LECTURE 22: THEORETICAL ASPECTS OF NANOINDENTATION

Outline:

REVIEW LECTURE #21: EXPERIMENTAL SINGLE MACROMOLECULE ELASTICITY	2
NANOINDENTATION	3-7
Introduction	
Indenter Geometries	
Types of Deformation	
Oliver-Pharr Analysis : Geometric Set-Up	6
Oliver-Pharr Analysis :Mathematical Formulation	7
APPENDIX	
Detailed Geometry of Indenters	8-10
Berkovich Contact Area	
Oliver-Pharr Citations	12
Nanoindentor Instruments	

Objectives: To understand general theoretical formulations for reducing material properties from nanoindentation experiments

Readings: Course Reader Documents 45 (one of the most cited papers in Materials Science)-46, Additional Historical Ref (posted on stellar's Supplementary Materials): Sneddon **1965** *Int. J. Engng.* 3, 47-57.

SINGLE MOLECULE ELASTICITY OF TITIN (AFM) & DNA (OPTICAL TWEEZERS)

- Structure and physiological role of Titin (*Rief, et al. CHEMPHYSCHEM 2002, 3, 255-261*)→sawtooth force profiles (*Bustamante, et al. Science 1999, 271, 795*)

Biological Relevance of Overstretching Transition? Ability to switch between different structures is critical to the processes of transcription, replication, condensaton, e.g. the base pairs are much more exposed in S-DNA than normal DNA, the transition may be biologically significant for accessing information contained in the DNA code

- I. low stretched behaves like WLC (p \approx 50 nm under physiological conditions, much larger than most polymers \sim 1nm, hence much smaller forces, need optical tweezers)
- II. intermediate stretches -some extensibility as apparent by finite slope beyond L_{contour} (B-form)
- III. At 65 pN ~ 0.06 nN, reversible strain-induced conformational transition; chain "yields" and stretches out almost 2× its native B-form contour length at relatively constant force (plateau in force region)
- -All of hydrogen bonding and binding between 2 strands is still in tact, tilting of base pairs, tightened helix, reduction in diameter

"overstretching transition"

IV. entropic elasticity of S-form

V. can't see here - if you go to high enough stretches, separation between strains (mechanical "melting")

INTRODUCTION TO NANOINDENTATION

Definition: Controlled compression and decompression of a probe tip into a sample surface while measuring force (load, P) versus indentation displacement or depth, h (nm-scale) continuously

- → probe tip is relatively rigid compared to the sample
- → can measure mechanical properties (e.g. modulus, hardness) on areas nm-µm scale; e.g. thin films and small volume structures → called "nano" since the indentation depth is of nanometer scale, however lateral contact areas and forces can be > nanoscale -multiaxial deformation

Tip-Sample Indentation Depth or Separation Distance, D (nm)

- -e.g. silicon or silicon nitride indenter probe on a cantilever force transducer
- -cantilever oriented at an angle to the surface (~11°)
- -indenter geometries, e.g. pyramidal (less well defined)
- -load range ~ nN-mN, smaller contact radii ~ 10s of nm

Instrumented or Depth-Sensing Indentation (DSI)

(Hysitron, Micromaterials, Appendix→extension of conventional hardness testing to smaller length scale)

- diamond indenter
- indenter oriented perpendicular to the surface
- variable indenter geometries; Berkovich, cube corner, etc. load range ~ μN -mN, larger contact radii ~ μm

NANOINDENTATION: INDENTER GEOMETRIES

Residual Berkovich Indent Impression

See Appendix for full geometric details

a=Vickers, b= Berkovich, c= Knoop, d = conical, e=Rockwell, f=spherical

NANOINDENTATION: TYPES OF DEFORMATION

Unloading $P = \alpha_2 (h - h_r)^{m}$

Elastoplastic or

Inelastic

Analytical solution

m = 1 for flat cylinders

m = 2 for cones

m = 1.5 for spheres

Sneddon, Int. J. Engng. Sci. 1965

 $h_r = h_f$ = residual / final depth

 U_e = elastic energy

 U_r = energy dissipated (elastoplastic / inelastic)

 U_{total} = total work of deformation= U_e + U_r

 $in. materials. drexel. edu/blogs/280_advanced_materials_lab/attachment/469. ashx$

OLIVER-PHARR ANALYSIS: GEOMETRIC SET-UP

Linear Elastic, Isotropic, Continuum Contact Mechanics Theory (*Oliver and Pharr, 1992 JMR, 7(6) 1564*): Geometry setup and definitions of geometric parameters: assumes "sink-in"

DISPLACEMENT, h

P =applied load, $P_{max} =$ peak applied load

 $h = \text{indentation depth (at } P_{max}; h = h_{max} \text{ maximum depth)}$

a = radius of contact circle

 h_c = contact depth, vertical distance along which contact is made between sample and tip

 h_s = displacement of the surface at the perimeter of contact From geometry : $h = h_c + h_s$

 $A(h_c)$ = contact (projected) area at h_c

$$E_r^{-1}$$
 = reduced modulus = $\left(\frac{1-v^2}{E}\right)_{\text{sample}} + \left(\frac{1-v_i^2}{E_i}\right)_{\text{indented}}$

(i.e. two springs in series)

E = modulus

 $\mathbf{v} = \text{Poisson's ratio}$

 h_f = residual final depth (indicates inelasticity; e.g. viscoelasticity, plasticity)

 $S = \text{contact (initial unloading)} \text{stiffness} = \left(\frac{dP}{dh}\right)_{P_{\text{min}}}$

(typically evalulated between 95% and 20% of P_{max})

OLIVER-PHARR ANALYSIS: MATHEMATICAL FORMULATION

(Oliver and Pharr, 1992 JMR, 7(6) 1564)

DISPLACEMENT, h

Schematic courtesy of B. Bruet

$$E_r = \frac{\sqrt{\pi}}{2\sqrt{A(h_r)}}S \rightarrow Sneddon Equation holds for any indenter geometry (1)$$

S is measured directly from the data (typically evalulated between 95% and 20% of P_{max})

$$h_c = h_{max} - \frac{\varepsilon P_{max}}{S}(2)$$

Tip Geometry	ε
flat-ended cylindrical punch	1
paraboloid of revolution	0.75
Cone	$2(\pi-2)/\pi$

Indenter (Probe Tip) Area Function Calibration :

 $A(h_c)$ = tip area function; representative of tip geometry, can be calibrated on sample of known modulus (e.g. fused quartz) by inverting Sneddon equation (1);

$$A(h_c) = \frac{\pi}{4} \left(\frac{S}{E_r}\right)^2 (3)$$

Carry out indentations at successively higher loads; at each P_{max} calculate h_c

from (2) and $A(h_c)$ from (3), these data are fit to a polynomial:

$$A(h_c) = C_0 h_c^2 + C_1 h_c + C_2 h_c^{0.5} + C_3 h_c^{0.25} + C_4 h_c^{1/8} + C_5 h_c^{1/16}$$

Gives $A(h_c)$ for every indentation depth, h_c

$$C_o = 24.5$$
; $A(h_c) = 24.5h_c^2$ (Ideal Berkovich Geometry) (4)

(see Appendix for Derivation), coefficients reflect indenter geometry

APPENDIX: DETAILED GEOMETRY OF INDENTERS 1

4-sided:

3-sided:

APPENDIX: DETAILED GEOMETRY OF INDENTERS 2

Cones:

Figure 6 CONE INDENTERS

APPENDIX: DETAILED GEOMETRY OF INDENTERS 3 (Do Kyung Kim, KAIST)

Indenter type	Projected area	Semi angle	Effective	Intercept	Geometry	
31	,	(θ)	cone angle (α)	factor (ε)	correction factor (β)	9
Sphere	A ≈ π2Rh	N/A	N/A	0.75	1	

APPENDIX: BERKOVICH GEOMETRY CALCULATION OF CONTACT AREA

Projected area

$$\tan 60^\circ = \frac{l}{a/2}$$

$$l = \frac{\sqrt{3}}{2}a$$

$$A_{proj} = \frac{al}{2} = \frac{\sqrt{3}}{4}a^2$$

$$\cos 65.27^{\circ} = \frac{h}{b}$$

$$h = \frac{a\cos 65.3^{\circ}}{2\sqrt{3}\sin 65.3^{\circ}} = \frac{a}{2\sqrt{3}\tan 65.3^{\circ}}$$

$$a = 2\sqrt{3}h \tan 65.3^{\circ}$$

$$A_{proj} = 3\sqrt{3}h^2 \tan^2 65.3^o = 24.56h^2$$
 (Do Kyung Kim, KAIST)

APPENDIX: OLIVER-PHARR CITATIONS

One of the most cited paper in Materials Science

KeyWords Plus: SILICON; BEHAVIOR

Addresses: OLIVER WC (reprint author), OAK RIDGE NATL LAB, DIV MET & CERAM, OAK RIDGE, TN 37831 USA

RICE UNIV, DEPT MAT SCI, HOUSTON, TX 77251 USA

good technique, moduli can be measured to within 5%.

Publisher: MATERIALS RESEARCH SOCIETY, 9800 MC KNIGHT ROAD SUITE 327, PITTSBURGH, PA 15237

Subject Category: MATERIALS SCIENCE, MULTIDISCIPLINARY

IDS Number: HY106 ISSN: 0884-2914

APPENDIX: NANOINDENTATION INSTRUMENTATION

• MTS_Nano-Indenter XP

• Hysitron_Triboscope

(Do Kyung Kim, KAIST)

- CSIRO_UMIS
- (Ultra-Micro-Indentation System)

- CSM_NHT
- (Nano-Hardness Tester)

