Guide for the Ortiz group Matlab scripts

[image: image1.png]Force (nN)

12

08

08

04

02

0 15 20 25 3 35 40
Distance (nim)

(last updated Delphine Dean: 5/18/05)
(WARNING! (
This is not intended to teach you how to use Matlab. If you have never used Matlab, there are some great guides online that you can use (for example, try out: https://web.mit.edu/tm/matlab_mastery_I/setup/Start.htm for starters). However, if you just need a Matlab refresher course, go to the Basic Useful Matlab Commands section of this guide. Also, for a good references on nanoscale forces so that you understand what the modeling scripts are doing, please check out one of the following books: “Principles of Colloid and Surface Chemistry” by Paul C. Hiemenz and Raj Rajagopalan or “Intermolecular and Surface Forces” by Jacob Israelachvili. If you just need a quick refresher on nanoscale forces, check out the lecture notes from Prof. Ortiz’s 3.052 class.

Table of Contents
Section 1: Introductions and Getting Started

· How to use this guide

· How to download the scripts

· How to load and export data to and from Matlab

· Basic useful Matlab commands

Section 2: Manipulating AFM/MFP Data
· Scripts for converting MFP3D raw force curve data

· Scripts for converting AFM raw force curve data

· Scripts for averaging force curves

· Scripts for converting between force and stress

· Scripts for measuring heights and friction from AFM images

Section 3: Modeling Electrostatics

· Calculating electrical potential between planar surfaces at a fixed separation distance
· Calculating stress between planar surfaces
Section 4: Fitting Curves with Electrostatics and Van der Waals
· Fitting to get a surface charge density
· Fitting to a volume charge model
· With Fitting Scripts Always Remember To…

Section 5: Some useful values
Introductions and Getting Started

How to use this guide

Start with this section then go to the section for the scripts you want to use. Under each one is a list of the people who use those particular functions. If you are going to use one of these scripts, please add your name to the list so we can keep track of who’s using what (also, if someone has graduated, please remove their name). If you need help, try contacting one of the people already listed there since they have already used the same script.

As a last resort, if something does go horribly wrong and no one can seem to figure it out, please contact the person who wrote the script originally. For all of the ones listed here so far, that’s me and you can email me at finou@alum.mit.edu. However, I’m not at MIT anymore so it might take me some time to deal with it. Email me with the following info:

Your name and phone number

A good description of what you are trying to do.

The exact matlab command you entered with the exact error message.

A copy of the scripts (the .m files) that you are using.

Any data file you are using/processing.
Also, make sure you have some kind of descriptive subject line (don’t leave it blank) so that spam filters don’t throw out your message.
FYI, in the past, I have found that almost all problems with the scripts come when people do not use the right inputs when calling the function. Check to make sure your data is in the right format and that you aren’t trying to use the script for something other than what it was intended for (for example, a lot of these scripts don’t work with data that have negative distances).
Finally, if you write something that you think will be useful for other people in the lab please add it to the list (Just make sure you write your name so people can contact you if they need help!

Thanks!

Delphine Dean
How to Download the Scripts
These scripts run in Matlab. You can use Matlab on Athena or you can get a free copy for your personal PC (if you are a student) from the MIT license distribution site. This guide is made to help you use the Ortiz lab scripts.

First time user:

After installing Matlab on your computer, do the following:

1. Download all the scripts from:

http://web.mit.edu/finou/NewScript
into a folder on your computer.

(For example, make a new directory in your “My Documents” directory called “OrtizScripts”)

Or to make it easier, you can just download the zip file called ScriptsZipped.zip with all the scripts in it and then unzip that file with Winzip into the folder of your choice.

2. Start up Matlab
3. Click on “Set Path…” off of the “File” menu.

4. Click “Add Folder” on the Set Path dialogue box.

5. Choose the folder where you downloaded the scripts (For example, “C:\Documents and Settings\Delphine\My Documents\OrtizScripts”)

6. Click the “Save” button on the Set Path dialogue box.

7. Close the window.

You should now be all set to run the scripts. Note that by putting the folder with the scripts in your Path in Matlab, you don’t have to be in that directory when running the scripts. The directory Matlab is currently in can be viewed and changed at the top in a window labeled “Current Directory:” (to change it click on the “…” button next to the directory name).
You can also check what directory you are in by typing cd at the matlab prompt or by looking up on the toolbar of the command window (or look at the little menu that says “Current Directory: C:\directoryName”) You can navigate through the directories in Matlab as you would on a Unix or Dos system using cd (change directory) and ls or dir.

If a file is in a directory that is not in your Path, that directory must be your current directory if you want to run that particular script file or load that data file from the command prompt in Matlab.

Instructions on how to load and export data to and from Matlab
The easiest way to load AFM or MFP data into Matlab is to use the “Import Data…” command of the “File” menu. This can load either text/ascii files or excel spreadsheets. If the columns of your data have column header titles, Matlab will try to import these as strings arrays. You don’t actually need to use those so you can just uncheck the box so that it doesn’t save the header titles into your workspace. Caveat: if you are cutting and pasting data into matlab directly you are going to lose some of the significant figures in your data (it will truncate to only 4 digits usually). This may cause truncation problems later. To avoid this problem, always save data as a 16-digit ascii or a double.
Some useful instructions if you want to load data the old fashion way (which is nice because you are sure not to have round off problems this way):

1. Saving your data into a text file.

Make sure your data is in the right form in columns
You can make a text file from excel:

1. make a new worksheet

2. copy your data into the new worksheet.

3. do save as. Pick the “Text File (Tab delimitated)” text format.

(For this example let’s say the text file has 2 columns and is called “MyDataFile”: the first column is the distances and the second is the forces)

2. Load your data into Matlab. For example, at the command prompt type

Data = load(‘MyDataFile.txt’);

This will load your data into a matrix variable called Data into Matlab. (To look at all your variables type who at the prompt or look at the window on the left of the matlab screen called workspace) In our example, Data would be a 2 column matrix.

Basic Useful Matlab Commands
Matlab treats all variables as matrices and vectors. If you have trouble with this, please look up a matlab instruction courses or books such as the one off of MIT at: https://web.mit.edu/tm/matlab_mastery_I/setup/Start.htm
1. For help in Matlab: if you know the function name that you are looking for type “help FunctionName”. If you aren’t sure of the exact name of the function, type “lookfor Function”

For example, I would like to make an evenly or linearly spaced vector of distance (which is very useful, btw):

>> lookfor ‘spaced vector’
LINSPACE Linearly spaced vector
LOGSPACE Logarithmically spaced vector
>> help linspace

LINSPACE Linearly spaced vector.

 LINSPACE(X1, X2) generates a row vector of 100 linearly

 equally spaced points between X1 and X2.

 LINSPACE(X1, X2, N) generates N points between X1 and X2.

 For N < 2, LINSPACE returns X2.

 Class support for inputs X1,X2:

 float: double, single

 See also logspace, :..

 Reference page in Help browser

 doc linspace

2. To make a figure:
It is often very useful to plot your data to make sure it looks ok. (A lot of problems with the fitting scripts occur because people just pass in bad data!).

>> plot(xdata, Fdata)

will plot the data in the vector Fdata versus the data in the vector xdata (they have to be the same length). The default will be to plot the data as a blue line.

If you want to compare your fits to the data on the same plot,

>> plot(xdata, Fdata, ‘r.’)

>> hold on

>> plot(xmodel, Fmodel, ‘g’)

will plot the data in the vector Fdata versus the data in the vector xdata as a series of red points (that’s what ‘r.’ stands for) and then it will plot Fmodel versus xmodel as a green line (that’s the ‘g’). For more plotting options, type “help plot”.
FYI, you can save figures for later if you save them from the file menu on the figure window. You can save them also as enhanced metafiles which paste nicely into Microsoft office documents.
If you would like to plot something with error bars, then use the command errorbar:

>> errorbar(x, y, std)

To make another figure but keep the current one, just use the command figure.

3. More useful commands
a. If you put a ; after a command it won’t print the answer:

>> x = 2+2

x =

 4

>> x= 2+2;

>>

b. To transpose a matrix use ’:

>> x = [1 2 3]’

x =

 1

 2

 3

c. The : operator is useful:

>> x = [1 2 3; 4 5 6; 7 8 9];

>> x(:, 1:2)

ans =

 1 2

 4 5

 7 8
>> x(3:-1:1, 2)

ans =

 8
 5
 2
>> 10:-2:2

ans =

 10 8 6 4 2

4. To save a matlab session (useful so you don’t have to reload all the data every time):

>> save MySession

 for more save options type “help save”

5. General Matlab syntax reminder: if Var is a matrix with m rows and n columns,
you can get the element at position (i,j) by doing:
element = Var(i,j);

if you want the ith row you do:

row_i = Var(i, :);

and if you want to get the jth column you do:

col_j = Var(:, j);
(If you forgot to convert to nm and nN, you can do the conversion in Matlab from m and N to nm and nN by typing “xdata = xdata*10^9;” for example)

6. Other useful commands include which, who, and what. (Not so useful: try why ;)
7. Finally, if you are running something and it is taking too long. You can stop it by pressing Cntrl-C.

8. Other useful tricks for running Matlab in Windows:

Matlab has a tendency to leak memory so try not to leave it running continuously for more than ~1 week.

After starting up Matlab, go to the Windows Task Manager and click on the Processes tab (you can start a Task Manager by hitting Cntrl-Alt-Delete). Right click on the process called MATLAB.exe in the list. Go to Set Priority and set it to Below Normal. This will prevent Matlab from taking over all the processor time. This way, you can run a Matalb script in the background while you work on something completely different.
Manipulating AFM/MFP data
Scripts for converting MFP3D raw force curve data:
People who used these scripts: Jen Vandiver

1. Load your raw data into matlab. Your data should be in one big matrix variable that has pairs of x and y columns for each repeated data

2. use the function MFPConvertAvg:

>> [DatasConverted DataAvgStd] = MFPConvertAvg(Datas, NumReps, k, slopeIn);

Where Datas is the big matrix of your raw data (Datas = [x1 y1 x2 y2…]) in which the first half of the rows are the approach part of the curves and the second half of the rows are the retraction part of the curves.

NumReps is the number of repetitions at each location that you would like averaged together (it’s usually 10 for Jen).

k is the spring constant in N/m for the tip.
slopeIn is the slope for the constant compliance regime. If you want the script to calculate it directly from the curves pass in 0 otherwise use the slope value obtained from your hard-substrate control sample.

DatasConverted will be a matrix of all the converted curves (DatasConverted = [distance1 force1 distance2 force2…]) in nm and nN
DataAvgStd will be a matrix of the averages and standard deviations for the curves in nm nN ([distance force stdev] for each location)

This automatic conversion may not always work perfectly (especially if the constant compliance regime changes a lot from curve to curve). Be sure to check it by plotting the curves after converting (try: plot(DatasConverted(1:2:length(Datas)), DatasConverted(2:2:length(Datas)); to plot lots of curves at once). The script will print out the values it got for the slope of the const. compliance for each curve. You can change where it takes the constant compliance by changing line 29 in the file MFPConvertAvg.m.
Scripts for converting AFM raw force curve data:
People who used these scripts: Lin Han, Laura Daher
1. Load your raw data into matlab. Your data should be in one big matrix variable that has 4 columns per data set (xExtension, yExtension, xRetraction, yRetraction)

2. use the function AFMConvertAvg:
>> [] =

where

This script works better than the one for the MFP3D because the constant compliance on the AFM curves is already measured during the experiment and tends not to change much from curve to curve.

Scripts for averaging force curves:
People who used these scripts: Jen Vandiver, Lin Han, Laurel Ng
Use the function AverageLotsForces:
>> [x Favg Fstd] = AverageLotsForces(Data, NumPoints);

Where Datas is the big matrix of your data (Datas = [x1 y1 x2 y2…]) and the distances are going in decreasing order (usual MFP order).

NumPoints is the number of points you want to resample at to do the averaging.

x will be the column vector of the distances corresponding to the points in Favg and Fstd.

Favg is the column vector of the average force (i.e. sample mean)

Fstd is the column vector of the standard deviation of the data at each point (sample std)

Scripts for converting between force and stress:
People who used these scripts: Lin Han, Laurel Ng
1. Make sure your data is at evenly spaced samples. If it isn’t, use the function evenspc:

>> [Feven xeven] = evenspc(f, d, NumPoints);

Where f is the force, d is the distance, and NumPoints is the number of points you want to sample at (too many tends to get a lot of noise: maybe ~1 point every 1nm is usually good).
Feven will be the resample evenly spaced force data and xeven will be the evenly space distances.

2. To convert something from force to stress, use SphereStress:

>> P = SphereStress(x, f, radius);

Where x is the distances in nm, f is the force in nN, and radius is the tip radius in nm. P will be the stress in Pa.
3. To convert something from stress to force, use SphereForce:
>> f = SphereForce(x, P, radius);

Where x is the distances in nm, P is the stress in Pa, and radius is the tip radius in nm. f will be the force in nN.

Scripts for measuring heights and friction from AFM images:
People who used these scripts: Lin Han, Jae Choi, Miao Ye
1.
If you only have Height image data (i.e. you didn’t save the friction data), then load the data into Matlab and use the function AverageHeight:

 >> [AvgHeight StDevHeight Height] = AverageHeight(Datas, Positions, lines, st, en);

where Datas is the set of height image data. (Each height image has lines number of lines and is in a row one under each other).

Positions is either ‘midd’ or ‘side’. 'midd' is if your pattern is in the middle of the image (so for example, if you have polymer in the middle and some SAM outside). 'side' assumes that your pattern takes up one side of the image (so for example the polymer is on the left side and the SAM is on the right side of the image)

lines is the number of lines per image (usually 8 or 16)

st is the index at which the pattern starts

en is the index at which the pattern ends (if using 'side' position, then en doesn't matter)

AvgHeight is the average height in each image (averaging the pattern height)

StDevHeight is the standard devation of the pattern height in each image

Height is the pattern height for each individual line of each image

To get st and en, plot a couple of the lines from the images by doing:

>> plot(Datas(1,:), ‘.’);
>> hold on

>> plot(Datas(2,:), ‘g.’);

>> plot(Datas(3,:), ‘k.’);
look at around what x value on the plot the pattern changes to get st and en.
2.
If you have Height and Friction image data, then load the data into Matlab and use the function AverageHeightFric:

 >> [AvgHeight StDevHeight HeightFriction, StDevFric] = AverageHeightFric(Datas, Positions, lines, st, en);

where Datas is the set of data. (Each image has lines number of lines of height, then trace, then retrace friction data. All the images are rows one under each other).

Positions is either ‘midd’ or ‘side’. 'midd' is if your pattern is in the middle of the image (so for example, if you have polymer in the middle and some SAM outside). 'side' assumes that your pattern takes up one side of the image (so for example the polymer is on the left side and the SAM is on the right side of the image)

lines is the number of lines per image (usually 8 or 16)

st is the index at which the pattern starts

en is the index at which the pattern ends (if using 'side' position, then en doesn't matter)

AvgHeight is the average height in each image (averaging the pattern height)

StDevHeight is the standard devation of the pattern height in each image

Height is the pattern height for each individual line of each image

Friction is the friction for each individual line of each image (it’s 2 columns: one for the outside of the pattern and one for the friction inside the pattern)

StDevFric is the standard deviation for each individual line friction

Modeling Electrostatics
There are several electrostatic models that can run with the very general scripts provided (one script can do lots of models depending on what you pass in for parameters). For example, you can run the surface charge model in Cartesian coordinates, the volume charge (Ohshima/Donnan) model, or the unit cell model in Cylindrical coordinates all using the same script. However, please note that not all of the combinations of volume, surface charge and Cylindrical/Cartesian coordinates have been used before (i.e. tested). The scripts should be somewhat robust but if the curve looks really strange and no one can seem to find the problem, it could just be that the numerics were not set up to do that particular variant…

Calculating electrical potential between planar surfaces at a fixed separation distance:
People who used these scripts: Lin Han, Jen Vandiver
1. If you are using Cartesian coordinates (most people), then use PBsolveCart2.m:
>> phi = PBsolveCart2(s, a, Cpm, Cmm, Cpd, Cmd, rho, sigma1, sigma2, error, phiInit);
Where s is the separation distance in nm

a is the height of the volume charge density in nm (just pass in 0 if you don’t have one)

Cpm is the concentration of monovalent positively charged ions in mole/L

Cmm is the concentration of monovalent negatively charged ions in mole/L
Cpd is the concentration of divalent positively charged ions in mole/L (0 if you don’t have any)
Cmd is the concentration of divalent negatively charged ions in mole/L (0 if you don’t have any)
rho is volume charge density in C/m^3 (0 if there isn’t one)

sigma1 is the surface charge on one surface in C/m^2(if there is a volume charge this is the surface below the volume)

sigma2 is the surface charge on the other (“tip”) surface in C/m^2

error is how far you want the algorithm to converge (10^-10 works ok usually)

phiInit is the initial guess for the potential between the surfaces in V. If you don’t have a guess, pass in zeros(N, 1) where N is the number of discretizations you want (I recommend one discretization every 0.5nm or so)

phi is going to be the potential between the surfaces in V.

2. If you are using the unit cell model (Cylindrical coordinates), then use PBsolveCyl2.m. It works the same way except that s is the radius of the big cylinder and a is the radius of the small cylinder.

3. To plot the resulting potential, type plot(linspace(0, s, N), phi) where s and N are defined as above in 1.
Calculating stress between planar surfaces:
People who used these scripts: Lin Han, Jen Vandiver, Miao Ye
1. Use ForceCalc2 (ForceCalcQuick can sometimes be used for very rough calculations, and ForceCalc just assumes a monovalent salt solution)
>> P = ForceCalc2(x, Cpm, Cmm, Cpd, Cmd, a, rho, sigma1, sigma2, dx, CylorCar);

Where P is going to be the stress in Pa between the two surfaces

x is a vector of distance in nm at which you want the stress evaluated

Cpm is the concentration of monovalent positively charged ions in mole/L

Cmm is the concentration of monovalent negatively charged ions in mole/L
Cpd is the concentration of divalent positively charged ions in mole/L (0 if you don’t have any)
Cmd is the concentration of divalent negatively charged ions in mole/L (0 if you don’t have any)
a is either the height of the volume charge density for the volume model or the radius of the small cylinder in Cylindrical coordinates in nm.
rho is volume charge density in C/m^3 (0 if there isn’t one)

sigma1 is the surface charge on one surface in C/m^2(if there is a volume charge this is the surface below the volume, in Cylindrical coordinates it’s the charge on the small cylinder)

sigma2 is the surface charge on the other (“tip”) surface in C/m^2 (charge on the outer cylinder in the cylindrical coordinates)

dx is the size of the discretization in nm (I like 0.1nm or 0.5nm but you can get away with something bigger especially if your separation distances are big)

CylorCar is either ‘Cyl’ for Cylindrical coordinates or ‘Car’ for Cartesian coordinates.

Note, for better results, it’s better to have x go by increments that are multiples of dx. (so x = [100:-0.5:0.5]’; and dx = 0.1;)

To convert to Force from Stress, use SphereForce (see “Scripts for converting between force and stress” section above)
Fitting Curves with Electrostatics and Van der Waals
Fitting to get a surface charge density
People who used these scripts: Jen Vandiver, Miao Ye
1. If you are fitting so that the charge on the tip and substrates are the same, use DoFittingSurface

>> [xbest Sbest Ftotal Felec Fvdw] = DoFittingSurface(xdata, Fdata, Cpm, Cmm, Cpd, Cmd, radius, leftpt, rightpt, numpt, Ahamaker, Sinit, CylorCar);

Where:

xdata is the distances of the data in nm

Fdata is the forces of the data in nN

Cpm is the monovalent + ion concentration, Cmm is the monovalent – ion concentration, Cpd is the divalent + ion concentration, Cmd is the divalent – ion concentration (all in moles/L or M)

radius is the radius of the tip
leftpt is the left most end point of the fitting range in nm. (Usually try to use distances bigger 1-5nm as at separation distances < 1nm other forces might become more dominant compared to electrostatics.)

rightpt is the right most end point of the fitting range in nm.

numpts is the number of points you are going to be fitting. 5-10 usually works ok depending on the range over which you are going to be fitting

Ahamaker is the Hamaker constant (in J) for the van der Waals force. If you don’t want to include vdw forces in your fits just make Ahamaker=0.

Sinit is your initial guess for the surface charge density (in C/m^2).

CylorCar is ‘Car’ for Cartesian or ‘Cyl’ for Cylindrical coordinate (Note: I haven’t actually tested ‘Cyl’)

xbest is going to be the distances in nm for the models
Sbest is going to be the best-fit surface charge density in C/m^2

Ftotal is the total (electrostatics+vdw) model force in nN

Felec is the best-fit electrostatic force using Sbest in nN

Fvdw is the van der Waals force in nN

2. If you are fitting so that you are only fitting on the surface charges (you know the charge on the tip for example), use DoFittingSurface2

>> [xbest Sbest Ftotal Felec Fvdw] = DoFittingSurface2(xdata, Fdata, Cpm, Cmm, Cpd, Cmd, radius, leftpt, rightpt, numpt, Ahamaker, sigma1, Sinit, CylorCar);

Where now sigma1 is the known charge density on one of the surfaces.

Fitting to a volume charge density model
People who used these scripts: Lin Han, Miao Ye
1. To fit the volume charge density while keeping the brush height constant, use DoFittingVolCharge:

>> [xbest, rhoBest, Ftotal, Felec, Fvdw] = DoFittingVolCharge(xdata, Fdata, Cpm, Cmm, Cpd, Cmd, radius, leftpt, rightpt, numpt, Ahamaker, sigma_tip, brushH, rhoInit, CylorCart);

Where:

xdata is the distances of the data in nm

Fdata is the forces of the data in nN

Cpm is the monovalent + ion concentration, Cmm is the monovalent – ion concentration, Cpd is the divalent + ion concentration, Cmd is the divalent – ion concentration (all in moles/L or M)

radius is the radius of the tip
leftpt is the left most end point of the fitting range in nm. (Usually try to use distances bigger 1-5nm as at separation distances < 1nm other forces might become more dominant compared to electrostatics.)

rightpt is the right most end point of the fitting range in nm.

numpts is the number of points you are going to be fitting. 5-10 usually works ok depending on the range over which you are going to be fitting

Ahamaker is the Hamaker constant (in J) for the van der Waals force. If you don’t want to include vdw forces in your fits just make Ahamaker=0.

sigma_tip is the surface charge density on the tip (in C/m^2).

brushH is the height of the volume charge in nm

rhoInit is the initial guess for the volume charge density in C/m^3.

CylorCar is always ‘Car’ for Cartesian coordinates (Note: I really haven’t actually worked the ‘Cyl’ option out…)
xbest is going to be the distances in nm for the models

rhoBest is going to be the best-fit volume charge density in C/m^3

Ftotal is the total (electrostatics+vdw) model force in nN

Felec is the best-fit electrostatic force using Sbest in nN

Fvdw is the van der Waals force in nN

Note that if you know the charge density per chain of you polymer than you can convert rhoBest to a estimate of the polymer spacing on the surface by doing: PolymerSpacing = sqrt(ChargePerChain/rhoBest);
2. To fit the brush height while keeping the total brush charge constant, use DoFittingVolHeight:

>> [xbest, brushHBest, Ftotal, Felec, Fvdw] = DoFittingVolCharge(xdata, Fdata, Cpm, Cmm, Cpd, Cmd, radius, leftpt, rightpt, numpt, Ahamaker, sigma_tip, brushHInit, rho, CylorCart);

Where:

xdata is the distances of the data in nm

Fdata is the forces of the data in nN

Cpm is the monovalent + ion concentration, Cmm is the monovalent – ion concentration, Cpd is the divalent + ion concentration, Cmd is the divalent – ion concentration (all in moles/L or M)

radius is the radius of the tip
leftpt is the left most end point of the fitting range in nm. (Usually try to use distances bigger 1-5nm as at separation distances < 1nm other forces might become more dominant compared to electrostatics.)

rightpt is the right most end point of the fitting range in nm.

numpts is the number of points you are going to be fitting. 5-10 usually works ok depending on the range over which you are going to be fitting

Ahamaker is the Hamaker constant (in J) for the van der Waals force. If you don’t want to include vdw forces in your fits just make Ahamaker=0.

sigma_tip is the surface charge density on the tip (in C/m^2).

brushHInit is the initial guess for the brush height of the volume charge in nm

rho is the the volume charge density in C/m^3 (initially at a height of brushHInit. The charge in the brush remains the same during fitting rho*brushH is constant).

CylorCar is always ‘Car’ for Cartesian coordinates (Note: I really haven’t actually worked the ‘Cyl’ option out…)
xbest is going to be the distances in nm for the models

brushHBest is going to be the best-fit brush height in nm

Ftotal is the total (electrostatics+vdw) model force in nN

Felec is the best-fit electrostatic force using Sbest in nN

Fvdw is the van der Waals force in nN

3. If you need to fit both the height and the charge then alternate between these two scripts above until the model is as close to the data as you need it to be.
With Fitting Scripts Always Remember to:
1. Plot the data before running the script. Make sure your data looks ok and that you are fitting a range that is reasonable (i.e. if the data is ~0 in the range you are fitting then you won’t get any meaningful out of the fit)

2. Scroll up once the program finished running to make sure that there were no warnings or error messages.

If you see the warning: “Best fit parameter might be outside of range checked...”, that means that your initial guess was probably not close enough to the “real” value in the experiment. Try again using the current best-fit as the initial guess.
3. Plot the data and models on top of each other to make sure the fit is ok. Do:

plot(xdata, Fdata, ‘.’);

hold on;

plot(xbest, Ftotal, ‘g’);

4. if everything looks ok, save the fits:

1. first save the session. Type: save MySession; Then, next time you start Matlab and you don’t have to reload all your data from text files; you can just type: load MySession and all your variables in Matlab will come back.

2. save your fits. Write down the value of the best fit parameters. Save your best fit forces into a text file. Type:

Fits = [xbest Ftotal Felec Fvdw];

Save ‘MyFits.txt’ Fits –ascii –double;

Some useful values:
Usual tip radius for a standard unsharpened AFM probe tip ~50nm

Approximate surface charges:

COO- monolayers
-0.0178 C/m2

SO3- monolayers
-0.015 C/m2

OH monolayers
0

Approximate Hamaker constants:

COO- monolayers
6.92*10-20
(from Monica’s paper)

SO3- monolayers
5.2*10-20
(from Joonil’s paper)

(if you keep to fitting distances>5nm, the Hamaker constant won’t make too much of a difference on your fits)

very approximate Debye lengths to keep in mind:

0.0001M NaCl
30nm
0.001M NaCl

10nm

0.01M NaCl

3nm

0.1M NaCl

1nm

1M NaCl

0.3nm (most electrostatics are shielded

Electrostatic forces start ~5 Debye lengths (-1) away from the fixed charge. Therefore, if you have a surface charge then you expect that the force should start at D ~ 5-1. If you have a brush on the surface then the force will start at D ~ (brush height + 5-1).

Also, divalent ions in solution make a big difference in the amount of electrostatic force. Do not neglect them when you are using a model to fit to your data.

Since we are using the Derjaguin/SEI type approximation for the tip radius, these scripts will only work well when the tip radius is much larger than the Debye length.

PAGE
2

