal adults

(Collins & Quillian, 1969), and the decay of propositional knowledge with aging or brain damage

(e.g., Warrington, 1975). This approach does not worry much about the mappings between words

and concepts, or associative relations between words; in practice, the distinction between words

and concepts is typically collapsed. Actual language use is addressed only indirectly: the relevant

experiments are often conducted with linguistic stimuli and responses, but theprimary interest is

not in the relation between language use and conceptual structure. Representations of abstract

semantic knowledge of this kind have traditionally been hand-crafted by modelers (Collins &

Quillian, 1969), in part because it is not clear how they could be learned automatically. Recently
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there has been some progress in learning distributed representations of conceptual relations

(Rogers & McClelland, 2004), although the input to these learning models is still quite idealized,

in the form of hand-coded databases of simple propositions. Learning large-scale representations

of abstract conceptual relations from naturally occuring data remains anunsolved problem.

A second tradition of studying semantic representation has focused more onthe structure of

associative relations between words in natural language use, and relations between words and

concepts, along with the contextual dependence of these relations. For instance, when one hears

the wordBIRD, it becomes more likely that one will also hear words likeSING, FLY, or NEST in the

same context – but perhaps less so if the context also contains the wordsTHANKSGIVING,

TURKEY, andDINNER. These expectations reflect the fact thatBIRD has multiple senses, or

multiple concepts it can refer to, including both a taxonomic category and a food category. The

semantic phenomena studied in this tradition may appear to be somewhat superficial, in that they

typically do not tap deep conceptual understanding. The data tend to be tiedmore directly to

language use and the memory systems that support online linguistic processing, such as word

association norms (e.g., Nelson, McEvoy, & Schreiber, 1998), word reading times in sentence

processing (e.g., Sereno, Pacht, & Rayner, 1992), semantic priming (e.g., Till, Mross, & Kintsch,

1988), and effects of semantic context in free recall (e.g., Roediger & McDermott, 1995).

Compared to approaches focusing on deeper conceptual relations, classic models of semantic

association tend to invoke much simpler semantic representations, such as semantic spaces or

holistic spreading-activation networks (e.g., Deese, 1959; Collins & Loftus, 1975). This simplicity

has its advantages: there has recently been considerable success in learning the structure of such

models from large-scale linguistic corpora (e.g., Landauer & Dumais, 1997; Lund & Burgess,

1996).

We recognize the importance of both these traditions in studying semantic knowledge. They

have complementary strengths and weaknesess, and ultimately ideas from both are likely to be

important. Our work here is more clearly in the second tradition, with its emphasis on relatively
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light representations that can be learned from large text corpora, andon explaining the structure of

word-word and word-concept associations, rooted in the contexts of actual language use. While the

interpretation of sentences requires semantic knowledge that goes beyond these contextual

associative relationships, many theories still identify this level of knowledgeas playing an

important role in the early stages of language processing (Ericsson & Kintsch, 1995; Kintsch,

1988; Potter, 1993). Specifically, it supports solutions to three core computational problems:

Prediction Predict the next word or concept, facilitating retrieval

Disambiguation Identify the senses or meanings of words

Gist extraction Pick out the gist of a set of words

Our goal is to understand how contextual semantic association is represented, used, and acquired.

We will argue that considering relations between latent semantic topics and observable word forms

provides a way to capture many aspects of this level of knowledge: it provides principled and

powerful solutions to these three core tasks and it is also easily learnable from natural linguistic

experience. Before introducing this modeling framework, we will summarize the two dominant

approaches to the representation of semantic association, semantic networks and semantic spaces,

establishing the background to the problems we consider.

Semanticnetworks

In an associative semantic network, such as that shown in Figure 1 (a), aset of words or

concepts are represented as nodes connected by edges that indicate pairwise associations (e.g.,

Collins & Loftus, 1975). Seeing a word activates its node, and activation spreads through the

network, activating nodes that are nearby. Semantic networks provide an intuitive framework for

expressing the semantic relationships between words. They also provide simple solutions to the

three problems for which contextual knowledge might be used. Treating those problems in the

reverse of the order identified above, gist extraction simply consists of activating each word that

occurs in a given context, and allowing that activation to spread through the network. The gist is
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represented by the pattern of node activities. If different meanings of words are represented as

different nodes, then disambiguation can be done by comparing the activation of those nodes.

Finally, the words that one might expect to see next in that context will be thewords that have high

activations as a result of this process.

Most semantic networks that are used as components of cognitive models are considerably

more complex than the example shown in Figure 1 (a), allowing multiple different kinds of nodes

and connections (e.g., Anderson, 1983; Norman, Rumelhart, & the LNR Research Group, 1975).

In addition to “excitatory” connections, in which activation of one node increases activation of

another, some semantic networks feature “inhibitory” connections, allowingactivation of one node

to decrease activation of another. The need for inhibitory connections isindicated by empirical

results in the literature on priming. A simple network without inhibitory connectionscan explain

why priming might facilitate lexical decision, making it easier to recognize that a target is an

English word. For example, a word likeNURSEprimes the wordDOCTORbecause it activates

concepts that are closely related toDOCTOR, and the spread of activation ultimately activates

doctor. However, not all priming effects are of this form. For example, Neely (1976) showed that

priming with irrelevant cues could have an inhibitory effect on lexical decision. To use an example

from Markman (1998), priming withHOCKEY could produce a slower reaction time forDOCTOR

than presenting a completely neutral prime. Effects like these suggest that we need to incorporate

inhibitory links between words. Interestingly, it would seem that a great many such links would be

required, because there is no obvious special relationship betweenHOCKEY andDOCTOR: the two

words just seem unrelated. Thus, inhibitory links would seem to be neededbetween all pairs of

unrelated words in order to explain inhibitory priming.

Semanticspaces

An alternative to semantic networks is the idea that the meaning of words can becaptured

using a spatial representation. In a semantic space, such as that shown inFigure 1 (b), words are
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nearby if they are similar in meaning. This idea appears in early work exploring the use of

statistical methods to extract representations of the meaning of words from human judgments

(Deese, 1959; Fillenbaum & Rapoport, 1971). Recent research haspushed this idea in two

directions. First, connectionist models using “distributed representations”for words – which are

commonly interpreted as a form of spatial representation – have been usedto predict behavior on a

variety of linguistic tasks (e.g., Kawamoto, 1993; Plaut, 1997; Rodd, Gaskell, & Marslen-Wilson,

2004). These models perform relatively complex computations on the underlying representations

and allow words to be represented as multiple points in space, but are typicallytrained on

artificially generated data. A second thrust of recent research has been exploring methods for

extracting semantic spaces directly from real linguistic corpora (Landauer & Dumais, 1997; Lund

& Burgess, 1996). These methods are based upon comparatively simple models – for example,

they assume each word is represented as only a single point – but providea direct means of

investigating the influence of the statistics of language on semantic representation.

Latent Semantic Analysis (LSA; Landauer & Dumais, 1997) is one of the mostprominent

methods for extracting a spatial representation for words from a multi-document corpus of text.

The input to LSA is a word-document co-occurrence matrix, such as thatshown in Figure 2. In a

word-document co-occurrence matrix, each row represents a word,each column represents a

document, and the entries indicate the frequency with which that word occurred in that document.

The matrix shown in Figure 2 is a portion of the full co-occurrence matrix forthe TASA corpus

(Landauer & Dumais, 1997), a collection of passages excerpted from educational texts used in

curricula from the first year of school to the first year of college.

Insert Figure 2 about here

The output from LSA is a spatial representation for words and documents. After applying

various transformations to the entries in a word-document co-occurrence matrix (one standard set
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of transformations is described in Griffiths & Steyvers, 2003), singular value decomposition is

used to factorize this matrix into three smaller matrices,U , D, andV , as shown in Figure 3 (a).

Each of these matrices has a different interpretation. TheU matrix provides an orthonormal basis

for a space in which each word is a point. TheD matrix, which is diagonal, is a set of weights for

the dimensions of this space. TheV matrix provides an orthonormal basis for a space in which

each document is a point. An approximation to the original matrix of transformedcounts can be

obtained by remultiplying these matrices, but choosing to use only the initial portions of each

matrix, corresponding to the use of a lower-dimensional spatial representation.

Insert Figure 3 about here

In psychological applications of LSA, the critical result of this procedure is the first matrix,

U , which provides a spatial representation for words. Figure 1 (b) shows the first two dimensions

of U for the word-document co-occurence matrix shown in Figure 2. The results shown in the

figure demonstrate that LSA identifies some appropriate clusters of words.For example,OIL,

PETROLEUMandCRUDE are close together, as areFEDERAL, MONEY, andRESERVE. The word

DEPOSITSlies between the two clusters, reflecting the fact that it can appear in either context.

The cosine of the angle between the vectors corresponding to words in the semantic space

defined byU has proven to be an effective measure of the semantic association betweenthose

words (Landauer & Dumais, 1997). The cosine of the angle between two vectorsw1 andw2 (both

rows ofU , converted to column vectors) is

cos(w1, w2) =
wT

1 w2

||w1||||w2||
, (1)

wherewT
1 w2 is the inner product of the vectorsw1 andw2, and||w|| denotes the norm,

√
wT w.

Performance in predicting human judgments is typically better when using only thefirst few

hundred derived dimensions, since reducing the dimensionality of the representation can decrease
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the effects of statistical noise and emphasize the latent correlations among words (Landauer &

Dumais, 1997).

Latent Semantic Analysis provides a simple procedure for extracting a spatial representation

of the associations between words from a word-document co-occurrence matrix. The gist of a set

of words is represented by the average of the vectors associated with those words. Applications of

LSA often evaluate the similarity between two documents by computing the cosine between the

average word vectors for those documents (Landauer & Dumais, 1997;Rehder, Schreiner, Wolfe,

Laham, Landauer, & Kintsch, 1998; Wolfe, Schreiner, Rehder, Laham, Foltz, Kintsch, & Landauer,

1998). This representation of the gist of a set of words can be used to address the prediction

problem: we should predict that words with vectors close to the gist vector are likely to occur in

the same context. However, the representation of words as points in an undifferentiated Euclidean

space makes it difficult for LSA to solve the disambiguation problem. The key issue is that this

relatively unstructured representation does not explicitly identify the different senses of words.

While DEPOSITSlies between words having to do with finance and words having to do with oil,

the fact that this word has multiple senses is not encoded in the representation.

Extracting and using gist as statistical problems

Semantic networks and semantic spaces are both proposals for a form of semantic

representation that can guide linguistic processing. We now take a step back from these specific

proposals, and consider the abstract computational problem that they are intended to solve, in the

spirit of Marr’s (1982) notion of the computational level, and Anderson’s (1990) rational analysis.

Our aim is to clarify the goals of the computation and to identify the logic by which these goals

can be achieved, so that this logic can be used as the basis for exploring other approaches to

semantic representation.

Assume we have seen a sequence of wordsw = (w1, w2, . . . , wn). Thesen words manifest

some latent semantic structure`. We will assume that̀ consists of the gist of that sequence of
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wordsg, and the sense or meaning of each word,z = (z1, z2, . . . , zn), so` = (g, z). We can now

formalize the three problems identified in the previous section:

Prediction Predictwn+1 from w

Disambiguation Infer z from w

Gist extraction Infer g from w

Each of these problems can be formulated as statistical problems. The prediction problem requires

computing the conditional probability ofwn+1 givenw, P (wn+1|w). The disambiguation

problem requires computing the conditional probability ofz givenw, P (z|w). The gist extraction

problem requires computing the probability ofg givenw, P (g|w).

All of the probabilities needed to solve the problems of prediction, disambiguation, and gist

extraction can be computed from a single joint distribution over words and latent structures,

P (w, `). The problems of prediction, disambiguation, and gist extraction can thus besolved by

learning the joint probabilities of words and latent structures. This can be done using a generative

model for language. Generative models are widely used in machine learningand statistics as a

means of learning structured probability distributions. A generative model specifies a hypothetical

causal process by which data are generated, breaking this process down into probabilistic steps.

Critically, this procedure can involve unobserved variables, corresponding to latent structure that

plays a role in generating the observed data. Statistical inference can be used to identify the latent

structure most likely to have been responsible for a set of observations.

A schematic generative model for language is shown in Figure 4 (a). In thismodel, latent

structurè generates an observed sequence of wordsw = (w1, . . . , wn). This relationship is

illustrated usinggraphicalmodel notation (e.g., Jordan, 1998; Pearl, 1988). Graphical models

provide an efficient and intuitive method of illustrating structured probability distributions. In a

graphical model, a distribution is associated with a graph in which nodes are random variables and

edges indicate dependence. Unlike artificial neural networks, in which anode typically indicates a

single unidimensional variable, the variables associated with nodes can be arbitrarily complex.`
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can be any kind of latent structure, andw represents a set ofn words.

Insert Figure 4 about here

The graphical model shown in Figure 4 (a) is adirected graphical model, with arrows

indicating the direction of the relationship among the variables. The result is a directed graph, in

which “parent” nodes have arrows to their “children”. In a generativemodel, the direction of these

arrows specifies the direction of the causal process by which data are generated: a value is chosen

for each variable by sampling from a distribution that conditions on the parents of that variable in

the graph. The graphical model shown in the figure indicates that words are generated by first

sampling a latent structure,`, from a distribution over latent structures,P (`), and then sampling a

sequence of words,w, conditioned on that structure from a distributionP (w|`).

The process of choosing each variable from a distribution conditioned onits parents defines

a joint distribution over observed data and latent structures. In the generative model shown in

Figure 4 (a), this joint distribution is

P (w, `) = P (w|`)P (`).

With an appropriate choice of̀, this joint distribution can be used to solve the problems of

prediction, disambiguation, and gist extraction identified above. In particular, the probability of the

latent structurè given the sequence of wordsw can be computed by applying Bayes’ rule:

P (`|w) =
P (w|`)P (`)

P (w)
(2)

where

P (w) =
∑

`

P (w|`)P (`).

This Bayesian inference involves computing a probability that goes againstthe direction of the

arrows in the graphical model, inverting the generative process.
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Equation 2 provides the foundation for solving the problems of prediction, disambiguation,

and gist extraction. The probability needed for prediction,P (wn+1|w), can be written as

P (wn+1|w) =
∑

`

P (wn+1|`,w)P (`|w), (3)

whereP (wn+1|`) is specified by the generative process. Distributions over the senses ofwords,z,

and their gist,g, can be computed by summing out the irrelevant aspect of`,

P (z|w) =
∑

g

P (`|w) (4)

P (g|w) =
∑

z

P (`|w), (5)

where we assume that the gist of a set of words takes on a discrete set ofvalues – if it is

continuous, then Equation 5 requires an integral rather than a sum.

This abstract schema gives a general form common to all generative models for language.

Specific models differ in the latent structure` that they assume, the process by which this latent

structure is generated (which definesP (`)), and the process by which words are generated from

this latent structure (which definesP (w|`)). Most generative models that have been applied to

language focus on latent syntactic structure (e.g., Charniak, 1993; Jurafsky & Martin, 2000;

Manning & Sḧutze, 1999). In the next section, we describe a generative model that represents the

latent semantic structure that underlies a set of words.

Representing gist with topics

A topic model is a generative model that assumes a latent structure` = (g, z), representing

the gist of a set of words,g, as a distribution overT topics, and the sense or meaning used for the

ith word,zi, as an assignment of that word to one of these topics.1 Each topic is a probability

distribution over words. A document – a set of words – is generated by choosing the distribution

over topics reflecting its gist, using this distribution to choose a topiczi for each wordwi, and then

generating the word itself from the distribution over words associated with that topic. Given the
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gist of the document in which it is contained, this generative process defines the probability of the

ith word to be

P (wi|g) =

T
∑

zi=1

P (wi|zi)P (zi|g), (6)

in which the topics, specified byP (w|z), are mixed together with weights given byP (z|g), which

vary across documents.2 The dependency structure among variables in this generative model is

shown in Figure 4 (b).

Intuitively, P (w|z) indicates which words are important to a topic, whileP (z|g) is the

prevalence of those topics in a document. For example, if we lived in a world where people only

wrote about finance, the English countryside, and oil mining, then we couldmodel all documents

with the three topics shown in Figure 1 (c). The content of the three topics is reflected inP (w|z):

the finance topic gives high probability to words likeRESERVEandFEDERAL, the countryside

topic gives high probability to words likeSTREAM andMEADOW, and the oil topic gives high

probability to words likePETROLEUMandGASOLINE. The gist of a document,g, indicates

whether a particular document concerns finance, the countryside, oil mining, or financing an oil

refinery in Leicestershire, by determining the distribution over topics,P (z|g).

Equation 6 gives the probability of a word conditioned on the gist of a document. We can

define a generative model for a collection of documents by specifying howthe gist of each

document is chosen. Since the gist is a distribution over topics, this requiresusing a distribution

over multinomial distributions. The idea of representing documents as mixtures of probabilistic

topics has been used in a number of applications in information retrieval and statistical natural

language processing, with different models making different assumptionsabout the origins of the

distribution over topics (e.g., Bigi, De Mori, El Beze, & Spriet, 1997; Blei etal., 2003; Hofmann,

1999; Iyer & Ostendorf, 1996; Ueda & Saito, 2003). We will use a generative model introduced by

Blei et al. (2003) called Latent Dirichlet Allocation. In this model, the multinomial distribution

representing the gist is drawn from a from a Dirichlet distribution, a standard probability

distribution over multinomials (e.g., Gelman, Carlin, Stern, & Rubin, 1995).
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Having defined a generative model for a corpus based upon some parameters, it is possible

to use statistical methods to infer the parameters from the corpus. In our case, this means finding a

set of topics such that each document can be expressed as a mixture of those topics. An algorithm

for extracting a set of topics is described in Appendix A, and a more detaileddescription and

application of this algorithm can be found in Griffiths and Steyvers (2004).This algorithm takes as

input a word-document co-occurrence matrix. The output is a set of topics, each being a

probability distribution over words. The topics shown in Figure 1 (c) are actually the output of this

algorithm when applied to the word-document co-occurrence matrix shownin Figure 2. These

results illustrate how well the topic model handles words with multiple meanings or senses:FIELD

appears in both the oil and countryside topics,BANK appears in both finance and countryside, and

DEPOSITSappears in both oil and finance. This is a key advantage of the topic model: by assuming

a more structured representation, in which words are assumed to belong to topics, the different

meanings or senses of ambiguous words can be differentiated.

Prediction,disambiguation,andgist extraction

The topic model provides a direct solution to the problems of prediction, disambiguation,

and gist extraction identified in the previous section. The details of these computations are

presented in Appendix A. To illustrate how these problems are solved by the model, we will

consider a simplified case where all words in a sentence are assumed to have the same topic. In this

caseg is a distribution that puts all of its probability on a single topic,z, andzi = z for all i. This

“single topic” assumption makes the mathematics straightforward, and is a reasonable working

assumption in many of the settings we explore.3

Under the single topic assumption, disambiguation and gist extraction become equivalent:

the senses and the gist of a set of words are both expressed in the singletopic,z, that was
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responsible for generating wordsw = {w1, w2, . . . , wn}. Applying Bayes’ rule, we have

P (z|w) =
P (w|z)P (z)

P (w)

=

∏n
i=1 P (wi|z)P (z)

∑

z

∏n
i=1 P (wi|z)P (z)

, (7)

where we have used the fact that thewi are independent givenz. If we assume a uniform prior over

topics,P (z) = 1
T

, the distribution over topics depends only on the product of the probabilitiesof

each of thewi under each topicz. The product acts like a logical “and”: a topic will only be likely

if it gives reasonably high probability to all of the words. Figure 5 shows how this functions to

disambiguate words, using the topics from Figure 1. On seeing the wordBANK , both the finance

and the countryside topics have high probability. SeeingSTREAM quickly swings the probability in

favor of the bucolic interpretation.

Insert Figure 5 about here

Solving the disambiguation problem is the first step in solving the prediction problem.

Incorporating the assumption that words are independent given their topics into Equation 3, we

have

P (wn+1|w) =
∑

z

P (wn+1|z)P (z|w). (8)

The predicted distribution over words is thus a mixture of topics, with each topicbeing weighted

by the distribution computed in Equation 7. This is illustrated in Figure 5: on seeingBANK , the

predicted distribution over words is a mixture of the finance and countrysidetopics, butSTREAM

moves this distribution towards the countryside topic.

Topicsandsemanticnetworks

The topic model provides a clear way of thinking about how and why “activation” might

spread through a semantic network, and can also explain inhibitory priming effects. The standard
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conception of a semantic network is a graph with edges between word nodes, as shown in Figure 6

(a). Such a graph isunipartite: there is only one type of node, and those nodes can be

interconnected freely. In contrast,bipartite graphs consist of nodes of two types, and only nodes of

different types can be connected. We can form a bipartite semantic network by introducing a

second class of nodes that mediate the connections between words. One way to think about the

representation of the meanings of words provided by the topic model is in termsof the bipartite

semantic network shown in Figure 6 (b), where the second class of nodesare the topics.

Insert Figure 6 about here

In any context, there is uncertainty about which topics are relevant to thatcontext. On seeing

a word, the probability distribution over topics moves to favor the topics associated with that word:

P (z|w) moves away from uniformity. This increase in the probability of those topics is intuitively

similar to the idea that activation spreads from the words to the topics that are connected with

them. Following Equation 8, the words associated with those topics also receive higher probability.

This dispersion of probability throughout the network is again reminiscent of spreading activation.

However, there is an important difference between spreading activationand probabilistic inference:

the probability distribution over topics,P (z|w) is constrained to sum to one. This means that as

the probability of one topic increases, the probability of another topic decreases.

The constraint that the probability distribution over topics sums to one is sufficient to

produce the phenomenon of inhibitory priming discussed above. Inhibitorypriming occurs as a

necessary consequence of excitatory priming: when the probability of one topic increases, the

probability of another topic decreases. Consequently, it is possible for one word to decrease the

predicted probability with which another word will occur in a particular context. For example,

according to the topic model, the probability of the wordDOCTOR is 0.000334. Under the single

topic assumption, the probability of the wordDOCTORconditioned on the wordNURSE is 0.0071,
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an instance of excitatory priming. However, the probability ofDOCTORdrops to0.000081 when

conditioned onHOCKEY. The wordHOCKEY suggests that the topic concerns sports, and

consequently topics that giveDOCTORhigh probability have lower weight in making predictions.

By incorporating the constraint that probabilities sum to one, generative models are able to capture

both the excitatory and the inhibitory influence of information without requiringthe introduction of

large numbers of inhibitory links between unrelated words.

Topicsandsemanticspaces

Our claim that models that can accurately predict which words are likely to arise in a given

context can provide clues about human language processing is sharedwith the spirit of many

connectionist models (e.g., Elman, 1990). However, the strongest parallels between our approach

and work being done on spatial representations of semantics are perhaps those that exist between

the topic model and Latent Semantic Analysis (Landauer & Dumais, 1997). Indeed, the

probabilistic topic model developed by Hofmann (1999) was motivated by the success of LSA, and

provided the inspiration for the model introduced by Blei et al. (2003) thatwe use here. Both LSA

and the topic model take a word-document co-occurrence matrix as input. Both LSA and the topic

model provide a representation of the gist of a document, either as a point inspace or a distribution

over topics. And both LSA and the topic model can be viewed as a form of “dimensionality

reduction”, attempting to find a lower-dimensional representation of the structure expressed in a

collection of documents. In the topic model, this dimensionality reduction consists of trying to

express the large number of probability distributions over words providedby the different

documents in terms of a small number of topics, as illustrated in Figure 3 (b).

However, there are two important differences between LSA and the topic model. The major

difference is that LSA is not a generative model. It does not identify a hypothetical causal process

responsible for generating documents, and the role of the meanings of words in this process. As a

consequence, it is difficult to extend LSA to incorporate different kindsof semantic structure, or to



Topics in semantic representation 23

recognize the syntactic roles that words play in a document. This leads to the second difference

between LSA and the topic model: the nature of the representation. Latent Semantic Analysis is

based upon the singular value decomposition, a method from linear algebra that can only yield a

representation of the meanings of words as points in an undifferentiated Euclidean space. In

contrast, the statistical inference techniques used with generative models are flexible, and make it

possible to use structured representations. The topic model provides a simple structured

representation: a set of individually meaningful topics, and information about which words belong

to those topics. We will show that even this simple structure is sufficient to allow the topic model

to capture some of the qualitative features of word association that prove problematic for LSA, and

to predict quantities that cannot be predicted by LSA, such as the number of meanings or senses of

a word.

Comparing topics and spaces

The topic model provides a solution to extracting and using the gist of set of words. In this

section, we evaluate the topic model as a psychological account of the content of human semantic

memory, comparing its performance with LSA. The topic model and LSA both usethe same input

– a word-document co-occurrence matrix – but they differ in how this input is analyzed, and in the

way that they represent the gist of documents and the meaning of words. By comparing these

models, we hope to demonstrate the utility of generative models for exploring questions of

semantic representation, and to gain some insight into the strengths and limitations of different

kinds of representation.

Our comparison of the topic model and LSA will have two parts. In this section,we analyze

the predictions of the two models in depth using a word association task, considering both the

quantitative and the qualitative properties of these predictions. In particular, we show that the topic

model can explain several phenomena of word association that are problematic for LSA. These

phenomena are analogues of the phenomena of similarity judgments that are problematic for
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spatial models of similarity (Tversky, 1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1986).

In the next section we compare the two models across a broad range of tasks, showing that the

topic model produces the phenomena that were originally used to support LSA, and describing

how the model can be used to predict different aspects of human language processing and memory.

Quantitativepredictionsfor wordassociation

Are there any more fascinating data in psychology than tables of association?

Deese (1965, p. viii)

Association has been part of the theoretical armory of cognitive psychologists since Thomas

Hobbes used the notion to account for the structure of our “Trayne of Thoughts” (Hobbes,

1651/1998; detailed histories of association are provided by Deese, 1965, and Anderson & Bower,

1974). One of the first experimental studies of association was conducted by Galton (1880), who

used a word association task to study different kinds of association. Since Galton, several

psychologists have tried to classify kinds of association or to otherwise divine its structure (e.g.,

Deese, 1962; 1965). This theoretical work has been supplemented by the development of extensive

word association norms, listing commonly named associates for a variety of words (e.g., Cramer,

1968; Kiss, Armstrong, Milroy, & Piper, 1973; Nelson, McEvoy & Schreiber, 1998). These norms

provide a rich body of data, which has only recently begun to be addressed using computational

models (Dennis, 2003; Nelson, McEvoy, & Dennis, 2000; Steyvers, Shiffrin, & Nelson, 2004).

While, unlike Deese (1965), we suspect that there may be more fascinatingpsychological

data than tables of associations, word association provides a useful benchmark for evaluating

models of human semantic representation. The relationship between word association and

semantic representation is analogous to that between similarity judgments and conceptual

representation, being an accessible behavior that provides clues and constraints that guide the

construction of psychological models. Also, like similarity judgments, association scores are

highly predictive of other aspects of human behavior. Word association norms are commonly used
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in constructing memory experiments, and statistics derived from these norms have been shown to

be important in predicting cued recall (Nelson, McKinney, Gee, & Janczura, 1998), recognition

(Nelson, McKinney, et al., 1998; Nelson, Zhang, & McKinney, 2001),and false memories (Deese,

1959; McEvoy, Nelson, & Komatsu, 1999; Roediger, Watson, McDermott,& Gallo, 2001). It is

not our goal to develop a model of word association, as many factors other than semantic

association are involved in this task (e.g., Ervin, 1961; McNeill, 1966), butwe believe that issues

raised by word association data can provide insight into models of semantic representation.

We used the norms of Nelson et al. (1998) to evaluate the performance of LSA and the topic

model in predicting human word association. These norms were collected using a free association

task, in which participants were asked to produce the first word that came into their head in

response to a cue word. The results are unusually complete, with associates being derived for every

word that was produced more than once as an associate for any other word. For each word, the

norms provide a set of associates and the frequencies with which they were named, making it

possible to compute the probability distribution over associates for each cue.We will denote this

distributionP (w2|w1) for a cuew1 and associatew2, and order associates by this probability: the

first associate has highest probability, the second next highest, and soforth.

We obtained predictions from the two models by deriving semantic representations from the

TASA corpus (Landauer & Dumais, 1997), which is a collection of excerpts from reading

materials commonly encountered between the first year of school and the first year of college. We

used a smaller vocabulary than previous applications of LSA to TASA, considering only words that

occurred at least 10 times in the corpus and were not included in a standard “stop” list containing

function words and other high frequency words with low semantic content. This left us with a

vocabulary of 26,243 words, of which 4,235,314 tokens appeared in the37,651 documents

contained in the corpus. We used the singular value decomposition to extracta 700 dimensional

representation of the word-document co-occurrence statistics, and examined the performance of

the cosine as a predictor of word association using this and a variety of subspaces of lower
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dimensionality. We also computed the inner product between word vectors asan alternative

measure of semantic association, which we will discuss in detail later in the paper. Our choice to

use 700 dimensions as an upper limit was guided by two factors, one theoretical and the other

practical: previous analyses suggested that the performance of LSA was best with only a few

hundred dimensions (Landauer & Dumais, 1997), an observation that was consistent with

performance on our task, and 700 dimensions is the limit of standard algorithmsfor singular value

decomposition with a matrix of this size on a workstation with 2GB of RAM.

We applied the algorithm for finding topics described in Appendix A to the same

word-document co-occurrence matrix, extracting representations with up to 1700 topics. Our

algorithm is far more memory efficient than the singular value decomposition, asall of the

information required throughout the computation can be stored in sparse matrices. Consequently,

we ran the algorithm at increasingly high dimensionalities, until prediction performance began to

level out. In each case, the set of topics found by the algorithm was highlyinterpretable,

expressing different aspects of the content of the corpus. A selectionof topics from the 1700 topic

solution are shown in Figure 7.

The topics found by the algorithm pick out some of the key notions addressed by documents

in the corpus, including very specific subjects like printing and combustion engines. The topics are

extracted purely on the basis of the statistical properties of the words involved – roughly, that these

words tend to appear in the same documents – and the algorithm does not require any special

initialization or other human guidance. The topics shown in the figure were chosen to be

representative of the output of the algorithm, and to illustrate how polysemousand homonymous

words are represented in the model: different topics capture differentcontexts in which words are

used, and thus different meanings or senses. For example, the first twotopics shown in the figure

capture two different meanings ofCHARACTERS: the symbols used in printing, and the personas in

a play.
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Insert Figure 7 about here

To model word association with the topic model, we need to specify a probabilisticquantity

that corresponds to the strength of association. The discussion of the problem of prediction above

suggests a natural measure of semantic association:P (w2|w1), the probability of wordw2 given

wordw1. Using the single topic assumption, we have

P (w2|w1) =
∑

z

P (w2|z)P (z|w1), (9)

which is just Equation 8 withn = 1. The details of evaluating this probability are given in

Appendix A. This conditional probability automatically compromises between word frequency and

semantic relatedness: higher frequency words will tend to have higher probabilities across all

topics, and this will be reflected inP (w2|z), but the distribution over topics obtained by

conditioning onw1, P (z|w1), will ensure that semantically related topics dominate the sum. Ifw1

is highly diagnostic of a particular topic, then that topic will determine the probability distribution

overw2. If w1 provides no information about the topic, thenP (w2|w1) will be driven by word

frequency.

The overlap between the words used in the norms and the vocabulary derived from TASA

was 4,471 words, and all analyses presented in this paper are based onthe subset of the norms that

uses these words. Our evaluation of the two models in predicting word association was based upon

two performance measures: the median rank of the first five associates under the ordering imposed

by the cosine or the conditional probability, and the probability of the first associate being included

in sets of words derived from this ordering. For LSA, the first of thesemeasures was assessed by

computing the cosine for each wordw2 with each cuew1, ranking the choices ofw2 by

cos(w1, w2) such that the highest ranked word had highest cosine, and then findingthe ranks of the

first five associates for that cue. After applying this procedure to all4, 471 cues, we computed the
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median ranks for each of the first five associates. An analogous procedure was performed with the

topic model, usingP (w2|w1) in the place ofcos(w1, w2). The second of our measures was the

probability that the first associate is included in the set of them words with the highest ranks under

each model, varyingm. These two measures are complementary: the first indicates central

tendency, while the second gives the distribution of the rank of the first associate.

The topic model outperforms LSA in predicting associations between words.The results of

our analyses are shown in Figure 8. We tested LSA solutions with 100, 200,300, 400, 500, 600

and 700 dimensions. In predicting the first associate, performance levelsout at around 500

dimensions, being approximately the same at 600 and 700 dimensions. We will use the 700

dimensional solution for the remainder of our analyses, although our pointsabout the qualitative

properties of LSA hold regardless of dimensionality. The median rank of thefirst associate in the

700 dimensional solution was 31 out of 4470, and the word with highest cosine was the first

associate in 11.54% of cases. We tested the topic model with 500, 700, 900, 1100, 1300, 1500, and

1700 topics, finding that performance levels out at around 1500 topics.We will use the 1700

dimensional solution for the remainder of our analyses. The median rank ofthe first associate in

P (w2|w1) was 18, and the word with highest probability under the model was the first associate in

16.15% of cases, in both cases an improvement of around 40 percent onLSA.

Insert Figure 8 about here

The performance of both models on the two measures was far better than chance, which

would be 2235.5 and 0.02% for the median rank and the proportion correctrespectively. The

dimensionality reduction performed by the models seems to improve predictions. The conditional

probabilityP (w2|w1) computed directly from the frequencies with which words appeared in

different documents gave a median rank of 50.5 and predicted the first associate correctly in

10.24% of cases. Latent Semantic Analysis thus improved on the raw co-occurrence probability by
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between 20 and 40 percent, while the topic model gave an improvement of over 60 percent. In both

cases, this improvement results purely from having derived a lower-dimensional representation

from the raw frequencies.

Figure 9 shows some examples of the associates produced by people and by the two

different models. The figure shows two examples randomly chosen from each of four sets of cues:

those for which both models correctly predict the first associate, those for which only the topic

model predicts the first associate, those for which only LSA predicts the first associate, and those

for which neither model predicts the first associate. These examples help toillustrate how the two

models sometimes fail. For example, LSA sometimes latches onto the wrong sense ofa word, as

with PEN, and tends to give high scores to inappropriate low-frequency words such asWHALE,

COMMA, andMILDEW . Both models sometimes pick out correlations between words that do not

occur for reasons having to do with the meaning of those words:BUCK andBUMBLE both occur

with DESTRUCTIONin a single document, which is sufficient for these low frequency words to

become associated. In some cases, as withRICE, the most salient properties of an object are not

those that are reflected in its use, and the models fail despite producing meaningful,

semantically-related predictions.

Insert Figure 9 about here

Qualitativepropertiesof wordassociation

Quantitative measures such as those shown in Figure 8 provide a simple meansof

summarizing the performance of the two models. However, they mask some of thedeeper

qualitative differences that result from using different kinds of representations. Tversky (1977;

Tversky & Gati, 1982; Tversky & Hutchinson, 1986) argued against defining the similarity

between two stimuli in terms of the distance between those stimuli in an internalized spatial
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representation. Tversky’s argument was founded upon violations of the metric axioms – formal

principles that hold for all distance measures, which are also known as metrics – in similarity

judgments. Specifically, similarity can be asymmetric, since the similarity ofx to y can differ from

the similarity ofy to x, violates the triangle inequality, sincex can be similar toy andy to z

withoutx being similar toz, and shows a neighborhood structure inconsistent with the constraints

imposed by spatial representations. Tversky concluded that conceptual stimuli are better

represented in terms of sets of features.

Tversky’s arguments about the adequacy of spaces and features for capturing the similarity

between conceptual stimuli have direct relevance to the investigation of semantic representation.

Words are conceptual stimuli, and Latent Semantic Analysis assumes that words can be

represented as points in a space. The cosine, the standard measure of association used in LSA, is a

monotonic function of the angle between two vectors in a high dimensional space. The angle

between two vectors is a metric, satisfying the metric axioms of being zero for identical vectors,

being symmetric, and obeying the triangle inequality. Consequently, the cosineexhibits many of

the constraints of a metric.

The topic model does not suffer from the same constraints. In fact, the topic model can be

thought of as providing a feature-based representation for the meaningof words, with the topics

under which a word has high probability being its features. In Appendix B,we show that there is

actually a formal correspondence between evaluatingP (w2|w1) using Equation 9 and computing

similarity in one of Tversky’s (1977) feature-based models. The association between two words is

increased by each topic that assigns high probability to both, and decreased by topics that assign

high probability to one but not the other, in the same way that Tverksy claimed common and

distinctive features should affect similarity.

The two models we have been considering thus correspond to the two kinds of

representation considered by Tversky. Word association also exhibits phenomena that parallel

Tversky’s analyses of similarity, being inconsistent with the metric axioms. We will discuss three
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qualitative phenomena of word association – effects of word frequency, violation of the triangle

inequality, and the large scale structure of semantic networks – connecting these phenomena to the

notions used in Tversky’s (1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1986) critique of

spatial representations. We will show that LSA cannot explain these phenomena (at least when the

cosine is used as the measure of semantic association), due to the constraintsthat arise from the use

of distances, but that these phenomena emerge naturally when words arerepresented using topics,

just as they can be produced using feature-based representations for similarity.

Asymmetriesandword frequency.

The asymmetry of similarity judgments was one of Tversky’s (1977) objectionsto the use of

spatial representations for similarity. By definition, any metricd has to be symmetric:

d(x, y) = d(y, x). If similarity is a function of distance, similarity should also be symmetric.

However, it is possible to find stimuli for which people produce asymmetric similarity judgments.

One classic example involves China and North Korea: people typically have the intuition that

North Korea is more similar to China than China is to North Korea. Tversky’s explanation for this

phenomenon appealed to the distribution of features across these objects:our representation of

China involves a large number of features, only some of which are sharedwith North Korea, while

our representation of North Korea involves a small number of features, many of which are shared

with China.

Word frequency is an important determinant of whether a word will be namedas an

associate. This can be seen by looking for asymmetric associations: pairs of wordsw1, w2 in

which one word is named as an associate of the other much more often than viceversa (i.e. either

P (w2|w1) >> P (w1|w2) or P (w1|w2) >> P (w2|w1)). The effect of word frequency can then be

evaluated by examining the extent to which the observed asymmetries can be accounted for by the

frequencies of the words involved. We defined two wordsw1, w2 to be associated if one word was

named as an associate of the other at least once (i.e. eitherP (w2|w1) or P (w1|w2) > 0), and

assessed asymmetries in association by computing the ratio of cue-associate probabilities for all
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associated words,P (w2|w1)
P (w1|w2) . Of the 45,063 pairs of associated words in our subset of the norms,

38,744 (85.98%) had ratios indicating a difference in probability of at leastan order of magnitude

as a function of direction of association. Good examples of asymmetric pairs includeKEG-BEER,

TEXT-BOOK, TROUSERS-PANTS, MEOW-CAT andCOBRA-SNAKE. In each of these cases, the first

word elicits the second as an associate with high probability, while the second isunlikely to elicit

the first. Of the 38,744 asymmetric associations, 30,743 (79.35%) could be accounted for by the

frequencies of the words involved, with the higher frequency word being named as an associate

more often.

Latent Semantic Analysis does not predict word frequency effects, including asymmetries in

association. The cosine is used as a measure of the semantic association between two words partly

because it counteracts the effect of word frequency. The cosine is also inherently symmetric, as can

be seen from Equation 1:cos(w1, w2) = cos(w2, w1) for all wordsw1, w2. This symmetry means

that the model cannot predict asymmetries in word association without adoptinga more complex

measure of the association between words (c.f. Krumhansl, 1978; Nosofsky, 1991). In contrast, the

topic model can predict the effect of frequency on word association. Word frequency is one of the

factors that contributes toP (w2|w1). The model can account for the asymmetries in the word

association norms. As a conditional probability,P (w2|w1) is inherently asymmetric, and the

model correctly predicted the direction of30, 905 (79.77%) of the38, 744 asymmetric

associations, including all of the examples given above. The topic model thus accounted for almost

exactly the same proportion of asymmetries as word frequency – the difference was not

statistically significant (χ2(1) = 2.08, p = 0.149).

The explanation for asymmetries in word association provided by the topic model is

extremely similar to Tversky’s (1977) explanation for asymmetries in similarity judgments.

Following Equation 9,P (w2|w1) reflects the extent to which the topics in whichw1 appears give

high probability to topicw2. High frequency words tend to appear in more topics than low

frequency words. Ifwh is a high frequency word andwl is a low frequency word,wh is likely to
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appear in many of the topics in whichwl appears, butwl will appear in only a few of the topics in

whichwh appears. Consequently,P (wh|wl) will be large, butP (wl|wh) will be small.

Violation of thetriangleinequality.

The triangle inequality is another of the metric axioms: for a metricd,

d(x, z) ≤ d(x, y) + d(y, z). This is referred to as the triangle inequality because ifx, y, andz are

interpreted as points comprising a triangle, it indicates that no side of that triangle can be longer

than the sum of the other two sides. This inequality places strong constraints on distance measures,

and strong constraints on the locations of points in a space given a set of distances. If similarity is

assumed to be a monotonically decreasing function of distance, then this inequality translates into a

constraint on similarity relations: ifx is similar toy andy is similar toz, thenx must be similar to

z. Tversky and Gati (1982) provided several examples where this relationship does not hold. These

examples typically involve shifting the features on which similarity is assessed. For instance,

taking an example from James (1890), a gas jet is similar to the moon, since both cast light, and the

moon is similar to a ball, because of its shape, but a gas jet is not at all similar to a ball.

Word association violates the triangle inequality. A triangle inequality in association would

mean that ifP (w2|w1) is high, andP (w3|w2) is high, thenP (w3|w1) must be high. It is easy to

find sets of words that are inconsistent with this constraint. For exampleASTEROID is highly

associated withBELT, andBELT is highly associated withBUCKLE, but ASTEROID andBUCKLE

have little association. Such cases are the rule rather than the exception, asshown in Figure 10 (a).

Each of the histograms shown in the figure was produced by selecting all sets of three words

w1, w2, w3 such thatP (w2|w1) andP (w3|w2) were greater than some thresholdτ , and computing

the distribution ofP (w3|w1). Regardless of the value ofτ , there exist a great many triples in

whichw1 andw3 are so weakly associated as not to be named in the norms.
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Insert Figure 10 about here

Latent Semantic Analysis cannot explain violations of the triangle inequality. Asa

monotonic function of the angle between two vectors, the cosine obeys an analogue of the triangle

inequality. Given three vectorsw1, w2, andw3, the angle betweenw1 andw3 must be less than or

equal to the sum of the angle betweenw1 andw2 and the angle betweenw2 andw3. Consequently,

cos(w1, w3) must be greater than the cosine of the sum of thew1 − w2 andw2 − w3 angles. Using

the trigonometric expression for the cosine of the sum of two angles, we obtain the inequality

cos(w1, w3) ≥ cos(w1, w2) cos(w2, w3) − sin(w1, w2) sin(w2, w3),

wheresin(w1, w2) can be defined analogously to Equation 1. This inequality restricts the possible

relationships between three words: ifw1 andw2 are highly associated, andw2 andw3 are highly

associated, thenw1 andw3 must be highly associated. Figure 10 (b) shows how the triangle

inequality manifests in LSA. High values ofcos(w1, w2) andcos(w2, w3) induce high values of

cos(w1, w3). The implications of the triangle inequality are made explicit in Figure 10 (d): even

for the lowest choice of threshold, the minimum value ofcos(w1, w3) was above the 97th

percentile of cosines between all words in the corpus.

The expression of the triangle inequality in LSA is subtle. It is hard to find triples for which

a high value ofcos(w1, w2) andcos(w2, w3) induce a high value ofcos(w1, w3), although

ASTEROID-BELT-BUCKLE is one such example: of the 4470 words in the norms (excluding self

associations),BELT has the 13th highest cosine withASTEROID, BUCKLE has the second highest

cosine withBELT, and consequentlyBUCKLE has the 41st highest cosine withASTEROID, higher

thanTAIL , IMPACT, or SHOWER. The constraint is typically expressed not by inducing spurious

associations between words, but by locating words that might violate the triangle inequality

sufficiently far apart that they are unaffected by the limitations it imposes. Asshown in Figure
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10(b), the theoretical lower bound oncos(w1, w3) only becomes an issue when bothcos(w1, w2)

andcos(w2, w3) are greater than0.7.

As illustrated in Figure 7, the topic model naturally recovers the multiple senses of

polysemous and homonymous words, placing them in different topics. This makes it possible for

violations of the triangle inequality to occur: ifw1 has high probability in topic 1 but not topic 2,

w2 has high probability in both topics 1 and 2, andw3 has high probability in topic 2 but not topic

1, thenP (w2|w1) andP (w3|w2) can be quite high whileP (w3|w1) stays low. An empirical

demonstration that this is the case for our derived representation is shownin Figure 10 (c): low

values ofP (w3|w1) are observed even whenP (w2|w1) andP (w3|w2) are both high. As shown in

Figure 10 (e), the percentile rank of the minimum value ofP (w3|w1) starts very low, and increases

far more slowly than the cosine.

Predictingthestructureof semanticnetworks.

Word association data can be used to construct semantic networks, with nodes representing

words and edges representing a non-zero probability of a word being named as an associate. The

semantic networks formed in this way can be directed, marking whether a particular word acted as

a cue or an associate using the direction of each edge, or undirected, withan edge between words

regardless of which acted as the cue. Steyvers and Tenenbaum (2005) analyzed the large scale

properties of both directed and undirected semantic networks formed fromthe word association

norms of Nelson et al. (1998), finding that they have some statistical properties that distinguish

them from classical random graphs. The properties that we will focus on here are scale-free degree

distributions and clustering.

In graph theory, the “degree” of a node is the number of edges associated with that node,

equivalent to the number of neighbors. For a directed graph, the degree can differ based on the

direction of the edges involved: the in-degree is the number of incoming edges, and the out-degree

the number outgoing. By aggregating across many nodes, it is possible to find the degree

distribution for a particular graph. Research on networks arising in nature has found that for many
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such networks the degreek follows a power-law distribution, withP (k) ∼ k−γ for some constant

γ. Such a distribution is often called “scale free”, because power-law distributions are invariant

with respect to mutiplicative changes of the scale. A power-law distribution canbe recognized by

plotting log P (k) againstlog k: if P (k) ∼ k−γ then the result should be a straight line with slope

−γ.

Steyvers and Tenenbaum (2005) found that semantic networks constructed from word

association data have power-law degree distributions. We reproduced their analyses for our subset

of Nelson et al.’s (1998) norms, computing the degree of each word forboth directed and

undirected graphs constructed from the norms. The degree distributionsare shown in Figure 11. In

the directed graph, the out-degree (the number of associates for each cue) follows a distribution

that is unimodal and exponential-tailed, but the in-degree (the number of cues for which a word is

an associate) follows a power-law distribution, indicated by the linearity oflog P (k) as a function

of log k. This relationship induces a power-law degree distribution in the undirectedgraph. We

computed three summary statistics for these two power-law distributions: the meandegree,̄k, the

standard deviation ofk, sk, and the best-fitting power-law exponent,γ. The mean degree serves to

describe the overall density of the graph, whilesk andγ are measures of the rate at whichP (k)

falls off ask becomes large. IfP (k) is strongly positively skewed, as it should be for a power-law

distribution, thensk will be large. The relationship betweenγ andP (k) is precisely the opposite,

with large values ofγ indicating a rapid decline inP (k) as a function ofk. The values of these

summary statistics are given in Table 1.

The degree distribution characterizes the number of neighbors for any given node. A second

property of semantic networks, clustering, describes the relationships that hold among those

neighbors. Semantic networks tend to contain far more clusters of densely interconnected nodes

than would be expected to arise if edges were simply added between nodes at random. A standard

measure of clustering (Watts & Strogatz, 1998) is the “clustering coefficient”, C̄, the mean

proportion of the neighbors of a node that are also neighbors of one another. For any nodew, this
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proportion is

Cw =
Tw

(kw

2 )
=

2Tw

kw(kw − 1)
,

whereTw is the number of neighbors ofw that are neighbors of one another, andkw is the number

of neighbors ofw. If a node has no neighbors,Cw is defined to be 1. The clustering coefficient,C̄,

is computed by averagingCw over all wordsw. In a graph formed from word association data, the

clustering coefficient indicates the proportion of the associates of a wordthat are themselves

associated. Steyvers and Tenenbaum (2005) found that the clusteringcoefficient of semantic

networks is far greater than that of a random graph. The clustering proportionsCw have been

found to be useful in predicting various phenomena in human memory, including cued recall

(Nelson, McKinney, et al., 1998), recognition (Nelson et al., 2001), and priming effects (Nelson &

Goodmon, 2002), although this quantity is typically referred to as the “connectivity” of a word.

Insert Figure 11 about here

Insert Table 1 about here

Power-law degree distributions in semantic networks are significant because they indicate

that some words have extremely large numbers of neighbors. In particular, the power-law in

in-degree indicates that there are a small number of words that appear asassociates for a great

variety of cues. As Steyvers and Tenenbaum (2005) pointed out, this kind of phenomenon is

difficult to reproduce in a spatial representation. This can be demonstrated by attempting to

construct the equivalent graph using LSA. Since the cosine is symmetric, the simple approach of

connecting each wordw1 to all wordsw2 such thatcos(w1, w2) > τ for some thresholdτ results

in an undirected graph. We used this procedure to construct a graph withthe same density as the
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undirected word association graph, and subjected it to the same analyses.The results of these

analyses are presented in Table 1. The degree of individual nodes in the LSA graph is weakly

correlated with the degree of nodes in the association graph (ρ = 0.104). However, word

frequency is a far better predictor of degree (ρ = 0.530). Furthermore, the form of the degree

distribution is incorrect, as is shown in Figure 11. The degree distribution resulting from using the

cosine initially falls off much more slowly than a power-law distribution, resulting inthe estimate

γ = 1.972, lower than the observed value ofγ = 2.999, and then falls off more rapidly, resulting

in a value ofsk of 14.51, lower than the observed value of18.08. Similar results are obtained with

other choices of dimensionality, and Steyvers and Tenenbaum (2005) found that several more

elaborate methods of constructing graphs (both directed and undirected)from LSA were also

unable to produce the appropriate degree distribution.

While they exhibit a different degree distribution from semantic networks constructed from

association data, graphs constructed by thresholding the cosine seem to exhibit the appropriate

amount of clustering. We foundCw for each of the words in our subset of the word association

norms, and used these to compute the clustering coefficientC̄. We performed the same analysis on

the graph constructed using LSA, and found a similar but slightly higher clustering coefficient.

However, LSA differs from the association norms in predicting which words should belong to

clusters: the clustering proportions for each word in the LSA graph are only weakly correlated

with the corresponding quantities in the word association graph,ρ = 0.146. Again, word

frequency is a better predictor of clustering proportion, withρ = −0.462.

The neighborhood structure of LSA seems to be inconsistent with the properties of word

association. This result is reminiscent of Tversky and Hutchinson’s (1986) analysis of the

constraints that spatial representations place on the configurations of points in low dimensional

spaces. The major concern of Tversky and Hutchinson (1986) was theneighborhood relations that

could hold among a set of points, and specifically the number of points to whicha point could be

the nearest neighbor. In low dimensional spaces, this quantity is heavily restricted: in one
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dimension, a point can only be the nearest neighbor of two others; in two dimensions, it can be the

nearest neighbor of five. This constraint seemed to be at odds with the kinds of structure that can

be expressed by conceptual stimuli. One of the examples considered by Tversky and Hutchinson

(1986) was hierarchical structure: it seems that apple, orange, and banana should all be extremely

similar to the abstract notion of fruit, yet in a low-dimensional spatial representation fruit can only

be the nearest neighbor of a small set of points. In word association, power-law degree

distributions mean that a few words need to be neighbors of a large number ofother words,

something that is difficult to produce even in high dimensional spatial representations.

Semantic networks constructed from the predictions of the topic model provide a better

match to those derived from word association data. The asymmetry ofP (w2|w1) makes it possible

to construct both directed and undirected semantic networks by thresholding the conditional

probability of associates given cues. We constructed directed and undirected graphs by choosing

the threshold to match the density,k̄, of the semantic network formed from association data. The

semantic networks produced by the topic model were extremely consistent withthe semantic

networks derived from word association, with the statistics are given in Table 1.

As shown in Figure 11 (a), the degree distribution for the undirected graph was power-law

with an exponent ofγ = 2.746, and a standard deviation ofsk = 21.36, providing a closer match

to the true distribution than LSA. Furthermore, the degree of individual nodes in the semantic

network formed by thresholdingP (w2|w1) correlated well with the degree of nodes in the

semantic network formed from the word association data,ρ = 0.487. The clustering coefficient

was close to that of the true graph,C̄ = 0.303, and the clustering proportions of individual nodes

were also well correlated across the two graphsρ = 0.396.

For the directed graph, the topic model produced appropriate distributionsfor both the

out-degree (the number of associates per cue) and the in-degree (the number of cues for which a

word is an associate), as shown in Figure 11 (b). The in-degree distribution was power-law, with an

exponent ofγ = 1.948 andsk = 21.65, both being close to the true values. The clustering
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coefficient was similar but slightly higher than the data,C̄ = 0.308, and the predicted in-degree

and clustering proportions of individual nodes correlated well with thosefor the association graph,

ρ = 0.606 andρ = 0.391 respectively.

Innerproductsasanalternativemeasureof association

In our analyses so far, we have focused on the cosine as a measure ofsemantic association in

LSA, consistent with the vast majority of uses of the model. However, in a fewapplications, it has

been found that the unnormalized inner product gives better predictions(e.g., Rehder et al., 1998).

While it is symmetric, the inner product does not obey a triangle inequality or have easily defined

constraints on neighborhood relations. We computed the inner products between all pairs of words

from our derived LSA representations, and applied the procedure used to test the cosine and the

topic model. We found that the inner product gave better quantitative performance than the cosine,

but worse than the topic model, with a median rank for the first associate of 28. A total of 14.23%

of the empirical first associates matched the word with the highest inner product. These results are

shown in Figure 8. As is to be expected for a measure that does not obey the triangle inequality,

there was little effect of the strength of association for(w1, w2) pairs and(w2, w3) pairs on the

strength of association for(w1, w3) pairs, as shown in Figure 10 (d) and (e).

As with the other models, we constructed a semantic network by thresholding theinner

product, choosing the threshold to match the density of the association graph. The inner product

does poorly in reproducing the neighborhood structure of word association, producing a degree

distribution that falls off too slowly (γ = 1.176, sk = 33.77) and an extremely high clustering

coefficient (̄C = 0.625). However, it does reasonably well in predicting the degree (ρ = 0.465)

and clustering coefficient (ρ = 0.417) of individual nodes. The explanation for this pattern of

results is that the inner product is strongly affected by word frequency, and the frequency of words

is an important component in predicting associations. However, the inner product gives too much

weight to word frequency in forming these predictions, and high frequency words appear as
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associates for a great many cues. This results in the low exponent and high standard deviation of

the degree distribution. The two measures of semantic association used in LSArepresent two

extremes in their use of word frequency: the cosine is only weakly affected by word frequency,

while the inner product is strongly affected. Human semantic memory is sensitive to word

frequency, but its sensitivity lies between these extremes.

Summary

The results presented in this section provide analogues in semantic association to the

problems that Tversky (1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1986) identified for

spatial accounts of similarity. Tversky’s argument was not against spatial representations per se,

but against the idea that similarity is a monotonic function of a metric, such as distance in

psychological space (c.f. Shepard, 1987). Each of the phenomena he noted – asymmetry, violation

of the triangle inequality, and neighborhood structure – could be produced from a spatial

representation under a sufficiently creative scheme for assessing similarity. Asymmetry provides

an excellent example, as several methods for producing asymmetries fromspatial representations

have already been suggested (Krumhansl, 1978; Nosofsky, 1991).However, his argument shows

that the distance between two points in psychological space should not be taken as an absolute

measure of the similarity between the objects that correspond to those points. Analogously, our

results suggest that the cosine (which is closely related to a metric) should not be taken as an

absolute measure of the association between two words.

One way to address some of the problems that we have highlighted in this sectionmay be to

use spatial representations in which each word is represented as multiple points, rather than a

single point. This is the strategy taken in many connectionist models of semantic representation

(e.g., Kawamoto, 1993; Plaut, 1997; Rodd et al., 2004), where different points in space are used to

represent different meanings or senses of words. However, typically these representations are not

learned from text, but from data consisting of labelled pairs of words andtheir meanings.
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Automatically extracting such a representation from text would involve some significant

computational challenges, such as deciding how many senses each word should have, and when

those senses are being used.

The fact that the inner product does not exhibit some of the problems we identified with the

cosine reinforces the fact that the issue is not with the information extractedby LSA, but with

using a measure of semantic association that is related to a metric. The inner product in LSA has

an interesting probabilistic interpretation that explains why it should be so strongly affected by

word frequency. Under weak assumptions about the properties of a corpus, it can be shown that the

inner product between two word vectors is approximately proportional to asmoothed version of

the joint probability of those two words (Griffiths & Steyvers, 2003). Wordfrequency will be a

major determinant of this joint probability, and hence has a strong influence on the inner product.

This analysis suggests that while the inner product provides a means of measuring semantic

association that is nominally defined in terms of an underlying semantic space, much of its success

may actually be a consequence of approximating a probability.

The topic model provides an alternative to LSA which automatically solves the problem of

understanding the different senses in which a word might be used, and gives a natural probabilistic

measure of association that is not subject to the constraints of a metric. It gives more accurate

quantitative predictions of word association data than using either the cosineor the inner product in

the representation extracted by LSA. It also produces predictions that are consistent with the

qualitative properties of semantic association that are problematic for spatialrepresentations. In the

remainder of the paper, we consider some further applications of this model,including other

comparisons to LSA, and how it can be extended to accommodate more complex semantic and

syntactic structures.
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Further applications

Our analysis of word association provided an in-depth exploration of the differences

between LSA and the topic model. However, these models are intended to provide an account of a

broad range of empirical data, collected through a variety of tasks that tapthe representations used

in processing language. In this section, we present a series of examplesof applications of these

models to other tasks. These examples show that the topic model reproducesmany of the

phenomena that were originally used to support LSA, provide a broaderbasis for comparison

between the two models, and illustrate how the representation extracted by the topic model can be

used in other settings.

Synonymtests

One of the original applications of LSA was to the TOEFL synonym test, usedto assess

fluency in English for non-native speakers (Landauer & Dumais, 1997). To allow direct

comparison between the predictions of LSA and the topic model, we replicated these results and

evaluated the performance of the topic model on the same task. The test contained 90 questions,

consisting of a probe word and four answers. Our analyses only included questions for which all

five words (probe and answers) were in our 26,243 word vocabulary, resulting in a set of 44

questions. We used the solutions obtained from the TASA corpus, as described in the previous

section. For LSA, we computed the cosine and inner product betwen probe and answers for LSA

solutions with between 100 and 700 dimensions. For the topic model, we computed

P (wprobe|wanswer) andP (wanswer|wprobe) for between 500 and 1700 topics, wherewprobe and

wanswer are the probe and answer words respectively, and Equation 8 was used to calculate the

conditional probabilities.

Our first step in evaluating the models was to examine how often the answer thateach model

identified as being most similar to the probe was the correct answer. Landauer and Dumais (1997)

reported that LSA (trained on the TASA corpus, but with a larger vocabulary than we used here)
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produced 64.4% correct answers, close to the average of 64.5% produced by college applicants

from non-English-speaking countries. Our results were similar: the bestperformance using the

cosine was with a solution using 500 dimensions, resulting in 63.6% correct responses. There were

no systematic effects of number of dimensions, and only a small amount of variation. The inner

product likewise produced best performance with 500 dimensions, getting61.5% correct.

The topic model performed similarly to LSA on the TOEFL test: usingP (wprobe|wanswer)

to select answers, the best performance was obtained with 500 topics, being 70.5% correct. Again,

there was no systematic effect of number of topics. Selecting answers using P (wanswer|wprobe)

produced results similar to the cosine for LSA, with the best performance being 63.6% correct,

obtained with 500 topics. The difference between these two ways of evaluating the conditional

probability lies in whether the frequencies of the possible answers are taken into account.

ComputingP (wprobe|wanswer) controls for the frequency with which the wordswanswer generally

occur, and is perhaps more desirable in the context of a vocabulary test.

As a final test of the two models, we computed the correlation between their predictions and

the actual frequencies with which people selected the different responses. For the LSA solution

with 500 dimensions, the mean correlation between the cosine and response frequencies (obtained

by averaging across items) wasr = 0.30, with r = 0.25 for the inner product. For the topic model

with 500 topics, the corresponding correlations werer = 0.46 and0.34 for log P (wprobe|wanswer)

andlog P (wanswer|wprobe) respectively. Thus, these models produced predictions that were not

just correct, but captured some of the variation in human judgments on this task.

Semanticpriming of differentwordmeanings

Till, Mross, and Kintsch (1988) examined the time-course of the processingof word

meanings using a priming study in which participants read sentences containingambiguous words

and then performed a lexical decision task. The sentences were constructed to provide contextual

information about the meaning of the ambiguous word. For example, two of the sentences used in
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the study were

1A. The townspeople were amazed to find that all of the buildings had collapsed

except the mint. Obviously, it has been built to withstand natural disasters.

1B. Thinking of the amount of garlic in his dinner, the guest asked for a mint.He soon

felt more comfortable socializing with the others.

which are intended to pick out the different meanings ofMINT . The target words used in the lexical

decision task corresponded either to the different meanings of the ambiguous word (in this case

beingMONEY andCANDY), or were inferentially related to the content of the sentence (in this case

beingEARTHQUAKE andBREATH). The delay between the presentation of the sentence and the

decision task was varied, making it possible to examine how the timecourse of processing affected

the facilitation of lexical decisions (i.e. priming) for different kinds of targets.

The basic result reported by Till et al. (1988) was that both of the meanings of the

ambiguous word and neither of the inference targets were primed when there was a short delay

between sentence presentation and lexical decision, and that there was asubsequent shift to favor

the appropriate meaning and infentially related target when the delay was increased. Landauer and

Dumais (1997) suggested that this effect could be explained by LSA, using the cosine between the

ambiguous word and the targets to model priming at short delays, and the cosine between the

entire sentence and the targets to model priming at long delays. They showedthat effects similar to

those reported by Till et al. (1988) emerged from this analysis.

We reproduced the analysis of Landauer and Dumais (1997) using the representations we

extracted from the TASA corpus. Of the 28 pairs of sentences used by Till et al. (1988), there were

20 for which the ambiguous primes and all four target words appeared in our vocabulary. To

simulate priming early in processing, we computed the cosine and inner product between the

primes and the target words using the representation extracted by LSA. Tosimulate priming in the

later stages of processing, we computed the cosine and inner product between the average vectors
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for each of the full sentences (including only those words that appeared in our vocabulary) and the

target words. The values produced by these analyses were then averaged over all 20 pairs. The

results for the 700 dimensional solution are shown in Table 2 (similar results were obtained with

different numbers of dimensions).

Insert Table 2 about here

The results of this analysis illustrate the trends identified by Landauer and Dumais (1997).

Both the cosine and the inner product give reasonably high scores to thetwo meanings when just

the prime is used (relative to the distributions shown in Figure 10), and shift togive higher scores

to the meaning and inferentially related target appropriate to the sentence when the entire sentence

is used. To confirm that the topic model makes similar predictions in the context of semantic

priming, we used the same procedure with the topic-based representation, computing the

conditional probabilities of the different targets based just on the prime, and based on the entire

sentences, then averaging the log probabilities over all pairs of sentences. The results for the 1700

topic solution are shown in Table 2 (similar results were obtained with differentnumbers of

topics). The topic model produces the same trends: it initially gives high probability to both

meanings, and then switches to give high probabilities to the sentence-appropriate targets.

Sensitivityof readingtime to frequencyof meanings

Examining the time that people take to read words and sentences has been oneof the most

widely used methods for evaluating the contributions of semantic representation to linguistic

processing. In particular, several studies have used reading time to explore the representation of

ambiguous words (e.g., Duffy, Morris, & Rayner, 1988; Rayner & Duffy, 1986; Rayner & Frazier,

1989). Developing a complete account of how the kind of contextual information we have been

discussing influences reading time is beyond the scope of this paper. However, we used the topic
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model to predict the results of one such study, to provide an illustration of how it can be applied to

a task of this kind.

Sereno, Pacht, and Rayner (1992) conducted a study in which the eye movements of

participants were monitored while they read sentences containing ambiguous words. These

ambiguous words were selected to have one highly dominant meaning, but thesentences

established a context that supported the subordinate mearning. For example, one sentence read

The dinner party was proceeding smoothly when, just as Mary was serving the port,

one of the guests had a heart attack.

where the context supported the subordinate meaning ofPORT. The aim of the study was to

establish whether reading time for ambiguous words was better explained by the overall frequency

with which a word occurs in all its meanings or senses, or the frequency ofa particular meaning.

To test this, participants read sentences containing either the ambiguous word, a word with

frequency matched to the subordinate sense (the low-frequency control), or a word with frequency

matched to the dominant sense (the high-frequency control). For example,the control words for

PORTwereVEAL andSOUPrespectively. The results are summarized in Table 3: ambiguous words

using their subordinate meaning were read more slowly than words with a frequency

corresponding to the dominant meaning, although not quite as slowly as words that match the

frequency of the subordinate meaning. A subsequent study by Sereno, O’Donnell, and Rayner

(2006, Experiment 3) produced the same pattern of results.

Reading time studies present a number of challenges for computational models. The study

of Sereno et al. (1992) is particularly conducive to modeling, as all threetarget words are

substituted into the same sentence frame, meaning that the results are not affected by sentences

differing in the number of words in the vocabulary of the models or other factors that introduce

additional variance. However, in order to model these data we still need to make an assumption

about the factors influencing reading time. The abstract computational-level analyses provided by

generative models do not make assertions about the algorithmic processesunderlying human
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cognition, and can consequently be difficult to translate into predictions about the amount of time it

should take to perform a task. In the topic model, there are a variety of factors that could produce

an increase in the time taken to read a particular word. Some possible candidates include

uncertainty about the topic of the sentence, as reflected in the entropy of the distribution over

topics, a sudden change in perceived meaning, producing a difference in the distribution over

topics before and after seeing the word, or simply encountering an unexpected word, resulting in

greater effort for retrieving the relevant information from memory. We chose to use only the last of

these measures, being the simplest and the most directly related to our construal of the

computational problem underlying linguistic processing, but suspect thata good model of reading

time would need to incorporate some combination of all of these factors.

Lettingwtarget be the target word andwsentence be the sequence of words in the sentence

before the occurrence of the target, we want to computeP (wtarget|wsentence). Applying Equation

8, we have

P (wtarget|wsentence) =
∑

z

P (wtarget|z)P (z|wsentence) (10)

whereP (z|wsentence) is the distribution over topics encoding the gist ofwsentence. We used the

1700 topic solution to compute this quantity for the 21 of the 24 sentences used by Sereno et

al. (1992) for which all three target words appeared in our vocabulary, and averaged the resulting

log probabilities over all sentences. The results are shown in Table 3. Thetopic model predicts the

results found by Sereno et al. (1992): the ambiguous words are assigned lower probabilities than

the high-frequency controls, although not quite as low as the low-frequency controls. The model

predicts this effect because the distribution over topicsP (z|wsentence) favors those topics that

incorporate the subordinate sense. As a consequence, the probability of the target word is reduced,

sinceP (wtarget|z) is lower for those topics. However, if there is any uncertainty, providing some

residual probability to topics in which the target word occurs in its dominant sense, the probability

of the ambiguous word will be slightly higher than the raw frequency of the subordinate sense

suggests.
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Insert Table 3 about here

For comparison, we computed the cosine and inner product for the three values ofwtarget

and the average vectors forwsentence in the 700 dimensional LSA solution. The results are shown

in Table 3. The cosine does not predict this effect, with the highest mean cosines being obtained by

the control words, with little effect of frequency. This is due to the fact that the cosine is relatively

insensitive to word frequency, as discussed above. The inner product, which is sensitive to word

frequency, produces predictions that are consistent with the results ofSereno et al. (1992).

Semanticintrusionsin freerecall

Word association involves making inferences about the semantic relationships among a pair

of words. The topic model can also be used to make predictions about the relationships between

multiple words, as might be needed in episodic memory tasks. Since Bartlett (1932), many

memory researchers have proposed that episodic memory might not only bebased on specific

memory of the experiences episodes but also on reconstructive processes that extract the overall

theme or gist of a collection of experiences.

One procedure for studying gist-based memory is the Deese-Roediger-McDermott (DRM)

paradigm (Deese, 1959; Roediger & McDermott, 1995). In this paradigm,participants are

instructed to remember short lists of words that are all associatively relatedto a single word (the

critical lure) that is not presented on the list. For example, one DRM list consists of the words

BED, REST, AWAKE , TIRED, DREAM, WAKE, SNOOZE, BLANKET , DOZE, SLUMBER, SNORE, NAP,

PEACE, YAWN , andDROWSY. At test, 61% of subjects falsely recall the critical lureSLEEP, which

is associatively related to all the presented words.

The topic model may be able to play a part in a theoretical account for these semantic

intrusions in episodic memory. Previous theoretical accounts of semantic intrusions have been
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based on “dual route” models of memory. These models distinguish between different routes to

retrieve information from memory, a verbatim memory route based on the physical occurrence of

an input and the gist memory route that is based on semantic content (e.g., Brainerd et al., 1999;

Brainerd et al., 2002; Mandler, 1980). The representation of the gist or the processes involved in

computing the gist itself have not been specified within the dual route framework. Computational

modeling in this domain has been mostly concerned with the estimation of the relative strength

different memory routes within the framework of multinomial processing tree models (Batchelder

& Riefer, 1999).

The topic model can provide a more precise theoretical account of gist-based memory by

detailing both the representation of the gist and the inference processes based on the gist. We can

model the retrieval probability of a single word at test based on a set of studied words by

computingP (wrecall|wstudy). With the topic model, we can use Equation 8 to obtain

P (wrecall|wstudy) =
∑

z

P (wrecall|z)P (z|wstudy). (11)

The gist of the study list is represented byP (z|wstudy) which describes the distribution over topics

for a given study list. In the DRM paradigm, each list of words will lead to a different distribution

over topics. Lists of relatively unrelated words will lead to flat distributions over topics where no

topic is particularly likely, whereas more semantically focused lists will lead to distributions where

only a few topics dominate. The termP (wrecall|z) captures the retrieval probability of words

given each of the inferred topics.

We obtained predictions from this model for the 55 DRM lists reported by Roediger et al.

(2001), using the 1700 topic solution derived from the TASA corpus. Three DRM lists were

excluded because the critical items were absent from the vocabulary of the model. Of the

remaining 52 DRM lists, a median of 14 out of 15 original study words were in our vocabulary.

For each DRM list, we computed the retrieval probability over the whole 26,243word vocabulary

which included the studied words as well as extra-list words. For example,Figure 12 shows the
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predicted gist-based retrieval probabilities for theSLEEPlist. The retrieval probabilities are

separated into two lists: the words on the study list and the 8 most likely extra-listwords. The

results shows that the wordSLEEPis the most likely word to be retrieved which qualitatively fits

with the observed high false recall rate of this word.

Insert Figure 12 about here

To assess the performance of the topic model, we correlated the retrieval probability of the

critical DRM words as predicted by the topic model with the observed intrusionrates reported by

Roediger et al. (2001). The rank-order correlation was0.437 with a 95% confidence interval

(estimated by 1000 sample bootstrap) of(0.217, 0.621). We compared this performance with the

predictions of the 700-dimensional LSA solution. Using LSA, the gist of the study list was

represented by the average of all word vectors from the study list. We then computed the cosine of

the critical DRM word with the average word vector for the DRM list and correlated this cosine

with the observed intrusion rate. The correlation was0.295, with a 95% confidence interval

(estimated by 1000 sample bootstrap) of(0.041, 0.497). The improvement in predicting semantic

intrusions produced by the topic model over LSA is thus not statistically significant, but suggests

that the two models might be discriminated through further experiments.

One interesting observation from Figure 12 is that words that do not appear on the study list,

such asSLEEP, can be given higher probabilities than the words that actually do appear on the list.

Since participants in free recall studies generally do well in retrieving the itemsthat appear on the

study list, this illustrates that the kind of gist-based memory that the topic model embodies is not

sufficient to account for behavior on this task. The gist-based retrieval process would have to be

complemented with a verbatim retrieval process in order to account for the relatively high retrieval

probability for words on the study list, as assumed in the dual-route models mentioned above

(Brainerd et al., 1999; Brainerd et al., 2002; Mandler, 1980). Theseissues could be addressed by
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extending the topic model to take into account the possible interaction between the gist and

verbatim routes.

Meanings,senses,andtopics

The topic model assumes a simple structured representation for words and documents, in

which words are allocated to individually interpretable topics. This representation differs from that

assumed by LSA, in which the dimensions are not individually interpretable and the similarity

between words is invariant with respect to rotation of the axes. The topic-based representation also

provides the opportunity to explore questions about language that cannot be posed using less

structured representations. As we have seen already, different topics can capture different

meanings or senses of a word. As a final test of the topic model, we examinedhow well the

number of topics in which a word participates predicts its the number of meaningsor senses of that

word, and how this quantity can be used in modeling recognition memory.

The number of meanings or senses that a word possesses has a characteristic distribution, as

was first noted by Zipf (1965). Zipf examined the number of entries that appeared in dictionary

definitions for words, and found that this quantity followed a power-law distribution. Steyvers and

Tenenbaum (2005) conducted similar analyses using Roget’s (1911) thesaurus and WordNet

(Miller & Fellbaum, 1998). They also found that the number of entries followed a power-law

distribution, with an exponent ofγ ≈ 3. Plots of these distributions in log-log coordinates are

shown in Figure 13.

Insert Figure 13 about here

The number of topics in which a word appears in the topic model corresponds well with the

number of meanings or senses of words as assessed using Roget’s thesaurus and WordNet, both in

distribution and in the values for individual words. The distribution of the mean number of topics
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to which a word was assigned in the 1700 topic solution is shown in Figure 13.4 The tail of this

distribution matches the tail of the distributions obtained from Roget’s thesaurus and WordNet,

with all three distributions being power-law with a similar parameter. Furthermore, the number of

topics in which a word appears is closely correlated with these other measures: the rank-order

correlation between number of topics and number of entries in Roget’s thesaurus isρ = 0.328,

with a 95% confidence interval (estimated by 1000 sample bootstrap) of(0.300, 0.358), and the

correlation between number of topics and WordNet senses giveρ = 0.508, with a 95% confidence

interval of(0.486, 0.531). For comparison, the most obvious predictor of the number of meanings

or senses of a word – word frequency – gives correlations that fall below these confidence

intervals: word frequency predicts Roget entries with a rank-order correlation ofρ = 0.243, and

WordNet senses withρ = 0.431. More details of the factors affecting the distribution of the

number of topics per word are given in Griffiths and Steyvers (2002).

Capturingcontextvariability

The number of topics in which a word appears also provides a novel meansof measuring an

important property of words: context variability. Recent research in recognition memory has

suggested that the number of contexts in which words appear might explain why some words are

more likely than others to be confused for items appearing on the study list in recognition memory

experiments (Dennis & Humphreys, 2001; McDonald & Shillcock, 2001; Steyvers & Malmberg,

2003). The explanation for this effect is that when a word is encountered in a larger number of

contexts, the study list context becomes less discriminable from these previous exposures (Dennis

& Humphreys, 2001). Steyvers and Malmberg (2003) operationally defined context variability as

the number of documents in which a word appears in a large database of text,a measure we will

refer to asdocumentfrequency. Steyvers and Malmberg found that this measure has an effect on

recognition memory independent of word frequency. The document frequency measure is a rough

proxy for context variability because it does not take the other words occurring in documents into
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account. The underlying assumption is that documents are equally different from each other.

Consequently, if there are many documents that cover very similar sets of topics, then context

variability will be overestimated.

The topic model provides an alternative way to assess context variability. Words that are

used in different contextual uses tend to be associated with different topics. Therefore, we can

assess context variability by the number of different topics a word is associated with, a measure we

will refer to astopicvariability. Unlike document frequency, this measure does take into account

the similarity between different documents in evaluating context variability.

To understand how topic variability compares with word frequency and contextual

variability, we performed analyses on the data from the experiment by Steyvers and Malmberg

(2003). There were 287 distinct words in the experiment each being used as either a target or a

distractor. For each word, we computed the sensitivity (d′) measuring the degree to which subjects

could distinguish that word as a target or distractor in the recognition memory experiment. Table 4

shows the correlations betweend′ and the three measures: topic variability (TV ), word frequency

(WF ) and document frequency (DF ). All three word measures were logarithmically scaled.

Insert Table 4 about here

The results show that word frequency, context variability, and topic variability all correlate

with recognition memory performance as expected – high word frequency,high document

frequency, and high topic variability are all associated with poor recognition memory performance.

Topic variability correlates more strongly with performance than the other measures (p < 0.05)

and is also less correlated with the other measures. This suggests that topic variability is a good

predictive measure for recognition memory confusability and is at least as good a predictor as word

frequency or document frequency, and potentially a more direct measure of context variability.
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Summary

The results presented in this section illustrate that the topic model can be used topredict

behavior on a variety of tasks relating to linguistic processing and semantic memory. The model

reproduces many of the phenomena that have been used to support Latent Semantic Analysis, and

consistently provides better performance than using the cosine or the innerproduct between word

vectors to measure semantic association. The form of the representation extracted by the topic

model also makes it possible to define novel measures of properties of words such as the number of

topics in which they appear, which seems to be a good guide to the number of senses or meanings

of a word, as well as an effective predictor of recognition memory performance.

Extending the generative model

Formulating the problem of extracting and using gist in terms of generative models allowed

us to explore a novel form of semantic representation, through the topic model. This formulation

of the problem also has other advantages. Generative models provide a very flexible framework for

specifying structured probability distributions, and it is easy to extend the topic model to

incorporate richer latent structure by adding further steps to the generative process. We will discuss

five extensions to the model: determining the number of topics, learning topics from other kinds of

data, incorporating collocations, inferring topic hierarchies, and including rudimentary syntax.

Learningthenumberof topics

In the preceding discussion, we assumed that the number of topics,T , in the model was

fixed. This assumption seems inconsistent with the demands of human languageprocessing, where

more topics are introduced with every conversation. Fortunately, this assumption is not necessary.

Using methods from non-parametric Bayesian statistics (Muller & Quintana, 2004; Neal, 2000),

we can assume that our data are generated by a model with an unbounded number of dimensions,

of which only a finite subset have been observed. The basic idea behindthese non-parametric
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approaches is to define a prior probability distribution on the assignments of words to topics,z,

that does not assume an upper bound on the number of topics. Inferringthe topic assignments for

the words that appears in a corpus simultaneously determines the number of topics, as well as their

content. Blei, Griffiths, Jordan, and Tenenbaum (2004) and Teh, Jordan, Beal, and Blei (2004)

have applied this strategy to learn the dimensionality of topic models. These methods are closely

related to the rational model of categorization proposed by Anderson (1990), which represents

categories in terms of a set of clusters, with new clusters being added automatically as more data

becomes available (see Neal, 2000).

Learningtopicsfrom otherdata

Our formulation of the basic topic model also assumes that words are dividedinto

documents, or otherwise broken up into units that share the same gist. A similar assumption is

made by LSA, but this is not true of all methods for automatically extracting semantic

representations from text (e.g., Dennis, 2004; Lund & Burgess, 1996; Jones & Mewhort, 2006).

This assumption is not appropriate for all settings in which we make linguistic inferences: while

we might differentiate the documents we read, many forms of linguistic interaction, such as

meetings or conversations, lack clear markers that break them up into sets of words with a common

gist. One approach to this problem is to define a generative model in which thedocument

boundaries are also latent variables, a strategy pursued by Purver, Koerding, Griffiths, and

Tenenbaum (2006). Alternatively, meetings or conversations might be better modeled by

associating the gist of a set of words with the person who utters those words, rather than words in

temporal proximity. Rosen-Zvi, Griffiths, Steyvers, and Smyth, 2004) andSteyvers, Smyth,

Rosen-Zvi, and Griffiths (2004) have extensively investigated models ofthis form.

Inferring topichierarchies

We can also use the generative model framework as the basis for definingmodels that use

richer semantic representations. The topic model assumes that topics are chosen independently
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when generating a document. However, people know that topics bear certain relations to one

another, and that words have relationships that go beyond topic membership. For example, some

topics are more general than others, subsuming some of the content of those other topics. The topic

of sport is more general than the topic of tennis, and the wordSPORThas a wider set of associates

thanTENNIS. These issues can be addressed by developing models in which the latent structure

concerns not just the set of topics that participate in a document, but the relationships among those

topics. Generative models that use topic hierarchies provide one example of this, making it

possible to capture the fact that certain topics are more general than others. Blei, Griffiths, Jordan

and Tenenbaum (2004) provided an algorithm that simultaneously learns the structure of a topic

hierarchy, and the topics that are contained within that hierarchy. This algorithm can be used to

extract topic hierarchies from large document collections. Figure 14 shows the results of applying

this algorithm to the abstracts of all papers published in Psychological Review since 1967. The

algorithm recognizes that the journal publishes work in cognitive psychology,5 social psychology,

vision research, and biopsychology, splitting these subjects into separatetopics at the second level

of the hierarchy, and finds meaningful subdivisions of those subjects at the third level. Similar

algorithms can be used to explore other representations that assume dependencies among topics

(Blei & Lafferty, 2006).

Insert Figure 14 about here

Collocationsandassociationsbasedonwordorder

In the basic topic model, the probability of a sequence of words is not affected by the order

in which they appear. As a consequence, the representation extracted by the model can only

capture coarse-grained contextual information, such as the fact that words tend to appear in the

same sort of conversations or documents. This is reflected in the fact thatthe input to the topic
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model, as with LSA, is a word-document co-occurrence matrix: the order inwhich the words

appear in the documents does not matter. However, it is clear that word order is important to many

aspects of linguistic processing, including the simple word association task that we discussed

extensively earlier in the paper (Ervin, 1961; Hutchinson, 2003; McNeill, 1966).

A first step towards relaxing the insensitivity to word order displayed by thetopic model is

to extend the model to incorporate collocations – words that tend to follow one another with high

frequency. For example, the basic topic model would treat the phraseUNITED KINGDOM occurring

in a document as one instance ofUNITED and one instance ofKINGDOM. However, these two

words carry more semantic information when treated as a single chunk than they do alone. By

extending the model to incorporate a sensitivity to collocations, we also have the opportunity to

examine how incorporating this additional source of predictive information affects predictions

about the associations that exist between words.

To extend the topic model to incorporate collocations, we introduced an additional set of

variables that indicate whether a word is part of a collocation. Each wordwi thus has a topic

assignmentzi and a collocation assignmentxi. Thexi variables can take on two values. Ifxi = 1,

thenwi is part of a collocation and is generated from a distribution that depends just on the

previous word,P (wi|wi−1, xi = 1). If xi = 0, thenwi is generated from the distribution

associated with its topic,P (wi|zi, xi = 0). Importantly, the value ofxi is chosen based on the

previous word,wi−1, being drawn from the distributionP (xi|wi−1). This means that the model

can capture dependencies between words: ifwi−1 is UNITED, it is likely thatxi = 1, meaning that

wi is generated based just on the fact that it followsUNITED, and not on the topic. The graphical

model corresponding to this extended generative process is shown in Figure 15. A more detailed

description of the model appears in the Appendix C, together with an algorithmthat can be used to

simultaneously learnP (wi|wi−1, xi = 1), P (wi|zi, xi = 0), andP (xi = 1|wi−1) from a corpus.
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Insert Figure 15 about here

Using this extended topic model, the conditional probability of one word givenanother is

simply

P (w2|w1) = P (w2|w1, x2 = 1)P (x2 = 1|w1) + P (w2|w1, x2 = 0)P (x2 = 0|w1) (12)

whereP (w2|w1, x2 = 0) is computed as in the basic topic model, using Equation 9. Thus,w2 will

be highly associated withw1 either ifw2 tends to followw1, or if the two words tend to occur in

the same semantic contexts. We used the algorithm described in Appendix C to estimate the

probabilities required to computeP (w2|w1) from the TASA corpus, using the same procedure to

remove stop words as in our previous analyses, but supplying the wordsto the algorithm in the

order that they actually occurred within each document. We then examined how well solutions

with 500, 900, 1300, and 1700 topics predicted the word association normscollected by Nelson et

al. (1998).

Introducing the capacity to produce collocations changes the associates that the model

identifies. One way to see this is to examine cue-associate pairs produced bypeople that are in the

set of ten words for whichP (w2|w1) is highest under the collocation model, but not in this set for

the basic topic model. Considering just the first associates people produceand using the 1700 topic

model, we find pairs such asUNITED-KINGDOM, BUMBLE-BEE, STORAGE-SPACE,

METRIC-SYSTEM, MAIN -STREET, EVIL -DEVIL , FOREIGN-LANGUAGE, FRIED-CHICKEN,

STOCK-MARKET, INTERSTATE-HIGHWAY , BOWLING-BALL , andSERIAL-NUMBER. These

examples thus show how the collocation model is able to predict some associations that are based

on word order rather than semantic context. Table 5 compares the median ranks of the associates

under the ordering imposed byP (w2|w1) for the collocation model and the basic topic model. The

results show that the models perform very similarly: adding the capacity to capture associations
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based on word order does not result in a major improvement in the performance of the model.

Hutchinson (2003) suggests that 11.6% of associations result from word order, which would lead

us to expect some improvement in performance. The lack of improvement may be a consequence

of the fact that incorporating the extra process for modeling collocations reduces the amount of

data that is available for estimating topics, meaning that the model fails to capture some semantic

associations.

Insert Table 5 about here

Integratingtopicsandsyntax

The model described in the previous section provides an extremely simple solution to the

question of how topic models can be extended to capture word order, but our approach also

supports more sophisticated solutions. Generative models can be used to overcome a major

weakness of most statistical models of language – that they tend to model eithersyntax or

semantics (although recent work provides some exceptions, including Dennis, 2004, and Jones and

Mewhort, 2006). Many of the models used in computational linguistics, such as hidden Markov

models and probabilistic context-free grammars (Charniak, 1993; Jurafsky & Martin, 2000;

Manning & Sḧutze, 1999), generate words purely based on sequential dependencies among

unobserved syntactic classes, not modeling the variation in content that occurs across documents,

while topic models generate words in a way that is intended to capture the variation across

documents, but ignores sequential dependencies. In cognitive science, methods such as

distributional clustering (Redington, Chater, & Finch, 1998) are used to infer the syntactic classes

of words, while methods such as LSA are used to analyze their meaning, andit is not clear how

these different forms of statistical analysis should be combined.

Generative models can be used to define a model that captures both sequential dependencies

and variation in content across contexts. This hybrid model illustrates the appealing modularity of
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generative models. Because a probabilistic language model specifies a probability distribution over

words in a document in terms of components which are themselves probability distributions over

words, different models are easily combined by mixing their predictions or embedding one inside

the other. Griffiths, Steyvers, Blei, and Tenenbaum (2005; see also Griffiths & Steyvers, 2003)

explored a composite generative model for language, in which one of the probability distributions

over words used in defining a syntactic model was replaced with a semantic model. This allows the

syntactic model to choose when to emit a semantically appropriate word, and thesemantic model

to choose which word to emit. The syntactic model used in this case was extremelysimple, but this

example serves to illustrate two points: that a simple model can discover categories of words that

are defined both in terms of their syntactic roles and their semantic roles, and that defining a

generative model that incorporates both of these factors is straightforward. A similar strategy could

be pursued with a more complex probabilistic model of syntax, such as a probabilistic context-free

grammar.

The structure of the composite generative model is shown in Figure 16. In this model, a

word can appear in a document for two reasons: because it fulfills a functional syntactic role, or

because it contributes to the semantic content. Accordingly, the model has twoparts, one

responsible for capturing sequential dependencies produced by syntax, and the other expresssing

semantic dependencies. The syntactic dependencies are introduced via ahidden Markov model, a

popular probabilistic model for language that is essentially a probabilistic regular grammar

(Charniak, 1993; Jurafsky & Martin, 2000; Manning & Shütze, 1999). In a hidden Markov model,

each wordwi is generated by first choosing a classci from a distribution that depends on the class

of the previous word,ci−1, and then generatingwi from a distribution that depends onci. The

composite model simply replaces the distribution associated with one of the classes with a topic

model, which captures the long-range semantic dependencies among words. An algorithm similar

to that described in Appendix A can be used to infer the distributions over words associated with

the topics and classes from a corpus (Griffiths et al., 2005).
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Insert Figure 16 about here

The results of applying the composite model to a combination of the TASA and Brown

(Kucera & Francis, 1967) corpora are shown in Figure 17. The factorization of words into those

that appear as a result of syntactic dependencies (as represented bythe class distributions) and

those that appear as a result of semantic dependencies (represented by the topic distributions) pulls

apart function and content words. In addition to learning a set of semantictopics, the model finds a

set of syntactic classes of words that discriminate determiners, prepositions, pronouns, adjectives,

and present- and past-tense verbs. The model performs about as wellas a standard hidden Markov

model – which is a state-of-the-art method – for identifying syntactic classes, and outperforms

distributional clustering (Redington et al., 1998) in this task (Griffiths et al., 2005).

The ability to identify categories of words that capture their syntactic and semantic roles,

based purely on their distributional properties, could be a valuable buildingblock for the initial

stages of language learning or for facilitating the extraction of gist. For example, learning the

syntax of natural language requires a child to discover the rules of the grammar as well as the

abstract syntactic categories over which those rules are defined. These syntactic categories and

rules are defined only with respect to each other, making it hard to see howone could learn both

starting with neither. The syntactically organized word classes discoveredby our simple statistical

model could provide a valuable starting point for learning syntax, even though the notion of

syntactic structure used in the model is far too simplistic to capture the syntax of English or any

other natural language. The capacity to separate out the critical semantic content words in a

document, from those words playing primarily syntactic functions, could alsobe valuable for

modeling adult language processing or in machine information-retrieval applications. Only the

semantic content words would be relevant, for example, in identifying the gistof a document or

sentence. The syntactic function words can be – and usually are, by expert language processors –
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safely ignored.

Insert Figure 17 about here

Summary

Using generative models as a foundation for specifying psychological accounts of linguistic

processing and semantic memory provides a way to define models that can be extended to

incorporate more complex aspects of the structure of language. The extensions to the topic model

described in this section begin to illustrate this potential. We hope to use this framework to develop

statistical models that allow us to infer rich semantic structures that provide a closer match to the

human semantic representation. In particular, the modularity of generative models provides the

basis for exploring the interaction between syntax and semantics in human language processing,

and suggests how different kinds of representation can be combined in solving computational

problems that arise in other contexts.

Conclusion

Part of learning and using language is identifying the latent semantic structure responsible

for generating a set of words. Probabilistic generative models provide solutions to this problem,

making it possible to use powerful statistical learning to infer structured representations. The topic

model is one instance of this approach, and is a starting point for exploringhow generative models

can be used to address questions about human semantic representation. It outperforms Latent

Semantic Analysis, a leading model of the acquisition of semantic knowledge, in predicting word

association and a variety of other linguistic processing and memory tasks. Italso explains several

aspects of word association that are problematic for LSA: word frequency and asymmetry,

violation of the triangle inequality, and the properties of semantic networks. The success of the

model on these tasks comes from the structured representation that it assumes: by expressing the
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meaning of words in terms of different topics, the model is able to capture theirdifferent meanings

and senses.

Going beyond the topic model, generative models provide a path towards a more

comprehensive exploration of the role of structured representations and statistical learning in the

acquisition and application of semantic knowledge. We have sketched some ofthe ways in which

the topic model can be extended to bring it closer to the richness of human language. Although we

are still far from understanding how people comprehend and acquire language, these examples

illustrate how increasingly complex structures can be learned using statisticalmethods, and they

show some of the potential for generative models to provide insight into the psychological

questions raised by human linguistic abilities. Across many areas of cognition,perception, and

action, probabilistic generative models have recently come to offer a unifying framework for

understanding aspects of human intelligence as rational adaptations to the statistical structure of

the environment (Anderson, 1990; Anderson & Schooler, 1991; Geisler et al., 2001; Griffiths &

Tenenbaum, 2006b, 2006a; Kemp et al., 2004; Koerding & Wolpert, 2004; Simoncelli &

Olshausen, 2001; Wolpert et al., 1995). It remains to be seen how far this approach can be carried

in the study of semantic representation and language use, but the existenceof large corpora of

linguistic data and powerful statistical models for language clearly make this a direction worth

pursuing.
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Appendix A: Statistical formulation of the topic model

A number of approaches to statistical modeling of language have been based upon

probabilistic topics. The notion that a topic can be represented as a probabilitydistribution over

words appears in several places in the natural language processing literature (e.g., Iyer &

Ostendorf, 1996). Completely unsupervised methods for extracting sets of topics from large

corpora were pioneered by Hofmann (1999), in his Probabilistic Latent Semantic Indexing method

(also known as the aspect model). Blei, Ng, and Jordan (2003) extended this approach by

introducing a prior on the distribution over topics, turning the model into a genuine generative

model for collections of documents. Ueda and Saito (2003) explored a similarmodel, in which

documents are balanced mixtures of a small set of topics. All of these approaches use a common

representation, characterizing the content of words and documents in terms of probabilistic topics.

The statistical model underlying many of these approaches has also been applied to data

other than text. Erosheva (2002) describes a model equivalent to a topicmodel, applied to

disability data. The same model has been applied to data analysis in genetics (Pritchard, Stephens,

& Donnelly, 2000). Topic models also make an appearance in the psychological literature on data

analysis (Yantis, Meyer, & Smith, 1991). Buntine (2002) pointed out a formal correspondence

between topic models and principal component analysis, providing a further connection to LSA.

A multi-document corpus can be expressed as a vector of wordsw = {w1, . . . , wn}, where

eachwi belongs to some documentdi, as in a word-document co-occurrence matrix. Under the

generative model introduced by Blei et al. (2003), the gist of each document,g, is encoded using a

multinomial distribution over theT topics, with parametersθ(d), so for a word in documentd,

P (z|g) = θ
(d)
z . Thezth topic is represented by a multinomial distribution over theW words in the

vocabulary, with parametersφ(z), soP (w|z) = φ
(z)
w . We then take a symmetric Dirichlet(α) prior

onθ(d) for all documents, a symmetric Dirichlet(β) prior onφ(z) for all topics. The complete
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statistical model can thus be written as

wi | zi, φ
(zi) ∼ Discrete(φ(zi))

φ(z) ∼ Dirichlet(β)

zi | θ(di) ∼ Discrete(θ(di))

θ(d) ∼ Dirichlet(α)

The user of the algorithm can specifyα andβ, which are hyperparameters that affect the

granularity of the topics discovered by the model (see Griffiths & Steyvers, 2004).

An algorithmfor finding topics

Several algorithms have been proposed for learning topics, including

expectation-maximization (EM; Hofmann, 1999), variational EM (Blei et al., 2003; Buntine,

2002), expectation propagation (Minka & Lafferty, 2002), and several forms of Markov chain

Monte Carlo (MCMC; Buntine & Jakulin, 2004; Erosheva, 2002; Griffiths& Steyvers, 2002;

2003; 2004; Pritchard et al., 2000). We use Gibbs sampling, a form of Markov chain Monte Carlo.

We extract a set of topics from a collection of documents in a completely unsupervised

fashion, using Bayesian inference. The Dirichlet priors are conjugateto the multinomial

distributionsφ, θ, allowing us to compute the joint distributionP (w, z) by integrating outφ andθ.

SinceP (w, z) = P (w|z)P (z) andφ andθ only appear in the first and second terms respectively,

we can perform these integrals separately. Integrating outφ gives the first term

P (w|z) =

(

Γ(Wβ)

Γ(β)W

)T T
∏

j=1

∏

w Γ(n
(w)
j + β)

Γ(n
(·)
j + Wβ)

, (13)

in whichn
(w)
j is the number of times wordw has been assigned to topicj in the vector of

assignmentsz andΓ(·) is the standard gamma function. The second term results from integrating

outθ, to give

P (z) =

(

Γ(Tα)

Γ(α)T

)D D
∏

d=1

∏

j Γ(n
(d)
j + α)

Γ(n
(d)
· + Tα)

,
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wheren
(d)
j is the number of times a word from documentd has been assigned to topicj. We can

then ask questions about the posterior distribution overz givenw, given by Bayes rule:

P (z|w) =
P (w, z)

∑

z
P (w, z)

.

Unfortunately, the sum in the denominator is intractable, havingTn terms, and we are forced to

evaluate this posterior using Markov chain Monte Carlo.

Markov chain Monte Carlo (MCMC) is a procedure for obtaining samples from complicated

probability distributions, allowing a Markov chain to converge to the target distribution and then

drawing samples from the Markov chain (see Gilks, Richardson & Spiegelhalter, 1996). Each state

of the chain is an assignment of values to the variables being sampled, and transitions between

states follow a simple rule. We use Gibbs sampling, where the next state is reached by sequentially

sampling all variables from their distribution when conditioned on the currentvalues of all other

variables and the data. We sample only the assignments of words to topics,zi.

The conditional posterior distribution forzi is given by

P (zi = j|z
−i,w) ∝

n
(wi)
−i,j + β

n
(·)
−i,j + Wβ

n
(di)
−i,j + α

n
(di)
−i,· + Tα

, (14)

wherez−i is the assignment of allzk such thatk 6= i, andn
(wi)
−i,j is the number of words assigned

to topicj that are the same aswi, n
(·)
−i,j is the total number of words assigned to topicj, n

(di)
−i,j is

the number of words from documentdi assigned to topicj, andn
(di)
−i,· is the total number of words

in documentdi, all not counting the assignment of the current wordwi.

The MCMC algorithm is then straightforward. Thezi are initialized to values between1 and

T , determining the initial state of the Markov chain. The chain is then run for a number of

iterations, each time finding a new state by running sampling eachzi from the distribution specified

by Equation 14. After enough iterations for the chain to approach the target distribution, the current

values of thezi are recorded. Subsequent samples are taken after an appropriate lag, to ensure that

their autocorrelation is low. Further details of the algorithm are provided in Griffiths and Steyvers

(2004), where we show how it can be used to analyze the content of document collections.
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The variables involved in the MCMC algorithm, and their modification across samples, are

illustrated in Figure 18, which uses the data from Figure 2. Each word tokenin the corpus,wi, has

a topic assignment,zi, at each iteration of the sampling procedure. In this case, we have 90

documents and a total of 731 wordswi, each with their ownzi. In the figure, we focus on the

tokens of three words:MONEY, BANK , andSTREAM. Each word token is initially randomly

assigned to a topic, and each iteration of MCMC results in a new set of assignments of tokens to

topics. After a few iterations, the topic assignments begin to reflect the different usage patterns of

MONEY andSTREAM, with tokens of these words ending up in different topics, and the multiple

senses ofBANK .

Insert Figure 18 about here

The result of the MCMC algorithm is a set of samples fromP (z|w), reflecting the posterior

distribution over topic assignments given a collection of documents. From anysingle sample we

can obtain an estimate of the parametersφ andθ from z via

φ̂(j)
w =

n
(w)
j + β

n
(·)
j + Wβ

(15)

θ̂
(d)
j =

n
(d)
j + α

n
(d)
· + Tα

. (16)

These values correspond to the predictive distributions over new wordsw and new topicsz

conditioned onw andz, and the posterior means ofθ andφ givenw andz.

Prediction,disambiguation,andgist extraction

The generative model allows documents to contain multiple topics, which is important when

modeling long and complex documents. Assume we have an estimate of the topic parameters,φ.
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Then the problems of prediction, disambiguation, and gist extraction can be reduced to computing

P (wn+1|w; φ) =
∑

z,zn+1

P (wn+1|zn+1; φ)P (zn+1|z)P (z|w; φ) (17)

P (z|w; φ) =
P (w, z|φ)

∑

z
P (w, z|φ)

(18)

P (g|w; φ) =
∑

z

P (g|z)P (z|w; φ) (19)

respectively. The sums overz that appear in each of these expressions quickly become intractable,

being overTn terms, but they can be approximated using MCMC.

In many situations, such as processing a single sentence, it is reasonable toassume that we

are dealing with words that are drawn from a single topic. Under this assumption, g is represented

by a multinomial distributionθ that puts all of its mass on a single topic,z, andzi = z for all i. The

problems of disambiguation and gist extraction thus reduce to inferringz. Applying Bayes’ rule,

P (z|w; φ) =
P (w|z; φ)P (z)

∑

z
P (w|z; φ)P (z)

=

∏n
i=1 P (wi|z; φ)P (z)

∑

z

∏n
i=1 P (wi|z; φ)P (z)

=

∏n
i=1 φ

(z)
wi

∑

z

∏n
i=1 φ

(z)
wi

,

where the last line assumes a uniform prior,P (z) = 1
T

, consistent with the symmetric Dirichlet

priors assumed above. We can then form predictions via

P (wn+1|w; φ) =
∑

z

P (wn+1, z|w; φ)

=
∑

z

P (wn+1|z; φ)P (z|w; φ)

=

∑

z

∏n+1
i=1 φ

(z)
wi

∑

z

∏n
i=1 φ

(z)
wi

This predictive distribution can be averaged over the estimates ofφ yielded by a set of samples

from the MCMC algorithm.

For the results described in the paper, we ran three Markov chains for 1600 iterations at each

value ofT , usingα = 50/T andβ = 0.01. We started sampling after 800 iterations, taking one
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sample every 100 iterations thereafter. This gave a total of 24 samples for each choice of

dimensionality. The topics shown in Table 7 are taken from a single sample fromthe Markov chain

for the 1700 dimensional model. We computed an estimate ofφ using Equation 15 and used these

values to computeP (w2|w1) for each sample, then averaged the results across all of the samples to

get an estimate of the full posterior predictive distribution. This averaged distribution was used in

evaluating the model on the word association data.
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Appendix B: Topics and features

Tversky (1977) considered a number of different models for the similaritybetween two

stimuli, based upon the idea of combining common and distinctive features. Mostfamous is the

contrast model, in which the similarity betweenX andY , S(X, Y ), is given by

S(X,Y ) = θf(X ∩ Y) − αf(Y − X ) − βf(X − Y),

whereX is the set of features to whichX belongs,Y is the set of features to whichY belongs,

X ∩ Y is the set of common features,Y − X is the set of distinctive features ofY , f(·) is a

measure over those sets, andθ, α, β are parameters of the model. Another model considered by

Tversky, which is also consistent with the axioms used to derive the contrast model, is the ratio

model, in which

S(X, Y ) = 1/

[

1 +
αf(Y − X ) + βf(X − Y)

θf(X ∩ Y)

]

.

As in the contrast model, common features increase similarity and distinctive features decrease

similarity. The only difference between the two models is the form of the functionby which they

are combined.

Tversky’s (1977) analysis assumes that the features ofX andY are known. However, in

some circumstances, possession of a particular feature may be uncertain.For some hypothetical

featureh, we might just have a probability thatX possessesh, P (X ∈ h). One means of dealing

with this uncertainty is replacingf(·) with its expectation with respect to the probabilities of

feature possession. If we assume thatf(·) is linear (as in additive clustering models, e.g., Shepard

& Arabie, 1979) and gives uniform weight to all features, the ratio modelbecomes

S(X,Y ) = 1/

[

1 +
α

∑

h(1 − P (X ∈ h))P (Y ∈ h) + β
∑

h(1 − P (Y ∈ h))P (X ∈ h)

θ
∑

h P (X ∈ h)P (Y ∈ h)

]

. (20)

where we takeP (X ∈ h) to be independent for allX andh. The sums in this Equation reduce to

counts of the common and distinctive features if the probabilities all take on values of0 or 1.

In the topic model, semantic association is assessed in terms of the conditional probability
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P (w2|w1). This quantity reduces to

P (w2|w1) =

∑

z P (w2|z)P (w1|z)
∑

z P (w1|z)

=

∑

z P (w2|z)P (w1|z)
∑

z P (w2|z)P (w1|z) +
∑

z(1 − P (w2|z))P (w1|z)

= 1/

[

1 +

∑

z(1 − P (w2|z))P (w1|z)
∑

z P (w2|z)P (w1|z)

]

,

which can be seen to be of the same form as the probabilistic ratio model specified in Equation 20,

with α = 1, β = 0, θ = 1, topicsz in the place of featuresh, andP (w|z) replacingP (X ∈ h).

This result is similar to that of Tenenbaum and Griffiths (2001), who showed that their Bayesian

model of generalization was equivalent to the ratio model.



Topics in semantic representation 85

Appendix C: The collocation model

Using the notation introduced above, the collocation model can be written as

wi | zi, xi = 0, φ(zi) ∼ Discrete(φ(zi))

wi |wi−1, xi = 1, φ(wi−1) ∼ Discrete(φ(wi−1))

φ(z) ∼ Dirichlet(β)

φ(w) ∼ Dirichlet(δ)

zi | θ(di) ∼ Discrete(θ(di))

θ(d) ∼ Dirichlet(α)

xi |wi−1 ∼ Discrete(π(wi−1))

π(w) ∼ Beta(γ0, γ1)

whereφ(wi) is the distribution overwi givenwi−1, andπ(wi−1) is the distribution overxi given

wi−1. The Gibbs sampler for this model is as follows. Ifxi = 0, thenzi is drawn from the

distribution

P (zi|z−i,w, c) ∝ n
(zi)
wi

+ β

n
(zi)
· + Wβ

nzi
+ α

n + Tα
(21)

where all counts exclude the current case and only refer to the words for whichxi = 0, which are

the words assigned to the topic model (e.g.,n is the total number of words for whichxi = 0, not

the total number of words in the corpus). Ifxi = 1, thenzi is sampled from

P (zi|z−i,w, c) ∝ nzi
+ α

n + Tα
(22)

where again the counts are only for the words for whichxi = 0. Finally,xi is drawn from the

distribution

P (xi|x−i,w, z) ∝















n
(zi)
wi

+β

n
(zi)
·

+Wβ

n
(wi−1)

0 +γ0

n
(wi−1)
·

+γ0+γ1

xi = 0

n
(wi−1)
wi

+δ

n
(wi−1)
·

+Wδ

n
(wi−1)

1 +γ1

n
(wi−1)
·

+γ0+γ1

xi = 1

(23)

wheren
(wi−1)
0 andn

(wi−1)
1 are the number of times the wordwi−1 has been drawn from a topic or

formed part of a collocation resectively, and all counts exclude the current case.
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To estimate the parameters of the model for each sample, we can again use the posterior

mean. The estimator forφ(z) is justφ̂(z) from Equation 15. A similar estimator exists for the

distribution associated with successive words

φ̂(w1)
w2

=
n

(w1)
w2 + δ

n
(w1)
· + Wδ

. (24)

Forπ(w1), which is the estimate of the probability thatx2 = 1 givenw1, we have

p̂i
(w1)

=
n

(w1)
1 + γ1

n
(w1)
· + γ0 + γ1

. (25)

Using these estimates, Equation 12 becomes

P (w2|w1) = π(w1)φ(w1)
w2

+ (1 − π(w1))
∑

z

φ(z)
w2

φ
(z)
w1

∑

z φ
(z)
w1

. (26)

The results described in the paper were averaged over 24 samples produced by the MCMC

algorithm, withβ = 0.01, α = 50/T , γ0 = 0.1, γ1 = 0.1 andδ = 0.1. The samples were collected

from three chains in the same way as for the basic topic model.
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Footnotes

1This formulation of the model makes the assumption that each topic captures a different

sense or meaning of a word. This need not be the case – there may be a many-to-one relationship

between topics and the senses or meanings in which words are used. However, the topic

assignment still communicates information that can be used in disambiguation and prediction in

the way that the sense or meaning must be used. Henceforth, we will focuson the use ofzi to

indicate a topic assignment, rather than a sense or meaning for a particular word.

2We have suppressed the dependence of the probabilities discussed in thissection on the

parameters specifyingP (w|z) andP (z|g), assuming that these parameters are known. A more

rigorous treatment of the computation of these probabilities is given in Appendix A.

3It is also possible to define a generative model that makes this assumption directly, having

just one topic per sentence, and to use techniques like those described in Appendix A to identify

topics using this model. We did not use this model because it uses additional information about the

structure of the documents, making it harder to compare against alternativeapproaches such as

Latent Semantic Analysis (Landauer & Dumais, 1997). The single topic assumption can also be

derived as the consequence of having a hyperparameterα favoring choices ofz that employ few

topics: the single topic assumption is produced by allowingα to approach0.

4As the number of topics to which a word is assigned will be affected by the number of topics

in the solution, these values cannot be taken as representing the number ofmeanings or senses of a

word directly. As mentioned previously, the correspondence will be many-to-one.

5Or, more precisely, psychology based upon an information-processingapproach to studying

the mind.
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Table 1

StructuralStatisticsandCorrelationsfor SemanticNetworks

Undirected(k̄ = 20.16) Directed(k̄ = 11.67)

Association Cosine Inner product Topics Association Topics

Statistics

sk 18.08 14.51 33.77 21.36 18.72 21.65

γ 2.999 1.972 1.176 2.746 2.028 1.948

C̄ 0.187 0.267 0.625 0.303 0.187 0.308

L̄ 3.092 3.653 2.939 3.157 4.298 4.277

Correlations

k (0.530) 0.104 0.465 0.487 (0.582) 0.606

C (-0.462) 0.146 0.417 0.396 (-0.462) 0.391

Note: k̄ andsk are the mean and standard deviation of the degree distribution,γ the power law

exponent,C̄ the mean clustering coefficient, and̄L the mean length of the shortest path between

pairs of words. Correlations in parentheses show the results of using word frequency as a predictor.
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Table 2

Predictionsof modelsfor semanticpriming taskof Till et al. (1988)

MeaningA InferenceA MeaningB InferenceB

e.g.MONEY e.g.EARTHQUAKE e.g.CANDY e.g.BREATH

Cosine

early 0.099 0.038 0.135 0.028

late A 0.060 0.103 0.046 0.017

late B 0.050 0.024 0.067 0.046

Innerproduct

early 0.208 0.024 0.342 0.017

late A 0.081 0.039 0.060 0.012

late B 0.060 0.009 0.066 0.024

Topics(log10 probability)

early -3.22 -4.31 -3.16 -4.42

late A -4.03 -4.13 -4.58 -4.77

late B -4.52 -4.73 -4.21 -4.24
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Table 3

Predictionsof modelsfor readingtime taskof Serenoet al. (1992)

Ambiguous word Low-frequency control High-frequency control

Human gaze duration (ms) 281 287 257

Cosine 0.021 0.048 0.043

Inner product 0.011 0.010 0.025

Topics (log10 probability) -4.96 -5.26 -4.68
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Table 4

Correlationsof recognition memory sensitivities (d′) with word frequency(WF ), document

frequency(DF ) andtopicvariability (TV ).

Variable d′ log WF log DF

log WF −0.50∗ - -

log DF −0.58∗ 0.97∗ -

log TV −0.67∗ 0.69∗ 0.82∗

log TV | log WF ∗∗ −0.53∗ - -

log TV | log DF ∗∗ −0.43∗ - -

Note: (∗) Correlations are significant atp < .0001. (∗∗) Partial correlations where the effect of the

second variable is partialled out of the effect of the first variable.
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Table 5

Medianranksof thecollocationmodelandbasictopicmodelin predictingwordassociation

Associate

Number of topics 1st 2nd 3rd 4th 5th

500 27 (29) 66 (70) 104 (106) 139 (141) 171 (175)

900 22 (22) 59 (57) 105 (101) 134 (131) 159 (159)

1300 20 (20) 58 (56) 105 (99) 131 (128) 160 (163)

1700 19 (18) 57 (54) 102 (100) 131 (130) 166 (164)

Note: Numbers in parentheses show the performance of the basic topic model without collocations.
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Figure Captions

Figure 1.Approaches to semantic representation. (a) In a semantic network, wordsare represented

as nodes, and edges indicate semantic relationships. (b) In a semantic space, words are represented

as points, and proximity indicates semantic association. These are the first twodimensions of a

solution produced by Latent Semantic Analysis (Landauer & Dumais, 1997). The black dot is the

origin. (c) In the topic model, words are represented as belonging to a setof probabilistic topics.

The matrix shown on the left indicates the probability of each word under each of three topics. The

three columns on the right show the words that appear in those topics, ordered from highest to

lowest probability.

Figure 2.A word-document co-occurrence matrix, indicating the frequencies of 18 words across

90 documents extracted from the TASA corpus. A total of 30 documents usethe wordMONEY, 30

use the wordOIL, and 30 use the wordRIVER. Each row corresponds to a word in the vocabulary,

and each column to a document in the corpus. Grayscale indicates the frequency with which the

731 tokens of those words appeared in the 90 documents, with black being the highest frequency

and white being zero.

Figure 3.(a) Latent Semantic Analysis (LSA) performs dimensionality reduction using the

singular value decomposition. The transformed word-document co-occurrence matrix,X, is

factorized into three smaller matrices,U , D, andV . U provides an orthonormal basis for a spatial

representation of words,D weights those dimensions, andV provides an orthonormal basis for a

spatial representation of documents. (b) The topic model performs dimensionality reduction using

statistical inference. The probability distribution over words for each document in the corpus

conditioned upon its gist,P (w|g), is approximated by a weighted sum over a set of probabilistic

topics, represented with probability distributions over wordsP (w|z), where the weights for each

document are probability distributions over topics,P (z|g), determined by the gist of the document,

g.
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Figure 4.Generative models for language. (a) A schematic representation of generative models for

language. Latent structurègenerates wordsw. This generative process defines a probability

distribution over̀ , P (`), andw given`, P (w|`). Applying Bayes’ rule with these distributions

makes it possible to invert the generative process, inferring` from w. (b) Latent Dirichlet

Allocation (Blei et al., 2003), a topic model. A document is generated by choosing a distribution

over topics that reflects the gist of the document,g, choosing a topiczi for each potential word

from a distribution determined byg, and then choosing the actual wordwi from a distribution

determined byzi.

Figure 5.Prediction and disambiguation. (a) Words observed in a sentence,w. (b) The distribution

over topics conditioned on those words,P (z|w). (c) The predicted distribution over words

resulting from summing over this distribution over topics,P (wn+1|w) =
∑

z P (wn+1|z)P (z|w).

On seeingBANK , the model is unsure whether the sentence concerns finance or the countryside.

Subsequently seeingSTREAM results in a strong conviction thatBANK does not refer to a financial

institution.

Figure 6.Semantic networks. (a) In a unipartite network, there is only one class of nodes. In this

case, all nodes represent words. (b) In a bipartite network, there are two classes, and connections

only exist between nodes of different classes. In this case, one classof nodes represents words and

the other class represents topics.

Figure 7.A sample of 1700 topics derived from the TASA corpus. Each column contains the 20

highest probability words in a single topic, as indicated byP (w|z). Words in boldface occur in

different senses in neighboring topics, illustrating how the model deals with polysemy and

homonymy. These topics were discovered in a completely unsupervised fashion, using just

word-document co-occurrence frequencies.

Figure 8.Performance of LSA and the topic model in predicting word association. (a)The median
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ranks of the first five empirical associates in the ordering predicted by different measures of

semantic association at different dimensionalities. Smaller ranks indicate betterperformance. The

dotted line shows baseline performance, corresponding to the use of the raw frequencies with

which words occur in the same documents. (b) The probability that a set containing them highest

ranked words under the different measures would contain the first empirical associate, with plot

markers corresponding tom = 1, 5, 10, 25, 50, 100. The results for the cosine and inner product

are thebest results obtained over all choices of between 100 and 700 dimensions, while the results

for the topic model use just the 1700 topic solution. The dotted line is baseline performance

derived from co-occurrence frequency.

Figure 9.Actual and predicted associates for a subset of cues. Two cues wererandomly selected

from the sets of cues for which (from left to right) both models correctly predicted the first

associate, only the topic model made the correct prediction, only LSA made thecorrect prediction,

and neither model made the correct prediction. Each column lists the cue, human associates,

predictions of the topic model, and predictions of LSA, presenting the first five words in order. The

rank of the first associate is given in parentheses below the predictions of the topic model and LSA.

Figure 10.Expression of the triangle inequality in association, Latent Semantic Analysis,and the

topic model. (a) Each row gives the distribution of the association probability,P (w3|w1), for a

triple w1, w2, w3 such thatP (w2|w1) andP (w3|w2) are both greater thanτ , with the value ofτ

increasing down the column. Irrespective of the choice ofτ , there remain cases where

P (w3|w1) = 0, suggesting violation of the triangle inequality. (b) Quite different behavioris

obtained from LSA, where the triangle inequality enforces a lower bound (shown with the dotted

line) on the value ofcos(w1, w3) as a result of the values ofcos(w2, w3) andcos(w1, w2). (c) The

topic model shows only a weak effect of increasingτ , (d) as does the inner product in LSA. In

(a)-(d), the value ofτ for each plot was chosen to make the number of triples above threshold

approximately equal across each row. (e) The significance of the change in distribution can be seen
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by plotting the percentile rank among all word pairs of the lowest value ofcos(w1, w3) and

P (w3|w1) as a function of the number of triples selected by some value ofτ . The plot markers

show the percentile rank of the left-most values appearing in the histograms in(b)-(d), for different

values ofτ . The minimum value ofcos(w1, w3) has a high percentile rank even for the lowest

value ofτ , while P (w3|w1) increases more gradually as a function ofτ . The minimum inner

product remains low for all values ofτ .

Figure 11.Degree distributions for semantic networks. (a) The power-law degree distribution for

the undirected graph, shown as a linear function on log-log coordinates.(b-c) Neither the cosine

nor the inner product in LSA produce the appropriate degree distribution. (d) The topic model

produces a power-law with the appropriate exponent. (e) In the directedgraph, the out-degree is

unimodal and exponential-tailed. (f) The topic model produces a similar distribution. (g) The

in-degree distribution for the directed graph is power-law. (h) The topic model also provides a

close match to this distribution.

Figure 12.Retrieval probabilities,P (wrecall|wstudy), for a study list containing words

semantically associated withSLEEP. The upper panel shows the probabilities of each of the words

on the study list. The lower panel shows the probabilities of the most likely extra-list words.SLEEP

has a high retrieval probability, and would thus be likely to be falsely recalled.

Figure 13.The distribution of the number of contexts in which a word can appear has a

characteristic form, whether computed from the number of senses in WordNet, the number of

entries in Roget’s thesaurus, or the number of topics in which a word appears.

Figure 14.A topic hierarchy, learned from the abstracts of articles appearing inPsychological

Review since 1967. Each document is generated by choosing a path fromthe root (the top node) to

a leaf (the bottom nodes). Consequently, words in the root topic appear inall documents, the

second level topics pick out broad trends across documents, and the topics at the leaves pick out



Topics in semantic representation 98

specific topics within those trends. The model differentiates cognitive, social, vision, and

biopsychological research at the second level, and identifies finer grained distinctions within these

subjects at the leaves.

Figure 15.Graphical model indicating dependencies among variables in the collocation model.

The variablexi determines whether the wordwi is generated from a distribution that depends only

on the previous word, being a collocation, or from a distribution that depends only on the topiczi.

Figure 16.Graphical model indicating dependencies among variables in the composite model, in

which syntactic dependencies are captured by a hidden Markov model (with theci variables being

the classes from which words are generated) and semantic dependencies are captures by a topic

model.

Figure 17.Results of applying a composite model that has both syntactic and semantic latent

structure to a concatenation of the TASA and Brown corpora. The model simultaneously finds the

kind of semantic topics identified by the topic model and syntactic classes of the kind produced by

a hidden Markov model.

Figure 18.Illustration of the Gibbs sampling algorithm for learning topics, using the data from

Figure 2. Each word tokenwi appearing in the corpus has a topic assignment,zi. The figure shows

the assignments of all tokens of three types –MONEY, BANK , andSTREAM – before and after

running the algorithm. Each marker corresponds to a single token appearing in a particular

document, and shape and color indicates assignment: topic 1 is a black circle,topic 2 is a gray

square, and topic 3 is a white triangle. Before running the algorithm, assignments are relatively

random, as shown in the left panel. After running the algorithm, tokens ofMONEY are almost

exclusively assigned to topic 3, tokens ofSTREAM are almost exclusively assigned to topic 1, and

tokens ofBANK are assigned to whichever of topic 1 and topic 3 seems to dominate a given

document. The algorithm consists of iteratively choosing an assignment foreach token, using a
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probability distribution over tokens that guarantees convergence to the posterior distribution over

assignments.
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