Stress relaxation of a main-chain, smectic, polydomain liquid crystalline elastomer

C. Ortiz†, C. K. Ober* and E. J. Kramer‡
Cornell University, Department of Materials Science and Engineering and The Materials Science Center, Bard Hall, Ithaca, NY 14850, USA
(Received 2 October 1997; accepted 16 November 1997)

It has recently been shown that liquid crystalline elastomers (LCEs) exhibit bulk macroscopic orientation or a 'polydomain-to-monodomain' transition when stretched in uniaxial tension (see for example review articles by: Gleim, W. and Finkelmann, H., Side-Chain Liquid Crystal Polymers, ed. C. B. McArdle. Blackie and Sons Ltd., 1989, p. 287; Zentel, R., Agnew Chem. Adv. Mater., 1989, 101(10), 1437; Barclay, G. G. and Ober, C. K., Prog. Polym. Sci., 1993, 18, 899–945). In order to investigate this phenomenon further, single-step stress relaxation experiments were performed in uniaxial tension on a polydomain, smectic LCE at variable strains relative to the polydomain-to-monodomain transition. It was found that the smectic LCE exhibited a large amount of stress relaxation and could be described at intermediate times (≈7–3000 s) by a stretched exponential function with a relatively fast characteristic relaxation time (≈60 s), regardless of the magnitude of the strain. One possible origin of this phenomenon is that the local smectic LC order is transiently disrupted during initial deformation and reorientation of the LC domains. The free energy penalty for this disruption may provide a driving force for reversion back to the initial (undeformed) state of order and, correspondingly, a large amount of local chain relaxation. It was also found that the stress relaxation data were divided into two regimes. At low strains (prior to the polydomain-to-monodomain transition) the data exhibited a final relaxed modulus of $E_f = 1.8$ MPa. Samples stretched to larger strains (greater than the polydomain-to-monodomain transition) were shifted to lower values with $E_f = 0.7$ MPa. © 1998 Elsevier Science Ltd. All rights reserved.

(Keywords: liquid crystalline elastomer; stress relaxation; polydomain-to-monodomain transition)

INTRODUCTION
Recently, there has been much interest in a new class of loosely cross-linked network materials called liquid crystalline elastomers (LCEs)1. The combination of the entropic elasticity of a flexible polymer backbone with the orientational ordering of the rigid-rod, LC molecules leads to many unusual phenomena, including spontaneous shape changes at LC phase transitions2, strain-induced orientational transitions leading to new LC morphologies3, distinctive dynamic mechanical properties4 and ‘soft elasticity’5. The structure and properties of the LCE investigated in this study are reviewed extensively elsewhere6,8. To summarize, the system has a ‘main-chain’ network structure (i.e. the LC molecules are incorporated directly into the polymer backbone), smectic-type local ordering, a glass transition temperature T_g of 36°C and an LC-to-isotropic (‘clearing’) transition temperature T_c of 98°C. On a larger scale, the LCE exhibits a macroscopically disordered, polydomain, Schlieren texture (when viewed under the polarizing optical microscope) with an average LC domain size (= average distance between disclinations) of 2–3 μm.

Most experimental work to date has concentrated on ‘side-chain’ LCEs in which the LC molecules are attached to the polymer backbone via a flexible spacer group. One of the most remarkable characteristics of LCEs is the ability to undergo a polydomain-to-monodomain transition; i.e. stress-induced macroscopic orientation of the directors within the LC domains to form a ‘liquid single crystal elastomer’. This phenomenon is a well-known universal characteristic of both main-chain and side-chain, nematic and smectic LCEs6,22, regardless of chemical structure. An LCE deformed in uniaxial tension exhibits a nominal stress versus nominal strain curve with three regimes and a unique relationship between orientation parameter, S, and nominal stress$^{8,13–15,25}$. The nature of each of these three regions is described in more detail in Figure 1. There is much speculation on exactly how the polydomain-to-monodomain transition takes place$^{26–30}$. When deformed in tension, the LC domains elongate and rotate their local director orientations along the tensile axis5. For a main-chain, smectic LCE, the orientation and strain are permanently ‘frozen in’ upon the removal of stress by the oriented layered structure8, suggesting minimal chain relaxation. The purpose of this research is to investigate this phenomenon further through single-step stress relaxation tests at various strains relative to the polydomain-to-monodomain transition in a main-chain, smectic LCE. We feel that these experiments will provide a more concrete basis for theoretical comparison and also give clues as to the driving forces behind the polydomain-to-monodomain transition.

EXPERIMENTAL
Materials
The liquid crystalline epoxy monomer used in this study, the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene
Stress relaxation of a liquid crystalline elastomer: C. Ortiz et al.

(DGDHMS), was synthesized and characterized as described previously. The monomer was mechanically mixed with decanediol (sebacic acid, 98% purity, Aldrich Chemical Co.) in a molar ratio of 1:1. The finely ground mixture was placed in a glass mould which had been previously coated in a 3 mM solution of octadecyltrichlorosilane in 80%/20% hexadecane/carbon tetrachloride to provide a non-reactive, non-stick coating and then cured in the isotropic phase of the mixture at 180°C for 1.5 h. Characterization of the networks was described elsewhere and was achieved using Fourier transform infrared spectroscopy (Galaxy Series 2020 FTIR), nuclear magnetic resonance (Varian XL-200 MHz NMR), wide-angle X-ray diffraction (WAXD, Scintag generator), differential scanning calorimetry (Perkin-Elmer DSC-7) and polarizing optical microscopy (POM, Nikon Optiphot-2).

For comparison, experiments were also performed on cross-linked polypolyisoprene samples prepared in the following manner. Polypolyisoprene (84 wt%), sulfur (3.9 wt%), ‘Altax’ accelerator (3.9 wt%) and ‘Age-Rite’ (inhibits high-temperature degradation, 7.7 wt%) were masticated and cured at 175°C under pressure for 15 min. The glass transition temperature of the network was approximately −60°C.

Region I: At small strains, the polydomain elastomer deforms linear elastically with a typical rubber modulus, corresponding to a small nonlinear increase in the orientation of the material with nominal stress.

Region II: At intermediate strain, a polydomain-to-monodomains transition takes place where the sample is converted from turbid to optically transparent or translucent. During this time, the LC domains elongate and the local director orientations rotate along the strains axis. The transparency of the sample indicates that thermal fluctuations of director are suppressed strongly by coupling to the network. The phase transition leads to a plateau in the stress versus strain curve and corresponds to a dramatic increase in S at a critical threshold stress, \(\sigma_{\text{threshold}} \). The drop in apparent elastic modulus has been attributed to inhomogeneous deformation.

Region III: At large strains, the apparent modulus increases again (although to a different value) and only a small amount of additional orientation is achieved.

Mechanical experiments

Uniaxial tension experiments were performed on 0.1 in \(\times \) 0.04 in \(\times \) 0.4 in samples using an Instron (Model 1125) mechanical testing machine equipped with a CCF A20 lb load cell at a displacement rate 0.2 in min\(^{-1}\). Temperature control was achieved with an environmental chamber and temperature controller (Applied Test Systems MTF 310). The DGDHMS/SA elastomer was tested at \(T = 55°C \) (i.e. within the smectic phase) and the polypolyisoprene rubber was tested at room temperature. Force, \(f \), versus displacement, \(\delta \), data were taken and converted into nominal stress, \(\sigma_{\text{n}} \), versus nominal strain, \(\varepsilon_{\text{n}} \). For the smectic LCE (Figure 2a), three regimes were observed due to a polydomain-to-monodomains transition as described in the Introduction. The polypolyisoprene rubber exhibited large-strain, non-linear, elastic behaviour typical of an isotropic, amorphous elastomer (Figure 2b). The large increase in stress which occurs at high extensions is due to the finite extensibility of the network strands and macroscopic orientation of the network. The tensile rubber modulus, \(E_R \), obtained was used to estimate the degree of cross-linking with reasonable accuracy using equation (1) from classical rubber elasticity theory:

\[
< M_x > = \frac{3\rho RT}{E_R}
\]

where \(< M_x > \) is the average molecular weight between cross-links, \(\rho \) is the density of the network, \(T \) is the absolute temperature (K) and \(R \) is the universal gas constant. For the polypolyisoprene rubber the modulus was found to be \(E_R = 1.5 \) MPa, giving a value of \(< M_x > \approx 7700 \) g mol\(^{-1}\).

For the DGDHMS/SA elastomer (within the isotropic phase, \(T = 105°C \)), the modulus was found to be \(E_R \approx 0.5 \) MPa, giving a value of \(< M_x > \approx 22900 \) g mol\(^{-1}\) (≈ 50 monomers).

Stress relaxation experiments were performed in uniaxial tension with the same experimental apparatus described above for the uniaxial tension tests. The samples were extended up to the appropriate amount of initial strain, \(\varepsilon_0 \), the cross-head movement stopped to maintain the strain constant, and the force decay measured as a function of time, \(t \). The force was subsequently converted into nominal stress. The experiments on the DGDHMS/SA elastomer were conducted at \(T = 55°C \) (i.e. within the smectic phase) and the polypolyisoprene rubber was tested at room temperature. The smectic LCT was extended up to \(\varepsilon_0 = 0.15, 0.45, 1.16, \) and 2.61 and the polypolyisoprene rubber was extended up to \(\varepsilon_0 = 1.75 \) (shown schematically in Figure 2).
Data analysis

The stress relaxation curves were fitted to a single stretched exponential function as described by a modification of the Kohlrausch–Williams–Watt (KWW) equation:

$$\sigma_n(t) = \sigma_\text{max} - \sigma_\text{min} \exp(-t/\tau)^\beta + \sigma_\text{min}$$ (2)

where t is the experimental time, σ_max is the instantaneous (unrelaxed) nominal stress at $t = 0$, σ_min is the long-time (relaxed) stress at $t = \infty$, and τ is the characteristic relaxation time. The value of the parameter β in equation (2) is a measure of the narrowness of the distribution and is approximately 0.5 for flexible, isotropic polymers. The KWW equation is successful in describing a wide variety of relaxation phenomena in polymeric and non-polymeric solids including dielectric relaxation, hypersonic relaxation, and dynamic bulk relaxation. Other distribution functions such as a two-component cumulative log-normal distribution have been employed to describe more thermorheologically complex materials.

The time-dependent relaxation modulus, E_R, and corresponding form of the KWW equation are given as follows:

$$E_R(t) = E_\text{iso} - E_\text{el} \exp(-t/\tau)^\beta + E_\text{el}$$ (4)

where $E_\text{iso} = E_R(t = 0)$ is the instantaneous (unrelaxed) modulus, $E_\text{el} = E_R(t = t_f) \approx E_R(t = \infty)$ is the long-time (relaxed) modulus, and t_f is the final time recorded in the stress relaxation experiment. If $E_R(t)$ is independent of the magnitude of the strain, e_a, the material is defined as linear viscoelastic (LVE), typically true for strains, $e_\text{a} < 1\%$. For larger strains in the non-LVE regime, it has been shown that in many cases the stress relaxation curves can be shifted by horizontal time shifts to produce a master curve which predicts the relaxation behaviour at long times, analogous to time–temperature-superposition. The relaxation strength, Δ, can be defined according to equation (5):

$$\Delta = (E_\text{iso} - E_\text{el})/E_\text{el}$$ (5)

In order to estimate β and τ from the experimental data, equation (4) was rearranged to obtain equation (6):

$$\ln \left(\frac{1}{1/R(t)} \right) = \beta \ln(t/\tau)$$ (6)

where $R(t)$ is the ‘relaxation function’ which is equal to $(E(t) - E_\text{el})/(E_\text{iso} - E_\text{el})$. The data are more convenient to analyse in this form since a plot of the left-hand side of equation (6) versus the ln(t) is linear with a slope $= \beta$ and a y-intercept of $-\beta \ln \tau$.

RESULTS AND DISCUSSION

Polysisoprene

The viscoelastic phenomenon of stress relaxation has been well-documented for many years in elastomers, amorphous, glassy polymers, polymer fibres, and non-polymeric glass-forming liquids. The stress relaxation process observed in these experiments is primarily due to conformational changes: the uncoiling/desentangling of polymer chains between network junctions in order that they may obtain a lowered free energy state. This rearrangement involves cooperative motions between neighbouring segments and secondary dipole–dipole and van der Waals interactions between polymer chains, as well as the rotation of carbon–carbon, covalent backbone bonds. Figure 4 plots the stress relaxation curve, $\sigma_n(t)$, for the polysisoprene rubber at short (400 s) and long (6000 s) times. The strength of the relaxation was found to be rather small, $\Delta = 0.19$, and the final relaxation modulus was found to be $E_\text{el} = 1.3$ MPa. It has been shown that a much larger decay of stress occurs at elevated temperatures ($=150^\circ$C) for natural and synthetic rubbers and longer times (2–100 h) due to chemical degradation (i.e. chain scission of carbon–carbon covalent bonds).

Figure 4 is replotted as $\ln[1/R(t)]$ versus ln(t) in Figure 5. At intermediate times ($=7–2900$ s), the data

Figure 3 Possible molecular mechanisms for stress relaxation in non-LC, amorphous, isotropic elastomers: (a) equilibrium random coil configuration of a single network strand ($\sigma = 0$); (b) rearrangement (uncoiling) of polymer chains ($\sigma > 0$) at short times; (c) chain scission of covalent bonds at long times and elevated temperatures

Figure 4 Stress relaxation curves of nominal stress versus time for polysisoprene rubber (a) on loading and at short times and (b) at long times (the time is normalized by setting $t = 0$ when the cross-head was stopped, corresponding to σ_{max})
could be fitted well to the stretched exponential function with a characteristic relaxation time of \(\tau \approx 415 \) s and \(\beta \approx 0.42 \). At short and long times, the data deviate rapidly and non-linearly from the empirical fit, being overestimated at short times and underestimated at long times.

Smectic LCE

Figures 6 and 7 are examples of typical stress relaxation curves, \(\sigma(t) \), for the DGDHMS/SA smectic LCE at short (200 s) and long (3000 s) times before (\(\varepsilon_0 = 0.45 \)) and after (\(\varepsilon_0 = 2.61 \)) the polydomain-to-monodomian transition. All of the curves appeared to reach a steady stress value by the end of the experiment. Figure 8 compares the time-dependent relaxation moduli of the DGDHMS/SA smectic LCE samples stretched to different initial strains: \(\varepsilon_0 = 0.15, 0.45, 1.16, \) and \(2.61 \). From these plots, it is immediately observed that the strength of relaxation, \(\Delta \approx 2.33 \), is much larger than that of the polyisoprene rubber, \(\Delta \approx 0.19 \), and also approximately constant for all strains. The data corresponding to initial strains prior to the polydomain-to-monodomian transition superimpose with a final relaxation modulus of \(E_1 = 1.8 \) MPa. The curves after the transition also nearly superimpose, but to a lower value of \(E_1 = 0.7 \) MPa. This result indicates that the relaxation behaviour is affected by the degree of macroscopic orientation and is clearly different for the polydomain and monodomian structures.

Figures 6 and 7 are replotted as \(\ln[\ln(1/R(t))] \) versus \(\ln(t) \) as Figures 9 and 10 respectively. The same general trend is observed as seen for the polyisoprene rubber, i.e. non-linear deviations from the stretched exponential function at short and long times. No significant differences in the empirical fit for \(\beta (\approx 0.40) \) and \(\tau (\approx 79 \) s) were observed for the samples stretched to different strains.

Figure 6 Stress relaxation curves of nominal stress versus time for the DGDHMS/SA smectic LCE before the polydomain-to-monodomian transition (a) on loading and at short times and (b) at long times (the time is normalized by setting \(t = 0 \) when the cross-head was stopped, corresponding to \(\sigma_{max} \)).

Figure 7 Stress relaxation curves of nominal stress versus time for the DGDHMS/SA smectic LCE after the polydomain-to-monodomian transition (a) on loading and at short times and (b) at long times (the time is normalized by setting \(t = 0 \) when the cross-head was stopped, corresponding to \(\sigma_{max} \)).
network strands. It is also possible that the locally ordered, smectic LC structure facilitates local chain relaxation and may contribute to the stress plateau in the nominal stress versus nominal strain curve. During deformation and reorientation of the LC domains, the smectic layers may contract and become disordered (for domains unfavourably oriented) or expand and become more ordered (for domains favourably oriented). The free energy penalty for this disruption may provide a driving force for reversion back to the original (undeformed) smectic structure at the new increased value of macroscopic orientation.

CONCLUSIONS

Single-step stress relaxation experiments were performed in uniaxial tension on an epoxide-based, main-chain, smectic LCE at variable strains relative to the polydomain-to-monodomain transition and fitted to a stretched exponential function. It was found that this material exhibited a large amount of stress relaxation: approximately an order of magnitude greater than amorphous, isotropic polyisoprene rubber. The relaxation moduli of the smectic LCE could be described by a stretched exponential function with a single, relatively fast characteristic relaxation time ($\tau \approx 60 \text{ s}$), regardless of the magnitude of the strain. One possible origin of this phenomenon is that the local smectic LC order is transiently disrupted during deformation and reorientation of the LC domains. The free energy penalty for this disruption may provide a driving force for reversion back to the original, undeformed state of order, and hence facilitate local chain relaxation. Even though τ and β were found to be approximately the same for all strains, the data were observed to be separated into two regimes. The samples stretched to low strains (prior to the polydomain-to-monodomain transition) were shifted to higher values compared to the samples stretched to larger strains (greater than the polydomain-to-monodomain transition). This division of the data suggests that the stress relaxation behaviour was influenced by the degree of macroscopic orientation.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the following people who assisted in polymer synthesis: Jia Shiu-Lin, Audrey Robinson, Drs Yukov Freidzon, Allen Gabor, Scott Clingman, Guo Ping Mao, Hilmar Koerner, and Michael Wagner. For technical consultation we would also like to thank Dr Hilmar Koerner, Atsushi Shiota and Maura Weathers (X-ray diffraction experiments and analysis), Margaret Rich (optical microscopy), Dr Jan Genzer (image analysis), John Hunt (SEM) and George Chevallier (mechanical testing). For many helpful discussions, we are
grateful to Drs Mark Warner and Eugene Terentjev. This research was sponsored by the National Consortium for Graduate Degrees for Minorities in Science and Engineering (GEM, Inc.), The Department of Education and the National Science Foundation.

REFERENCES

34. Patterson, G. D., Macromolecules, 1981, 14, 84.

