Thinking About Energy...

- Where does it come from?

- Where does it go?
Converting Fuels to “Energy”

- Lots of Turbines and Tea Kettles...

<table>
<thead>
<tr>
<th>Type of Generation</th>
<th>Combustion Type</th>
<th>Turbine Type</th>
<th>Primay Power</th>
<th>Electrical Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Boiler</td>
<td>External</td>
<td>Gas</td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Fluidized Bed Combustion</td>
<td>External</td>
<td>Steam</td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Integrated Gasification</td>
<td>Both</td>
<td>Water</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Combined-Cycle</td>
<td>Internal</td>
<td>Aero</td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>Both</td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td></td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Diesel Genset</td>
<td>Internal</td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Micro-Turbines</td>
<td>Internal</td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Fuel Cells</td>
<td></td>
<td></td>
<td>Direct Inverter</td>
<td></td>
</tr>
<tr>
<td>Hydropower</td>
<td>External</td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Biomass & WTE Windpower</td>
<td>External</td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Photovoltaics</td>
<td></td>
<td>Direct Inverter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Thermal</td>
<td></td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Wave Power</td>
<td></td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Tidal Power</td>
<td></td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
<tr>
<td>Ocean Thermal</td>
<td></td>
<td></td>
<td>Shaft Generator</td>
<td></td>
</tr>
</tbody>
</table>

Electricity from the Wind

- Texas
- Vermont
- Denmark
Windpower’s Getting BIG!!!

• Comparative Size/Height

Where is it Windy?

• Trees and Hills, Matter!!!
Wind in Space and Time

Electricity Demand

Generation from Wind

Pop Quiz !!!

• Is the wind blowing?
Solar Energy - Many Flavors

• Photovoltaics

(Source: NREL)

• Some “Large” Systems in Boston (Northeastern, MIT)

(Source: solarpower.mit.edu)

© S.R. Connors – MIT Laboratory for Energy and the Environment

22 April 2007 – pg. 9

Solar Energy - Many Flavors

• Solar Tower – Solar Electric

© S.R. Connors – MIT Laboratory for Energy and the Environment

22 April 2007 – pg. 10
Where and When is it Sunny?
(Definitely more than just latitude)

Fuels from Plants! (Biomass)

- Ethanol
 » Which feedstock? (sugar, seed, plant)
 » Implicit feedstock variability/product stability issues
 » Thousands of assumptions regarding agricultural practices, biorefinery performance, etc.

- Similar assumptions for Biodiesel

- How good is it?
 » From the seed, or the whole plant?
 » Do you come out ahead or behind?
Efficiency Too in Space & Time

• Redefining “Energy Efficiency”
 » Energy Conversion Efficiency
 • Historically Synonymous with “Energy Efficiency”
 • Leading Example: Efficient Light Bulbs
 » Energy Utilization Efficiency
 • Look at “Duty Cycles” and “Driving Cycles”
 • The “Efficiency of turning things off”
 » Integrated Energy Efficiency
 • Look at “Two Birds/One Stone” Energy Services
 • Leading Example: Combined Heat and Power

• Focus also on “Technology Development, Deployment and Use”
 • “Every Market’s A Niche Market”
 • “Some Niches Are Just Bigger Than Others”
 • Niches Will Grow in Size, and Expand in Number as Technologies Improve and Markets Evolve

Thanks for Listening…
Thanks for Your Questions…

Steve Connors
connorsr@mit.edu