Electrostatics

$$
\vec{F}=q \vec{E}
$$

(electric force on a particle with charge q)

The electric field at point P due to a small element of charge $\mathrm{d} q$ is

$$
\mathrm{d} \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r^{2}} \hat{r}
$$

where $\vec{r}(=r \hat{r})$ is the displacement vector that points from $\mathrm{d} q$ to P .
For any closed surface S ,

$$
\begin{equation*}
\oint_{\mathrm{S}} \vec{E} \cdot \mathrm{~d} \vec{A}=\frac{1}{\epsilon_{0}} Q_{\text {enclosed by } \mathrm{S}} \tag{Gauss'sLaw}
\end{equation*}
$$

Known Electric Field Strengths

$$
\begin{aligned}
& E=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \\
& E=\frac{\lambda}{2 \pi \epsilon_{0} r}
\end{aligned}
$$

$$
E=\frac{\sigma}{2 \epsilon_{0}} \quad \text { (infinite sheet of uniform charge density } \sigma \mathrm{C} / \mathrm{m}^{2} \text {) }
$$

Electric Potential

$$
\begin{array}{lr}
U=q V & \text { (electrostatic potential energy of a particle with charge } q \text {) } \\
V_{b}-V_{a}=-\int_{\vec{r}_{a}}^{\vec{r}_{b}} \vec{E} \cdot \mathrm{~d} \vec{l} & \text { (finding electric potential from electric field) } \\
\vec{E}=-\vec{\nabla} V & \text { (finding electric field from electric potential) }
\end{array}
$$

The electrostatic potential at point P due to a small element of charge $\mathrm{d} q$, relative to $V(r=\infty)=0$, is

$$
\mathrm{d} V=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r}
$$

where r is the distance from $\mathrm{d} q$ to P .

Capacitance

$$
\begin{array}{rr}
Q & =C V \\
C & =\epsilon_{0} \frac{A}{d} \\
U & =\frac{1}{2} C V^{2}
\end{array} \quad \text { (for a vacuum- or air-filled parallel-plate capacitor with area } A \text { and separation } d \text {) }
$$

Electric Field Energy

Electric fields store energy with a density $\left(J / m^{3}\right)$ of

$$
u=\frac{1}{2} \epsilon_{0} E^{2}
$$

Dielectrics

$$
\begin{array}{rr}
E=\frac{E_{0}}{K} & \text { (electric field inside a dielectric material placed in an external field } E_{0} \text {) } \\
C=\epsilon \frac{A}{d}=K \epsilon_{0} \frac{A}{d} & \text { (for a parallel-plate capacitor filled with a dielectric material) }
\end{array}
$$

Current

$$
I=\frac{\mathrm{d} q}{\mathrm{~d} t}=\int \vec{J} \cdot \mathrm{~d} \vec{A}
$$

(definition of current and current density)
For any closed surface S ,

$$
I_{\text {leaving } \mathrm{S}}=\oint_{\mathrm{S}} \vec{J} \cdot \mathrm{~d} \vec{A}=-\frac{\mathrm{d}}{\mathrm{~d} t} Q_{\text {enclosed by }}
$$

(continuity equation)

In a non-ideal conductor with conductivity σ (resistivity $\rho=\frac{1}{\sigma}$),

$$
\vec{J}=\sigma \vec{E}=\frac{1}{\rho} \vec{E}
$$

Resistance

$$
\begin{aligned}
V & =I R \\
R & =\rho \frac{l}{A}
\end{aligned}
$$

(definition of resistance)
(for a wire with length l and cross-sectional area A)

Magnetostatics

$$
\begin{array}{rlr}
\vec{F} & =q \vec{v} \times \vec{B} & \text { (magnetic force on a particle with charge } q \text { and velocity } \vec{v}) \\
\mathrm{d} \vec{F} & =I \mathrm{~d} \vec{l} \times \vec{B} & \text { (magnetic force on a small segment } \mathrm{d} \vec{l} \text { of wire carrying a current } I \text {) }
\end{array}
$$

The magnetic field at point P due to a small segment of wire $\mathrm{d} \vec{l}$ carrying a current I is

$$
\mathrm{d} \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \vec{l} \times \hat{r}}{r^{2}}
$$

where $\vec{r}(=r \hat{r})$ is the displacement vector that points from $\mathrm{d} \vec{l}$ to P .
For any closed loop C,

$$
\oint_{\mathrm{C}} \vec{B} \cdot \mathrm{~d} \vec{l}=\mu_{0} I_{\text {enclosed by } \mathrm{C}}
$$

Known Magnetic Field Strengths

$$
\begin{aligned}
& B=\frac{\mu_{0} I}{2 \pi r} \\
& B=\mu_{0} n I
\end{aligned}
$$

(infinite straight wire carrying current I)
(inside a long tightly-wrapped solenoid with n turns per unit length)

Induction

$$
\begin{equation*}
\mathcal{E}=\oint \vec{E} \cdot \mathrm{~d} \vec{l}=\frac{-\mathrm{d} \Phi_{B}}{\mathrm{~d} t} \tag{Faraday'sLaw}
\end{equation*}
$$

Mutual Inductance

$$
\begin{aligned}
& M=\frac{\Phi_{B} \text { thru } 2 \text { due } 1}{I_{1}}=\frac{\Phi_{B} \text { thru } 1 \text { due } 2}{I_{2}} \\
& \mathcal{E}_{1}=-M \frac{\mathrm{~d} I_{2}}{\mathrm{~d} t} \\
& \mathcal{E}_{2}=-M \frac{\mathrm{~d} I_{1}}{\mathrm{~d} t}
\end{aligned}
$$

Self Inductance

$$
\begin{aligned}
& L=\frac{\Phi_{B}}{I} \\
& \mathcal{E}=-L \frac{\mathrm{~d} I}{\mathrm{~d} t} \\
& U=\frac{1}{2} L I^{2}
\end{aligned}
$$

(energy stored in an inductor)

Magnetic Field Energy

Magnetic fields store energy with a density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$ of

$$
u=\frac{1}{2} \frac{B^{2}}{\mu_{0}}
$$

Circuit Elements

Type	Relationship	Series Combination	Parallel Combination
Resistor	$V=I R$	$R_{\mathrm{eq}}=R_{1}+R_{2}$	$\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
Capacitor	$I=C \frac{\mathrm{~d} V}{\mathrm{~d} t}$	$\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$	$C_{\mathrm{eq}}=C_{1}+C_{2}$
Inductor	$V=L \frac{\mathrm{dI}}{\mathrm{d} t}$	$L_{\mathrm{eq}}=L_{1}+L_{2}$	$\frac{1}{L_{\mathrm{eq}}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}$

Electric Power

$$
\begin{aligned}
P & =V I \\
P & =I^{2} R \\
U & =\frac{1}{2} C V^{2} \\
U & =\frac{1}{2} L I^{2}
\end{aligned}
$$

(power consumed by any electrical device)
(power dissipated as heat in a resistor) (energy stored in a capacitor) (energy stored in an inductor)

Maxwell's Equations

Integral Form

$$
\begin{array}{ll}
\oint \vec{E} \cdot \mathrm{~d} \vec{A}=\frac{Q}{\epsilon_{0}} & \oint \vec{E} \cdot \mathrm{~d} \vec{l}=\frac{-\mathrm{d} \Phi_{B}}{\mathrm{~d} t} \\
\oint \vec{B} \cdot \mathrm{~d} \vec{A}=0 & \oint \vec{B} \cdot \mathrm{~d} \vec{l}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{\mathrm{~d} \Phi_{E}}{\mathrm{~d} t}
\end{array}
$$

Differential Form

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} & \vec{\nabla} \times \vec{E}=\frac{-\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{B}=0 & \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

Electromagnetic Waves

$$
\begin{array}{lr}
f(x, t)=f(x-v t, 0)=g(x-v t) & \text { (general form of a wave moving in the +x direction) } \\
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} f}{\partial t^{2}} & \text { (1-D wave equation to which } f(x, t) \text { is a solution) } \\
f(x, t)=F_{0} \sin (k x-\omega t)=F_{0} \sin k(x-v t) & \text { (a sinusoidal wave moving in the +x direction) } \\
v=\frac{\omega}{k} & \text { (speed of propagation) } \\
\lambda=\frac{2 \pi}{k} & \text { (wavelength) } \\
T=\frac{2 \pi}{\omega} & \text { (period) } \\
\lambda f=v \\
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
B=\frac{E}{c} & \text { (relation between speed, wavelength, and frequency) } \\
\text { (speed of EM waves in a vacuum) }
\end{array}
$$

Energy in EM Waves

The power density (energy transported per unit time per unit area) of an EM wave is given by

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

(Poynting vector)
page 4 of 6

Intensity is the time-averaged power density

$$
S_{\mathrm{avg}}=\frac{E_{0} B_{0}}{2 \mu_{0}}
$$

Math Corner

Solutions to Common Differential Equations

Decaying Exponential

The differential equation

$$
\tau \frac{\mathrm{d} f(t)}{\mathrm{d} t}+f(t)=F_{0}
$$

has solutions of the form

$$
f(t)=F_{0}+A e^{-t / \tau}
$$

where:
τ is called the time constant
A is an arbitrary constant that depends on the initial conditions

Simple Harmonic Oscillator

The differential equation

$$
\frac{\mathrm{d}^{2} f(t)}{\mathrm{d} t^{2}}+\omega_{0}^{2} f(t)=0
$$

has solutions of the form

$$
f(t)=A \cos \left(\omega_{0} t+\phi\right)
$$

where:
ω_{0} is called the angular frequency
A and ϕ are arbitrary constants that depend on the initial conditions

Damped Harmonic Oscillator

The differential equation

$$
\frac{\mathrm{d}^{2} f(t)}{\mathrm{d} t^{2}}+\gamma \frac{\mathrm{d} f(t)}{\mathrm{d} t}+\omega_{0}^{2} f(t)=0
$$

with $\gamma^{2}<4 \omega_{0}^{2}$, has solutions of the form

$$
f(t)=A e^{-\frac{\gamma}{2} t} \cos \left(\omega_{1} t+\phi\right)
$$

where:
$\omega_{1}=\sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4}}$ is the angular frequency
A and ϕ are arbitrary constants that depend on the initial conditions

Vector Calculus

$$
\begin{array}{lr}
\vec{\nabla}=\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z} & \text { (the "del" operator) } \\
\vec{\nabla} f=\hat{\imath} \frac{\partial f}{\partial x}+\hat{\jmath} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z} & \text { (gradient) } \\
\vec{\nabla} \cdot \vec{F}=\frac{\partial}{\partial x} F_{x}+\frac{\partial}{\partial y} F_{y}+\frac{\partial}{\partial z} F_{z} & \text { (divergence) } \\
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\hat{\imath}\left(\frac{\partial}{\partial y} F_{z}-\frac{\partial}{\partial z} F_{y}\right)-\hat{\jmath}\left(\frac{\partial}{\partial x} F_{z}-\frac{\partial}{\partial z} F_{x}\right)+\hat{k}\left(\frac{\partial}{\partial x} F_{y}-\frac{\partial}{\partial y} F_{x}\right) \quad \text { (curl) } \tag{curl}\\
\oint_{S} \vec{F} \cdot \mathrm{~d} \vec{A}=\int_{\substack{\text { volume } \\
\text { bounded } \\
\text { by } S}}(\vec{\nabla} \cdot \vec{F}) \mathrm{d} V \\
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{l}=\int_{\begin{array}{c}
\text { area } \\
\text { bounded } \\
\text { by } C
\end{array}}(\vec{\nabla} \times \vec{F}) \cdot \mathrm{d} \vec{A} & \text { (Divergence Theorem) } \\
\hline
\end{array}
$$

Vector Multiplication

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta_{A, B}=A B_{\| \text {to } \mathrm{A}}=A_{\| \text {to } \mathrm{B}} B \\
|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A, B}=A B_{\perp \text { to } \mathrm{A}}=A_{\perp \text { to } \mathrm{B}} B
\end{gathered}
$$

Geometry

A sphere of radius R has volume $\frac{4}{3} \pi R^{3}$ and surface area $4 \pi R^{2}$.
A cylinder of radius R and height h has volume $\pi R^{2} h$ and surface area $2 \pi R h+2 \pi R^{2}$ (the first term is the area around the side, the second term is the area of the top and bottom).

Trigonometry

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi \\
& \cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{array}{ll}
\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta) & \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}} \\
\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos (2 \theta) & \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2} \\
\sin (2 \theta)=2 \sin \theta \cos \theta & \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{array}
$$

Quadratic Formula

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

