Kinematics

$$
\begin{array}{rlrl}
\Delta \vec{r}=\vec{r}-\vec{r}_{0} & \vec{v}_{\text {avg }} & =\frac{\Delta \vec{r}}{\Delta t} & \vec{a}_{\text {avg }}=\frac{\Delta \vec{v}}{\Delta t} \\
\vec{v} & =\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t} & \vec{a}=\frac{\mathrm{d} \vec{v}}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{~d} t^{2}} \\
\text { average speed } & =\frac{\text { distance travelled }}{\Delta t} &
\end{array}
$$

in Cartesian components (3-D):

$$
\begin{aligned}
\vec{r} & =x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
\vec{v} & =\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}+\dot{z} \hat{k} \\
\vec{a} & =\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}+\ddot{z} \hat{k}
\end{aligned}
$$

in plane polar components (2-D):

$$
\begin{aligned}
& \vec{r}=r \hat{r} \\
& \vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
& \vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\theta}
\end{aligned}
$$

Angular Kinematics

$$
\begin{aligned}
\Delta \theta=\theta-\theta_{0} & \omega_{\mathrm{avg}} & =\frac{\Delta \theta}{\Delta t} & \alpha_{\mathrm{avg}}
\end{aligned}=\frac{\Delta \omega}{\Delta t}, ~ \alpha^{2}=\frac{\mathrm{d} \theta}{\mathrm{~d} t} \quad \begin{aligned}
& \mathrm{d} t
\end{aligned}=\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}
$$

1-D motion (x or θ) with constant acceleration (a or α)

$$
\begin{aligned}
v & =v_{0}+a t & \omega & =\omega_{0}+\alpha t \\
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} & \theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
v^{2}-v_{0}^{2} & =2 a\left(x-x_{0}\right) & \omega^{2}-\omega_{0}^{2} & =2 \alpha\left(\theta-\theta_{0}\right) \\
v_{\mathrm{avg}} & =\frac{v+v_{0}}{2} & \omega_{\mathrm{avg}} & =\frac{\omega+\omega_{0}}{2}
\end{aligned}
$$

Uniform Circular Motion

$$
\begin{gathered}
\vec{v}=R \omega \hat{\theta} \\
\vec{a}=-R \omega^{2} \hat{r}=-\frac{v^{2}}{R} \hat{r}
\end{gathered}
$$

Relative Velocity

$$
\begin{gathered}
\vec{v}_{(\mathrm{C} \text { relative to A) }}=\vec{v}_{(\mathrm{C} \text { relative to } \mathrm{B})}+\vec{v}_{(\mathrm{B} \text { relative to } \mathrm{A})} \\
\vec{v}_{(\mathrm{B} \text { relative to } \mathrm{A})}=-\vec{v}_{(\mathrm{A} \text { relative to } \mathrm{B})}
\end{gathered}
$$

Simple Harmonic Motion

The differential equation

$$
\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}+\omega_{0}^{2} x(t)=0
$$

represents a simple harmonic oscillator, and has solutions of the form

$$
x(t)=A \cos \left(\omega_{0} t+\phi\right)
$$

where:
ω_{0} is the angular frequency.
A and ϕ are arbitrary constants that depend on the initial conditions.

$$
\begin{array}{lr}
f=\frac{1}{T}=\frac{\omega_{0}}{2 \pi} & \text { (relation between frequency, period, and angular frequency) } \\
\omega_{0}=\sqrt{\frac{k}{m}} & \text { (angular frequency of a simple mass-spring oscillator) }
\end{array}
$$

Dynamics

$$
\begin{array}{ll}
\sum \vec{F}=m \vec{a} & \text { (Newton's 2nd Law for a single particle) } \\
F_{G}=\frac{G m_{1} m_{2}}{r^{2}} & \text { (gravitational force of attraction between two particles) } \\
F_{G}=m g & \text { (gravitational force on a mass m near the surface of the Earth) } \\
f=\mu_{k} N & \text { (kinetic friction) } \\
f \leq \mu_{s} N & \text { (static friction) } \\
F=-k x & \text { (Hooke's Law: linear restoring force) }
\end{array}
$$

Math Corner

"Dot" Notation

$$
\dot{f} \equiv \frac{\mathrm{~d} f}{\mathrm{~d} t}
$$

Vectors

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta_{A, B}=A B_{\| \text {to } \mathrm{A}}=A_{\| \text {to } \mathrm{B}} B \\
|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A, B}=A B_{\perp \text { to } \mathrm{A}}=A_{\perp \text { to } \mathrm{B}} B
\end{gathered}
$$

... in Cartesian components

$$
\begin{gathered}
\vec{A}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k} \\
|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
\vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \hat{\imath}+\left(A_{y}+B_{y}\right) \hat{\jmath}+\left(A_{z}+B_{z}\right) \hat{k}
\end{gathered}
$$

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\hat{\imath}\left(A_{y} B_{z}-A_{z} B_{y}\right)-\hat{\jmath}\left(A_{x} B_{z}-A_{z} B_{x}\right)+\hat{k}\left(A_{x} B_{y}-A_{y} B_{x}\right)
\end{gathered}
$$

Coordinate Conversion

$$
\begin{array}{lll}
x=r \cos \theta & r=\sqrt{x^{2}+y^{2}} & \hat{r}=\hat{\imath} \cos \theta+\hat{\jmath} \sin \theta \\
y=r \sin \theta & \theta=\arctan \left(\frac{y}{x}\right) & \hat{\theta}=-\hat{\imath} \sin \theta+\hat{\jmath} \cos \theta
\end{array}
$$

Geometry

A sphere of radius R has volume $\frac{4}{3} \pi R^{3}$ and surface area $4 \pi R^{2}$.
A cylinder of radius R and height h has volume $\pi R^{2} h$ and surface area $2 \pi R h+2 \pi R^{2}$ (the first term is the area around the side, the second term is the area of the top and bottom).

Trigonometry

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi \\
& \cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi
\end{aligned}
$$

$$
\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)
$$

$$
\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}
$$

$$
\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos (2 \theta)
$$

$$
\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}
$$

$$
\sin (2 \theta)=2 \sin \theta \cos \theta
$$

$$
\sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

Quadratic Formula

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

