Electrostatics

$$
\vec{F}=q \vec{E}
$$

(electric force on a particle with charge q)

The electric field at point P due to a small element of charge $\mathrm{d} q$ is

$$
\mathrm{d} \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r^{2}} \hat{r}
$$

where $\vec{r}(=r \hat{r})$ is the displacement vector that points from $\mathrm{d} q$ to P .
For any closed surface S ,

$$
\begin{equation*}
\oint_{\mathrm{S}} \vec{E} \cdot \mathrm{~d} \vec{A}=\frac{1}{\epsilon_{0}} Q_{\text {enclosed by } \mathrm{S}} \tag{Gauss'sLaw}
\end{equation*}
$$

Known Electric Field Strengths

$$
\begin{aligned}
& E=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \\
& E=\frac{\lambda}{2 \pi \epsilon_{0} r}
\end{aligned}
$$

$$
E=\frac{\sigma}{2 \epsilon_{0}} \quad \text { (infinite sheet of uniform charge density } \sigma \mathrm{C} / \mathrm{m}^{2} \text {) }
$$

Electric Potential

$$
\begin{array}{lr}
U=q V & \text { (electrostatic potential energy of a particle with charge } q \text {) } \\
V_{b}-V_{a}=-\int_{\vec{r}_{a}}^{\vec{r}_{b}} \vec{E} \cdot \mathrm{~d} \vec{l} & \text { (finding electric potential from electric field) } \\
\vec{E}=-\vec{\nabla} V & \text { (finding electric field from electric potential) }
\end{array}
$$

The electrostatic potential at point P due to a small element of charge $\mathrm{d} q$, relative to $V(r=\infty)=0$, is

$$
\mathrm{d} V=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r}
$$

where r is the distance from $\mathrm{d} q$ to P .

Capacitance

$$
\begin{array}{rr}
Q & =C V \\
C & =\epsilon_{0} \frac{A}{d} \\
U & =\frac{1}{2} C V^{2}
\end{array} \quad \text { (for a vacuum- or air-filled parallel-plate capacitor with area } A \text { and separation } d \text {) }
$$

Electric Field Energy

Electric fields store energy with a density $\left(J / m^{3}\right)$ of

$$
u=\frac{1}{2} \epsilon_{0} E^{2}
$$

Dielectrics

$$
\begin{array}{lr}
E=\frac{E_{0}}{K} & \text { (electric field inside a dielectric material placed in an external field } E_{0} \text {) } \\
C=\epsilon \frac{A}{d}=K \epsilon_{0} \frac{A}{d} & \text { (for a parallel-plate capacitor filled with a dielectric material) }
\end{array}
$$

Current

$$
I=\frac{\mathrm{d} q}{\mathrm{~d} t}=\int \vec{J} \cdot \mathrm{~d} \vec{A} \quad \text { (definition of current and current density) }
$$

For any closed surface S ,

$$
I_{\text {leaving } \mathrm{S}}=\oint_{\mathrm{S}} \vec{J} \cdot \mathrm{~d} \vec{A}=-\frac{\mathrm{d}}{\mathrm{~d} t} Q_{\text {enclosed by } \mathrm{S}}
$$

(continuity equation)

In a non-ideal conductor with conductivity σ (resistivity $\rho=\frac{1}{\sigma}$),

$$
\vec{J}=\sigma \vec{E}=\frac{1}{\rho} \vec{E}
$$

Resistance

$$
\begin{aligned}
V & =I R \\
R & =\rho \frac{l}{A}
\end{aligned}
$$

Circuit Elements

Type	Relationship	Series Combination	Parallel Combinatio
Resistor	$V=I R$	$R_{\mathrm{eq}}=R_{1}+R_{2}$	$\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
Capacitor	$I=C \frac{\mathrm{~d} V}{\mathrm{~d} t}$	$\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$	$C_{\mathrm{eq}}=C_{1}+C_{2}$

Math Corner

Vector Calculus

$$
\begin{aligned}
& \vec{\nabla}=\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z} \\
& \vec{\nabla} f=\hat{\imath} \frac{\partial f}{\partial x}+\hat{\jmath} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}
\end{aligned}
$$

(the "del" operator)
(gradient)

Vector Multiplication

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta_{A, B}=A B_{\| \text {to } \mathrm{A}}=A_{\| \text {to } \mathrm{B}} B \\
|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A, B}=A B_{\perp \text { to } \mathrm{A}}=A_{\perp \text { to } \mathrm{B}} B
\end{gathered}
$$

Geometry

A sphere of radius R has volume $\frac{4}{3} \pi R^{3}$ and surface area $4 \pi R^{2}$.
A cylinder of radius R and height h has volume $\pi R^{2} h$ and surface area $2 \pi R h+2 \pi R^{2}$ (the first term is the area around the side, the second term is the area of the top and bottom).

Trigonometry

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi \\
& \cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta) \\
& \cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos (2 \theta) \\
& \sin (2 \theta)=2 \sin \theta \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}} \\
& \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2} \\
& \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Quadratic Formula

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

