Special Relativity

For any pair of space-time events measured from two inertial reference frames S and S^{\prime}, where S^{\prime} is moving relative to S with constant velocity v in the positive x direction:

$$
\gamma \equiv \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
\begin{array}{ll}
\Delta x=\gamma\left(\Delta x^{\prime}+v \Delta t^{\prime}\right) & \Delta x^{\prime}=\gamma(\Delta x-v \Delta t) \\
\Delta y=\Delta y^{\prime} & \Delta y^{\prime}=\Delta y \\
\Delta z=\Delta z^{\prime} & \Delta z^{\prime}=\Delta z \\
\Delta t=\gamma\left(\Delta t^{\prime}+\frac{v}{c^{2}} \Delta x^{\prime}\right) & \Delta t^{\prime}=\gamma\left(\Delta t-\frac{v}{c^{2}} \Delta x\right)
\end{array}
$$

If Δt^{\prime} is the proper time between two events, then the time interval measured from another frame will be

$$
\Delta t=\gamma \Delta t^{\prime}
$$

If Δx^{\prime} is the proper length of an object, then the length measured from another frame will be

$$
\Delta x=\frac{\Delta x^{\prime}}{\gamma}
$$

For a particle moving with velocity \vec{u} relative to S (and velocity \vec{u}^{\prime} relative to S^{\prime}),

$$
\begin{aligned}
u_{x} & =\frac{u_{x}^{\prime}+v}{1+\frac{v}{c^{2}} u_{x}^{\prime}} & u_{x}^{\prime} & =\frac{u_{x}-v}{1-\frac{v}{c^{2}} u_{x}} \\
u_{y} & \left.=\frac{u_{y}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}}\right.} \prime_{x}^{\prime}\right) & u_{y}^{\prime} & =\frac{u_{y}}{\gamma\left(1-\frac{v}{c^{2}} u_{x}\right)} \\
u_{z} & \left.=\frac{u_{z}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}}\right.}{ }_{x}^{\prime}\right) & u_{z}^{\prime} & =\frac{u_{z}}{\gamma\left(1-\frac{v}{c^{2}} u_{x}\right)}
\end{aligned}
$$

Electrostatics

$$
\vec{F}=q \vec{E}
$$

(electric force on a particle with charge q)

The electric field at point P due to a small element of charge $\mathrm{d} q$ is

$$
\mathrm{d} \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r^{2}} \hat{r}
$$

where $\vec{r}(=r \hat{r})$ is the displacement vector that points from $\mathrm{d} q$ to P .

Known Electric Field Strengths

$$
\begin{aligned}
& E=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \\
& E=\frac{\lambda}{2 \pi \epsilon_{0} r} \\
& E=\frac{\sigma}{2 \epsilon_{0}}
\end{aligned}
$$

(point charge Q)
(infinite line of uniform charge density $\lambda \mathrm{C} / \mathrm{m}$)
(infinite sheet of uniform charge density $\sigma \mathrm{C} / \mathrm{m}^{2}$)

Math Corner

Vector Multiplication

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta_{A, B}=A B_{\| \text {to } \mathrm{A}}=A_{\| \text {to } \mathrm{B}} B \\
|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A, B}=A B_{\perp \text { to } \mathrm{A}}=A_{\perp \text { to } \mathrm{B}} B
\end{gathered}
$$

Geometry

A sphere of radius R has volume $\frac{4}{3} \pi R^{3}$ and surface area $4 \pi R^{2}$.
A cylinder of radius R and height h has volume $\pi R^{2} h$ and surface area $2 \pi R h+2 \pi R^{2}$ (the first term is the area around the side, the second term is the area of the top and bottom).

Trigonometry

$$
\begin{array}{ll}
\sin ^{2} \theta+\cos ^{2} \theta=1 & \sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta) \\
\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi & \cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos (2 \theta) \\
\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi & \sin (2 \theta)=2 \sin \theta \cos \theta
\end{array}
$$

$$
\begin{aligned}
\sin 45^{\circ} & =\cos 45^{\circ}=\frac{1}{\sqrt{2}} \\
\sin 30^{\circ} & =\cos 60^{\circ}=\frac{1}{2} \\
\sin 60^{\circ} & =\cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Quadratic Formula

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

