Nonlinear Algebraic Equations Example

Continuous Stirred Tank Reactor (CSTR).

_ook for steady state concentrations & temperature.

n: N, spieces with concentrations ¢,

ities cln) (in
neat capacitiesc,;’ and temperature T

nside: N, reactions with stoichiometric coefficients g, ,

and reaction constantsr, .
Out: N spieces with concentrations ¢,

(c-s may be equal to zero),
heat capacitiesc; and temperature T.
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Nonlinear Algebraic Equations Example

(FIV)E"™ —cH+ Z il i =1,2,...,N,
Massbdmceforspiec&slz N,

(F/V)Z@“r‘)c@”’ﬂ'”’ cC, TH- ZAH

Energy baance
Column of unknownvarigbles:x =[c;,C,,...,Cy_, TI'
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Nonlinear Algebraic Equations Example

Each of the above equations may be written in the general form:

Fi (X1, X5, X)) =0: In vector form:
f(x)=0
f.(X;, X0y X)) =0 d,(x) O
f,(X Xy, Xy) =0 X) o
0= £
fo (X, Xy, Xy ) =0 aN(X)E

[
Let X be the solution staisfying f(x)=0.

l
We do not know x and take x'® asinitial guess.
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Nonlinear Algebraic Equations

We need to form a sequence of estimates to the solution:
[l
xH, x4 x| that will hopehully convergeto x.

L]
Thus wewant: lim x!™ = x

m — oo

[

lim|lx-x"|=0

m- oo

Unlike with linear equations, we can't say much about
existence or unigqueness of solutions, even for
a single equation.
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Single Nonlinear Equation

[
We assume f(x) isinfinitely differentiable at the solution x.

[
Then f(x) may be Taylor expanded around X :

f () :f(>D<) +(X —§<)f'(x) +%(x —Dx)zf"(x) +%(x D—x)?’f (X) +..

0
Assume x being closeto x so that the series may be truncated:

[
f(x!) = (x =x)f (x), or

f X[O]
X[1] :X[O]_ ( ) —_

f(d%) = (X =X (%) £ o)
X

— Newton’s method
Example: f (x) =(x —=3)(x —2)(x -1) =x® —6x° +l1x —6
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Single Nonlinear Equation

Plot of fix) =%° - 6% + 11 % -6

0.5 1 15 2 a5 = a5 4
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Single Nonlinear Equation

Convergence of ﬁ[:x:]l::x:3 _6 %2+ 11 %- 6 and "Newton step" -f(:x:]lff'(:x:)
5 I I I I I I I

Solution

) I I I I
0 0.5 1 1.5 2 2.5 3 2.5 4

Initial guess
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Single Nonlinear Equation

For f(x)=(x-3)(x-2)(x-1)=x3-6x%+11x+6=0, we se that
Newton’s method converges to the root at x=2 only if
1.6<xl0<2.4.

We may look at the direction of the first step and see
why: x- x[0l=-f(x[01)/ f(x[O).

So, we have 2 “easy” roots: x=1, x=3 and a more
difficult one.

We may “factorize out” the roots we already know.
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Single Nonlinear Equation

_ f)
Introduce g(x) = (x=3)(x 1)
o F) f) 01 10
9= (x=3)(x-1) (x-3(x -1 x -3 +(X 5

We now use Newton's method to find the roots of g(x):

X[i+1] :X[i] _@ N gd X =2
g(x)
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Systems of Nonlinear Equations

Let’s extend the method to multiple equations:
1(X1’X21 . Xn)=0
fo(X1: X0, X, X)=0  =>  f(x)=0
..... Start from initial guess xI°]
(X1, X5,X, ..., Xy )=0

0 0
As before expand each equation at the solution x with f(x)=0'

N f. () L1 0 2f (x)

MMﬂ&H;a—- o Z;u

Assume x¥ is doseto X and discard quadratic terms:

f.(x)= Z(x - X;

(x —x ) +...

af (x)
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Systems of Nonlinear Equations

[
Let’s define the Jacobian matrix J(x) with the elements:

3,00 =5

J
Then our approximate expansion may be written as:

00 = 3 3,000, ~x) = B0

This gives us the linear system:

£ (%) = J(X)(X = X)
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Systems of Nonlinear Equations

. . . . [] O O []
) = 0¢H 0 =) = 00 (x -0
Note, Jacobian is evaluated at the position of
an old iteration, not at an unknown solution
Defining Ax!" = x!"" —xI' we rewrite the equation as
JxXMAx! = —f (x'"Y  or just  F'Ax! = 1
The iterations are continued untill some convergence

criteria are met:

relative error Hf il H <9,

]

absolute error [[f!"] < g,
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Systems of Nonlinear Equations

Newton’s method does not always converge. If it does,
can we estimate the error?

Let our function f(x) be continuously differentiable in the
vicinity of x and the vector connecting x and x +p all lies
Inside this vicinity.

X+Sp X+p

of
J(X " Sp) - GXT y
X+sp
X

f(x+p) =1(x) +}J(X +sp) pds

— use path integral along the line x - x+p, parametrized by s.
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Systems of Nonlinear Equations

Add and subtract J(x)p to RHS:

Fx+p) =1(x) +Jx)p +I[J(X +sp) —J(x)] pds

~—

In Newton’'s method we ignore the integral term and
choose p to estimate f(x+p). Thusthe eror in thiscasels:

I[J(X +5p) —J(x)] pds =f (x +p)

What is the upper bound on this error?
f(x) and J(x) are continuous:
| 3(x+sp)-J(x)| - 0 as p — Ofor al 0<s<1.
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Systems of Nonlinear Equations

The norm of the matrix is defined as: |A| = max Hm"”

soforany y ||A|=%—=", or |Ay|<|Al]y|. therefore

I[J(x +sp)—J(x)] pds!

< I[J(X +p) -J(X)]d%|HPH

The error goes down at least as fast as ||p| because for

a continuous Jacobian || J(x+sp)-J(x)| - 0 as p - O.
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Systems of Nonlinear Equations

If we suggest that there exist some L>0 such that

Iw)-32)| < L]y -7
or there is some upper bound on the "stretching" effect of J.

0] =30 450 -39 ]pas =130 ) 2] e

and }[J(x +5p) —J(x)]ds{ <L|d||p|, soin this case
If (x+sp)] = | [[Ix +sp) =3(x)] pas| <(L[s][Ip])
<(LIs)lel* =ofJel’)

November 2001 10.001 Introduction to Computer
Methods



Systems of Nonlinear Equations

Thus if we are at distance p from the solution, our error
scales as ||p]|?.

What about convergence? How the error scales with
the number of iterations?

The answer Is:
2

. _ L]
XU —x X —x

l

=0 a
avery fast one! Works when you are close enough to
the solution.

%- local quadratic convergence,
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Systems of Nonlinear Equations

[]

x —x
Ly 0
XU —x
L0
XU+ —x
-
X3 —x

~

0.1=10"

~0.01=10"

~0.00001=10"

~0.000000001=10""

Works If we are close enough to an isolated

[]
(non-singular) solution: det %(X)Ei 0.
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Systems of Nonlinear Equations, Example

L et’s examine how Newton’s method
worksfor asmplesystem:
f,=3x,”+4x,°-145=0 0 [3
2 3 X =
f,=4x,"—x,"+28=0 %4
The Jacobianis:

o, o

g2 X 0%, o %Xf 8x, L
ﬁ &; :BX1 _BXZZf
DX, 0X, E
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Systems of Nonlinear Equations, Example

At each step we havethefollowing system
tosolve:

- (x['])
%Hr(( o

f[i]:% ¥ 4 afy

%(Xl[ll) ( [.]) +28 F

Fi Al = ¢ i) W[+ = D] 4 Ay ]
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Systems of Nonlinear Equations, Example

L et us examine performance of
Newton’'s method with the convergence

fz} < Jabs

criterion f | = max{lf,
5, =107
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Newton's Method

Newton’s method works well close to the solution,
but otherwise takes large erratic steps, shows poor
performance and reliability.

Let’stry to avoid such large steps: employ reduced
step Newton’ s algorithm.

“Full” Newton's step gives xl+H=xlil+pll, We'll use
only fraction of of the step: xl+H=xl1+A; pl'l, O<A.<1.
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Newton's Method

How do we choose A; ?

Simplest way - weak line search:

- start with A, =2 for m=0,1,2,...

Aswe reduce the value of A; bya afactor of 2 at
each step, we accept the first one that satisfies a

descent criterion: Hf (X[i] _I_Aip[i]m < Hf (X[i]X‘

It can be proven that if the Jacobian is not singular,
the correct solution will be found by the reduced
step Newton’ s algorithm.
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