Electrostatics

$$\vec{F} = q\vec{E}$$
 (electric force on a particle with charge q)

The electric field at point P due to a small element of charge dq is

$$d\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{dq}{r^2} \hat{r}$$

where \vec{r} (= $r\hat{r}$) is the displacement vector that points from dq to P.

For any closed surface S,

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{1}{\epsilon_0} Q_{\text{enclosed by S}}$$
 (Gauss's Law)

Known Electric Field Strengths

$$E = \frac{Q}{4\pi\epsilon_0 r^2} \qquad \qquad \text{(point charge Q)}$$

$$E = \frac{\lambda}{2\pi\epsilon_0 r} \qquad \qquad \text{(infinite line of uniform charge density λ C/m)}$$

$$E = \frac{\sigma}{2\epsilon_0} \qquad \qquad \text{(infinite sheet of uniform charge density σ C/m²)}$$

Electric Potential

$$U=qV$$
 (electrostatic potential energy of a particle with charge q)
$$V_b-V_a=-\int_{\vec{r}_a}^{\vec{r}_b} \vec{E}\cdot d\vec{l} \qquad \text{(finding electric potential from electric field)}$$

$$\vec{E}=-\vec{\nabla}V \qquad \qquad \text{(finding electric field from electric potential)}$$

The electrostatic potential at point P due to a small element of charge dq, relative to $V(r = \infty) = 0$, is

$$\mathrm{d}V = \frac{1}{4\pi\epsilon_0} \frac{\mathrm{d}q}{r}$$

where r is the distance from dq to P.

Capacitance

$$Q=CV \qquad \qquad \text{(definition of capacitance)}$$

$$C=\epsilon_0\frac{A}{d} \qquad \qquad \text{(for a vacuum- or air-filled parallel-plate capacitor with area A and separation d)}$$

$$U=\frac{1}{2}CV^2 \qquad \qquad \text{(energy stored in a capacitor)}$$

Electric Field Energy

Electric fields store energy with a density (J/m^3) of

$$u = \frac{1}{2}\epsilon_0 E^2$$

Dielectrics

$$E = \frac{E_0}{K}$$
 (electric field inside a dielectric material placed in an external field E_0)
$$C = \epsilon \frac{A}{d} = K \epsilon_0 \frac{A}{d}$$
 (for a parallel-plate capacitor filled with a dielectric material)

Current

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} = \int \vec{J} \cdot \mathrm{d}\vec{A}$$
 (definition of current and current density)

For any closed surface S,

$$I_{\text{leaving S}} = \oint_{S} \vec{J} \cdot d\vec{A} = -\frac{d}{dt} Q_{\text{enclosed by S}}$$
 (continuity equation)

In a non-ideal conductor with conductivity σ (resistivity $\rho = \frac{1}{\sigma}$),

$$\vec{J} = \sigma \vec{E} = \frac{1}{\rho} \vec{E}$$

Resistance

$$V=IR \eqno(definition of resistance)$$

$$R=\rho \frac{l}{A} \eqno(for a wire with length l and cross-sectional area A)}$$

Magnetostatics

$$\vec{F} = q\vec{v} \times \vec{B}$$
 (magnetic force on a particle with charge q and velocity \vec{v}) $d\vec{F} = Id\vec{l} \times \vec{B}$ (magnetic force on a small segment $d\vec{l}$ of wire carrying a current I)

The magnetic field at point P due to a small segment of wire $d\vec{l}$ carrying a current I is

$$\mathrm{d}\vec{B} = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}\vec{l} \times \hat{r}}{r^2}$$

where \vec{r} (= $r\hat{r}$) is the displacement vector that points from $d\vec{l}$ to P.

For any closed loop C,

$$\oint_{\mathbf{C}} \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed by C}}$$
 (Ampere's Law)

Known Magnetic Field Strengths

$$B = \frac{\mu_0 I}{2\pi r}$$
 (infinite straight wire carrying current I)
 $B = \mu_0 n I$ (inside a long tightly-wrapped solenoid with n turns per unit length)

Circuit Elements

Type	Relationship	Series Combination	Parallel Combination
Resistor Capacitor	$V = IR$ $I = C \frac{\mathrm{d}V}{\mathrm{d}t}$	$R_{\text{eq}} = R_1 + R_2$ $\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}$	$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2}$ $C_{\text{eq}} = C_1 + C_2$

Electric Power

$$P=VI$$
 (power consumed by any electrical device)
$$P=I^2R$$
 (power dissipated as heat in a resistor)
$$U=\frac{1}{2}CV^2$$
 (energy stored in a capacitor)

Math Corner

Solutions to Common Differential Equations

Decaying Exponential

The differential equation

$$\tau \frac{\mathrm{d}f(t)}{\mathrm{d}t} + f(t) = F_0$$

has solutions of the form

$$f(t) = F_0 + Ae^{-t/\tau}$$

where:

 τ is called the time constant

A is an arbitrary constant that depends on the initial conditions

Simple Harmonic Oscillator

The differential equation

$$\frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2} + \omega_0^2 f(t) = 0$$

has solutions of the form

$$f(t) = A\cos(\omega_0 t + \phi)$$

where:

 ω_0 is called the angular frequency

A and ϕ are arbitrary constants that depend on the initial conditions

Vector Calculus

$$\vec{\nabla} = \hat{\imath} \frac{\partial}{\partial x} + \hat{\jmath} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$
 (the "del" operator)
$$\vec{\nabla} f = \hat{\imath} \frac{\partial f}{\partial x} + \hat{\jmath} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z}$$
 (gradient)

Vector Multiplication

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta_{A,B} = AB_{\parallel \text{ to A}} = A_{\parallel \text{ to B}} B$$
$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta_{A,B} = AB_{\perp \text{ to A}} = A_{\perp \text{ to B}} B$$

Geometry

A sphere of radius R has volume $\frac{4}{3}\pi R^3$ and surface area $4\pi R^2$.

A cylinder of radius R and height h has volume $\pi R^2 h$ and surface area $2\pi Rh + 2\pi R^2$ (the first term is the area around the side, the second term is the area of the top and bottom).

Trigonometry

$$\sin^2\theta + \cos^2\theta = 1 \qquad \qquad \sin^2\theta = \frac{1}{2} - \frac{1}{2}\cos(2\theta) \qquad \qquad \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}\cos(\theta) + \sin \theta \cos \phi + \cos \theta \sin \phi \qquad \qquad \cos^2\theta = \frac{1}{2} + \frac{1}{2}\cos(2\theta) \qquad \qquad \sin 30^\circ = \cos 60^\circ = \frac{1}{2}\cos(\theta) + \sin \theta \cos \phi + \sin \theta \sin \phi \qquad \qquad \sin (2\theta) = 2\sin \theta \cos \theta \qquad \qquad \sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}\cos(\theta) + \cos \theta \cos \theta = \cos 30^\circ = \frac{\sqrt{3}}{2}\cos(\theta) + \cos \theta \cos \theta = \cos 30^\circ = \cos 30^$$

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.