The Task Force on the Undergraduate Educational Commons

MIT Faculty Meeting
November 16, 2005
Purpose of the Task Force

The Task Force has been conducting a fundamental, comprehensive review of the common educational experience of our undergraduates.
Charge to the Task Force

- Review MIT’s educational mission and reaffirm or modify, as appropriate
- Derive a set of specific educational goals for all undergraduates from the mission
- Develop and articulate the content of the common undergraduate curriculum, and how it fits with the departmental curricula - a systems approach
- Develop and recommend the formal structure of the curriculum
Overview of the GIRs

Science Requirement

Chemistry 3.091, 5.111, or 5.112
Physics 8.01, 8.012, 8.01T, or 8.01L & 8.02, 8.022, or 8.02T
Calculus 18.01, 18.01A, 18.013A, or 18.014 & 18.02, 18.02A, 18.022, 18.023, 18.023A, or 18.024
Biology 7.012, 7.013 or 7.014

Laboratory (LAB) Requirement 12 units

Restricted Electives in Science and Technology (REST) Requirement 2

Humanities, Arts, and Social Sciences Requirement 8
Includes 2 Communication Requirement subjects (CI-H)

Total GIR Subjects Required for S.B. Degree 17

Communication Requirement
2 Communication-Intensive HASS subjects (CI-H)
2 Communication-Intensive Major subjects (CI-M)

Physical Education Requirement

Departmental Program and Unrestrictive Electives
The departmental program may specify some of the GIR subjects, and includes an additional
180-198 units beyond the GIRs
Task Force Goals for an MIT Education

An MIT education is one grounded in science and technology that:

- ignites a passion for learning,
- provides the intellectual and personal foundations for future development, and
- illuminates the breadth, depth and diversity of human knowledge and experience,

in order to enable each student to develop a personal coherent intellectual identity.
Discussions to Date

- Science Core
- REST Requirement
- HASS Requirement
- GIRs & the Major Programs
- Project-based Experiences
- Role of Engineering in the First Year Program
- Pedagogy
- Advising/Mentoring
- Freshman Learning Communities
- Communication Requirement
- Lab Requirement
- Social Responsibility, Ethics & Academic Honesty
- Double Degrees & Double Majors
- Creativity, Innovation & Leadership
Discussions to Date (2)

- The Freshman Experience
- Interdisciplinary Learning
- Diversity
- AP Credit
- Study Abroad
- Cross-School Collaborations
- Classrooms and Classroom Scheduling
- The Academic Calendar
- The Drop Date
- Faculty and their Commons Responsibility
- The Phys Ed Requirement
Today’s Focus

- Science Core
- REST and Lab Requirements
- HASS Requirement
- GIRs & the Major Programs
- Project-based Experiences
- Engineering in the First Year
- Pedagogy
- Advising
- Freshman Learning Communities
- Communication Requirement
- Social Responsibility, Ethics & Academic Honesty
- Double Degrees & Double Majors
- Creativity, Innovation & Leadership
Task Force consensus

- The present structure of the GIRs is basically sound, but the content can be broadened.

- It is not possible to provide all the desirable educational experiences in four years.

- The GIRs should introduce the fundamental modes of analysis that we want our students to acquire.

- The goals of the various components of an MIT education should be made more explicit to students and faculty.
What should an MIT graduate know in an ideal world?

- **Fundamentals of HASS:**
 - Human cultures
 - History
 - Literature
 - Economics
 - Government
 - Social structures & organizations
 - Foreign language
 - Philosophy
 - Writing skills
 - Speaking skills
 - Ability to analyze complex texts
 - Sensitivity to artistic expression
 - ...

- **Fundamentals of science and math:**
 - Physics
 - Chemistry
 - Math
 - Biology
 - Computation
 - Engineering analysis and design
 - Probability and statistics
 - Behavior of Complex Systems
 - Neuroscience
 - Geophysics
 - Differential equations
 - Linear algebra
 - Ecology

- **STES**
- Ethics
- Diversity
- Management
- Design

- **Int’l experiences**
- Service Learning
- Leadership

- **Departmental Program**
The Science-Engineering Core: Emerging Recommendations I

- Maintain the rigor and basic unified experience of the current Science Core;

- Expand the educational scope of the core to provide a broader and more effective foundation for later learning and signal the importance of various modes of analysis...

- ...but do not increase the number of requirements

- This requires developing a core program that permits some limited choice for individual student needs.
The Science-Engineering Core: Emerging Recommendations II

- Do not allow the core to become too diffuse by including too many subject options

- Increase the excitement/stimulation of the first year through new approaches to learning, especially project-based experiences

- The “Science-Engineering Core”
 - Still under construction (with input from the community)
 - “God is in the details”
Silbey presents ideas to Physics
The Science-Engineering Core:
What are the modes of analysis in science and engineering that we want our students to understand?

- Mathematics
- Physical sciences
- Life sciences
- Chemical sciences
- Computation
- Engineering
- ...
The Science-Engineering Core:

- Six core + 2 REST = 8 subjects

- Design challenge: how to organize these 8 subjects into a menu that broadens the present core, taking departmental programs into account;

- Each category would have a (very) small number subjects;

- Provide the possibility of project-based core subjects as an option.

- Strong oversight committee.
Strong Oversight Committee
The Science-Engineering Core: Project-based Experiences

- Emphasize synthesis, design and redesign;

- Provide students the opportunity to contribute to the definition of complex problems and to explore strategies for addressing them;

- Require extended study, reflection and refinement, and multiple modes of inquiry;

- Emphasize synthesis of ideas and techniques, especially the study of real-world problems to motivate the acquisition of disciplinary knowledge;

- Integrate and motivate knowledge from other core subjects.
HASS Requirement

- Subject of an intense (and still on-going) review by a Task Force-empanelled subcommittee that includes the HASS Overview Committee (HOC);

- Emerging sense that the HASS requirement should become simpler and less diffuse, and...

- ...should provide a coordinated first-year experience in which
 - Major themes define a more common experience;
 - Communication-intensive characteristics are embedded.
HASS Requirement...Beyond the First Year

- The Distribution requirement should be simplified;

- Concentrations should be better defined, more transparent, and more demanding.
Next Steps for the Task Force

- d’Arbeloff Grants: Call for proposals has generated enthusiastic response from faculty across MIT
 - Project-based initiatives
 - Pilots for new HASS subjects
 - Subjects in Science and Engineering core

- Recommendations to the Faculty in Spring.
The Task Force on the Undergraduate Educational Commons

Send your comments to:
edcommons-request@mit.edu