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Nonlinear Algebraic Equations Example
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Continuous Stirred Tank Reactor (CSTR).

Look for steady state concentrations & temperature.

: N  spieces with concentrations c ,  

heat capacities c  and temperature T  

: N  reactions
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 with stoichiometric coefficients  

and reaction constants r .

: N  spieces with concentrations c  

(c-s may be equal to zero),

heat capacities c  and temperature T.
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Column of unknown variables :x [c ,c ,...,c ,T]
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i 1 2 N

1 1 2 N

2 1 2 N

N 1 2 N

Each of the above equations may be written in the general form:

f (x , x ,..., x ) 0 :

f (x , x ,..., x ) 0

f (x , x ,..., x ) 0

...

f (x , x ,..., x ) 0

Let x be the solution staisfying f(x)=0.

We do not know x  and
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[0] take x  as initial guess.
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In vector form:

f(x)=0

f (x)

f (x)
f(x)=

...

f (x)
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[1] [2] [3]

[m]

m

[m]

m

We need to form a sequence of estimates to the solution:

x , x , x ,... that will hopehully converge to x .

Thus we want: lim x x

lim x x 0

Unlike with linear equations, we can’t say much 
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about

existence or uniqueness of solutions, even for

a single equation.
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’ 2 ’’ 3 ’’’

[0]

We assume f(x) is infinitely differentiable at the solution x .

Then f(x) may be Taylor expanded around x :

1 1
f (x) f (x) (x x)f (x) (x x) f (x) (x x) f (x) ...

2 3!

Assume x  being close to x  so t
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[0] [0] ’ [0]

[0]
[0] [0] [1] ’ [0] [1] [0]

’ [0]

3 2

hat the series may be truncated:

f (x ) (x x)f (x ), or

f (x )
f (x ) (x x )f (x ) x x

f (x )

Newton ’s method

Example : f (x) (x 3)(x 2)(x 1) x 6x 11x 6
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For f(x)=(x-3)(x-2)(x-1)=x3-6x2+11x+6=0, we se that
Newton’s method converges to the root at x=2 only if
1.6<x[0]<2.4.

We may look at the direction of the first step and see
why: x[1]- x[0]=-f(x[0])/ f’(x[0]).

So, we have 2 “easy” roots: x=1, x=3 and a more
difficult one.

We may “factorize out” the roots we already know.
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’
’

[i+1] [i]
’

f (x)
Introduce g(x)

(x 3)(x 1)

f (x) f (x) 1 1
g (x)

(x 3)(x 1) (x 3)(x 1) (x 3) (x 1)

We now use Newton’s method to find the roots of g(x):

g(x)
x x get x 2.

g (x)

=
− −

 
= − + − − − − − − 

= − → =
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Let’s extend the method to multiple equations:
f1(x1,x2,x,…,xN)=0
f2(x1,x2,x,…,xN)=0 => f(x)=0

….. Start from initial guess x[0]

fN(x1,x2,x,…,xN)=0

2N N N
i i

j j ki i j j k
j 1 j 1 k 1j j k

[0]

As before expand each equation at the solution x  with f( x )=0:

f (x) 1 f (x)
f (x) f (x) (x x ) (x x ) (x x ) ...

x 2 x x

Assume x  is close to x  and discard quadratic terms

∧ ∧
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∂ ∂ ∂∑ ∑∑
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f (x)
f (x) (x x )

x
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ij
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N

ji ij j
j 1 i

Let ’s define the Jacobian matrix J( x ) with the elements:

f (x)
J (x)

x

Then our approximate expansion may be written as:

f (x) J (x)(x x ) J(x)(x x)

This gives us the linear system

∧

∧
∧

∧ ∧ ∧ ∧

=

∂=
∂

 ≈ − = −  ∑
:

f (x) J(x)(x x)
∧ ∧

≈ −
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[i] [i] [i] [i 1]

i

[i] [i 1] [i]

[i]

f (x ) J(x )(x x ) J(x)(x x)

Note,  Jacobian is evaluated at the position of 

an old iteration, not at an unknown solution

Defining x x x ,  we rewrite the equation as 

J(x )

∧ ∧
+

+

 = − = −  

∆ = −
∆ [i] [i] [i] [i] [i]

[i] [0]
rel

[i]
abs

x f (x ) or just J x f

The iterations are continued untill some convergence 

criteria are met:

relative error f f

absolute error f

δ

δ

= − ∆ = −

≤

≤
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Newton’s method does not always converge. If it does,
can we estimate the error?

Let our function f(x) be continuously differentiable in the
vicinity of x and the vector connecting x and x +p all lies
inside this vicinity.

x

x+px+sp
T

x sp

1

0

f
J(x sp)

x

f (x p) f (x) J(x sp) pds

 use path integral along the line x - x+p, parametrized by s.

+

∂+ =
∂

+ = + +
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[ ]

[ ]

1

0

1

0

Add and subtract J(x)p to RHS:

f (x p) f (x) J(x) p J(x sp) J(x) p ds

In Newton’s method we ignore the integral term and 

choose p to estimate f(x+p). Thus the error in this case is:

J(x sp) J(x) p ds f (x

+ = + + + −

+ − = +

∫

∫ p)

What is the upper bound on this error?

f(x) and J(x) are continuous:

J(x+sp)-J(x) 0 as p 0 for all 0 s 1.→ → ≤ ≤
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[ ] [ ]

v 0

1 1

0 0

Av
The norm of the matrix is defined as: A max ,

v

Ay
so for any  y  A ,   or  Ay A y , therefore

y

J(x sp) J(x) pds J(x sp) J(x) ds p

The error goes down at least as fast as p  because for 

a continuous Jaco

≠
=

≥ ≤

+ − ≤ + −∫ ∫

bian  J(x+sp)-J(x) 0 as p 0.→ →
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[ ] [ ]

[ ]

1 1

0 0

1

0

If  we suggest that there exist some L>0 such that 

J(y)-J(z) L y z

or there is some upper bound on the "stretching" effect of J.

f (x sp) J(x sp) J(x) pds J(x sp) J(x) ds p

and J(x sp) J(x) ds L s p , so in t

≤ −

+ = + − ≤ + −

+ − ≤

∫ ∫

∫

[ ] ( )

( ) ( )

1

0

2 2

his case

f (x sp) J(x sp) J(x) pds L s p p

L s p O p

+ = + − ≤

≤ =

∫
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Thus if we are at distance p from the solution, our error
scales as ||p||2.

What about convergence? How the error scales with
the number of iterations?

The answer is:

2
[i 1] [i]x x O x x -  local quadratic convergence,

a very fast one! Works when you are close enough to 

the solution.

∧ ∧
+  
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[i] 1

[i 1] 2

[i 2] 4

[i 3] 8

x x 0.1 10

x x 0.01 10

x x 0.00001 10

x x 0.000000001 10

Works if we are close enough to an isolated 

(non-singular) solution: det J( x ) 0.
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f
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:isJacobian  The

4

3
x

028xx4f

0145x4x3f

:system simple afor  works

 method sNewton’ how examine sLet’
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28xx4
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:solve to

 system following  thehave  westepeach At 
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Newton’s Method

Newton’s method works well close to the solution,
but otherwise takes large erratic steps, shows poor
performance and reliability.

Let’s try to avoid such large steps: employ reduced
step Newton’s algorithm.

“Full” Newton’s step gives x[i+1]=x[i]+p[i]. We’ll use
only fraction of of the step: x[i+1]=x[i]+λi p[i], 0<λi<1.
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How do we choose λi ?
Simplest way - weak line search:
- start with λi =2-m for m=0,1,2,…
As we reduce the value of λi bya a factor of 2 at
each step, we accept the first one that satisfies a
descent criterion: ( ) ( )]i[]i[

i
]i[ xfpxf <+λ

It can be proven that if the Jacobian is not singular,
the correct solution will be found by the reduced
step Newton’s algorithm.


