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1 Introduction

This lecture as well as the following one on Tuesday will address certain mathematical and com-
putational issues related to the solution of a system of linear equations. We will �rst review the
mathematical aspects of the problem which form the basis of linear algebra. The mathematical
concepts will then be utilized to understand algorithms which will enable us to solve systems of
linear equations, a problem which is central to the subject of numerical analysis.

2 What are linear equations?

A linear equation can be mathematically represented as

c1x1 + c2x2 + � � �+ cnxn = b; (1)

where x1; x2; � � � ; xn are the n unknowns in the equation. The numbers (constants) c1; c2; � � � ; cn
are the coe�cients of the unknowns. Eq. 1 represents a condition to be satis�ed by the n
unknowns. It is called a linear equation because it contains only the �rst powers of the unknowns
(i.e., no term such as x2

1
or xpi where p 6= 1 appears in Eq. 1).

Examples of linear equations: 10x = 5; 7x+4y = 17, x+ y=23:486� 11:786z = 4:579 etc.

3 System of linear equations

In general, a system of m linear equations in n unknowns may be written as follows.

a11x1 + a12x2 + � � �+ a1nxn = b1
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a21x1 + a22x2 + � � �+ a2nxn = b2

� � � � � � � � � � � � = � � �

am1x1 + am2x2 + � � �+ amnxn = bm: (2)

Evidently, the representation of a large system of equations in the form used in Eq. 2 is cum-
bersome and unwieldy. Hence, we would like to express these equations compactly. The most
natural way to do this is to use matrices and vectors. We will �rst go through the basic concepts
of matrices and vectors and come back to Eq. 2 later.

4 Vectors: Preliminaries

We are familiar with vector quantities, we deal with them all the time, such as forces, velocities
and displacements. We are also familiar with their geometric representation in an orthogonal
Cartesian coordinate system in 1, 2, or 3-dimensional space as arrows. For instance, when
we represent a force vector F in this fashion, the length of the arrow is proportional to the
magnitude of the force and its direction represents the direction in which the force is applied1.
We can �nd the projection of a 2-dimensional vector F onto the mutually orthogonal x and y
axes of a Cartesian coordinate system, say Fx and Fy respectively and write:

F = Fxex + Fyey; (3)

where ex and ey are the unit vectors, i.e., vectors of unit length along the x and y axes re-
spectively. So, if we keep in mind that our basis is the coordinate system represented by the
x� y plane, then with repect to that basis, the vector F is simply a collection of two numbers,
(Fx; Fy).

We would like to extend these familiar ideas to n dimensions (where n is �nite) so that we
could bring under our formulation the problems related to systems of linear equations. We hence
consider any ntuple, such as (x1; x2; :::; xn), as an n-dimensional vector, say x. Physically, such
an ntuple could represent the mole fractions of various components in a petrochemical feed, the
current passing through di�erent parts of an electrical network, or the temperature at di�erent
radial locations of a tubular 
ow reactor etc. We represent the vector x algebraically as a single
column consisting of the n numbers (elements) (x1; x2; :::; xn) as

x =

0
BBBB@

x1
x2
...
xn

1
CCCCA : (4)

1
We use bold face to denote vectors and matrices.

2



Similarly, we use the notation xT to denote the transpose of the column vector x de�ned by
Eq. 4. xT is simply given by the row vector

xT = (x1 x2 � � � xn) : (5)

We also introduce the compact notation x = fxig to denote a vector where the curly brackets
are intended to remind us that we are dealing with an n dimensional vector with components
xi, i = 1; � � � ; n. We now proceed to de�ne certain vector operations.

4.1 Vector Operations

1. Addition: If x = fxig and y = fyig are two n dimensional vectors, then their addition
results in another n dimensional vector, say z where z = fxi + yig.
2. Multiplication by a scalar: If x = fxig and � a scalar then �x = f�xig.

In addition to the 2 operations listed above, I would like to introduce the concept of
the dot product of two n dimensional vectors, say x and y. The dot product, denoted by x:y
(pronounced x dot y), results in a scalar (a real number in the case of real vectors), according
to the equation:

x:y =
nX
i=1

xiyi (6)

The dot product has a geometric meaning, as the length of x times projection of vector y onto
vector x. Hence, the dot product of two orthogonal (i.e., mutually perpendicular) vectors is 0.
Also notice that x:x is equal to the square of the length of x.

We should also be familiar with the algebraic representation of a unit vector, i.e., a vector
of unit length. We use the symbol ei to denote the unit vector in the ith direction, and this
vector consists of 0 for all its components except for the ith one which is unity. For instance,
e1 = (1; 0; 0; � � � ; 0)T and e2 = (0; 1; 0; � � � ; 0)T etc. It is now evident that any vector x can be
expressed as

x =

0
BBBB@

x1
x2
...
xn

1
CCCCA = x1

0
BBBB@

1
0
...
0

1
CCCCA+ x2

0
BBBB@

0
1
...
0

1
CCCCA+ � � �+ xn

0
BBBB@

0
0
...
1

1
CCCCA : (7)

Eq. 7 expresses an arbitrary n-dimensional vector x as a linear combination of the n unit
vectors. This is possible because the set of n unit vectors form a linearly independent set of
vectors, i.e., none of the n unit vectors in Eq. 7 can be expressed as a linear combination of any
one of the remaining n� 1 unit vectors. In general, we have the following de�nition:
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De�nition (Linear Independence): We say that the k vectors x1, x2 ...xk are linearly
independent (LI) if the condition �1x

1+�2x
2+ � � �+�kx

k = 0 implies �1 = �2 = � � � = �k = 0.

Examples:
1. x1 = (1; 2; 4) and x2 = (2; 5; 3) are LI because to satisfy �1x

1 + �2x
2 = 0, we need to satisfy

the three equations: �1 + 2�2 = 0; 2�1 + 5�2 = 0 and 4�1 + 3�2 = 0, which is possible only if
�1 = �2 = 0.
2. x1 = (1; 2; 4) and x2 = (2; 4; 8) are not LI. Why?
3. Any n-dimensional vector can be expressed as a linear combination of a set of n LI vectors
(Test this for n = 3). The set of n LI vectors you choose de�nes a basis for the n-dimensional
vector space. If we choose the unit vectors along the n mutually orthogonal (perpendicular)
directions (see Eq. 7), then it is called the natural basis.
4. Using Eq. 7 and the de�nition of the dot product, deduce that xi = x:ei for i = 1; 2; � � � ; n.
Also deduce that ei:ej is 1 if i = j and 0 otherwise.

5 Matrices: Preliminaries

The simplest way to de�ne an m�n (pronounced m by n) matrix is as an array with mn entries
(elements) arranged into m rows and n columns. We will also use a curly bracket notation
to denote matrices, i.e., the matrix A can be written as A = faijg for i = 1; 2; :::;m and
j = 1; 2; ::; n. In the expanded form, we can represent this as

A =

0
BBB@

a11 a12 � � � a1n
a21 a22 � � � a2n
::: ::: ::: :::
am1 am2 � � � amn

1
CCCA : (8)

From Eq. 8, we can see that the rectangular matrix A may be thought of as a collection of n
column vectors of dimension m or as the collection of m row vectors of dimension n (Identify
these vectors). Similarly, we could think of an n-dimensional column vector de�ned by Eq. 4 as
an n� 1 matrix or the n-dimensional row vector of Eq. 5 as a 1�n matrix. An important class
of matrices arise when the number of rows are equal to the number of columns, i.e., m = n.
Such a matrix is called a square matrix of dimension n.

4



5.1 Matrix Operations/Properties

1. Addition: A = faijg and B = fbijg be two m � n matrices. Then the (m � n) matrix C
which results from the addition of A and B is given by C = fcijg = faij + bijg. For instance, if

A =

0
B@ 3 2 1 0

9 14 5 �2
8 3 7 �32

1
CA (9)

and

B =

0
B@ �3 8 �5 1

0 4 5 5
2 6 17 2

1
CA ; (10)

then the matrix C = A+B is given by

C =

0
B@ 0 10 �4 1

9 18 10 3
10 9 24 �30

1
CA : (11)

2. Transposition: Let A = faijg be an m � n matrix. Then the transpose of A, denoted
by AT , is the n�m matrix, fajig. i.e., the transpose is obtained by interchanging the rows and
columns of the original matrix. For instance, the transpose of the matrix,

A =

 
3 2 1
8 3 7

!
(12)

is given by

AT =

0
B@ 3 8

2 3
1 7

1
CA : (13)

A square matrix A is called symmetric if A = AT . It is skew symmetric if A = �AT . For
instance, the 3� 3 matrix

A =

0
B@ 3 2 1

2 6 7
1 7 5

1
CA (14)

is symmetric.

3. Matrix Multiplication: Let A = faijg be an m � n matrix and let B = fbijg be an
n� p matrix. Then the matrix product, A:B (pronounced A dot B or simply AB) is an m� p
matrix, say C = fcijg, where each element cij is computed as

cij =
X
k=1;n

aikbkj for i = 1; � � �m; j = 1; � � � p: (15)
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Notice that multiplication operation is de�ned only if the number of columns of matrix A is
equal to the number of rows of matrix B (n in the case above). The operation de�ned by Eq. 15
is often referred to as the 'row times column' operation, i.e., to get the element cij of the product
matrix C, we form the dot product of the ith row vector of matrix A with the jth column vector
of matrix B.
Example: Let A be given by the 2� 3 matrix of Eq. 12. Let B be given by the 3� 2 matrix

B =

0
B@ 4 0

5 1
0 6

1
CA : (16)

Then the product C � A:B is the 2� 2 matrix given by

C =

 
3 2 1
8 3 7

!
:

0
B@ 4 0

5 1
0 6

1
CA =

 
3� 4 + 2� 5 + 1� 0 = 22 3� 0 + 2� 1 + 1� 6 = 8
8� 4 + 5� 3 + 7� 0 = 47 8� 0 + 3� 1 + 7� 6 = 45

!
:

(17)
In a similar fashion, verify that the matrix D � B:A is the 3� 3 matrix

D =

0
B@ 12 8 4

23 13 12
48 18 42

1
CA : (18)

In general, A:B 6= B:A, i.e., matrix multiplication is non-commutative.

4. Diagonal and Unit (Identity) Matrices: A square matrix is diagonal if all its entries
except the diagonal ones are zeroes. If each of the diagonal entries of a diagonal matrix is unity,
the matrix is called a unit matrix. For instance, the 3� 3 matrix

D =

0
B@ 5 0 0

0 13 0
0 0 42

1
CA (19)

is diagonal. Similarly, the 3� 3 unit matrix, denoted by I3 is given by (the subscript 3 denotes
the dimension of the matrix)

I3 =

0
B@ 1 0 0

0 1 0
0 0 1

1
CA : (20)

It can now be veri�ed that multiplying any 3� 3 matrix, say A, by I3 results in A itself.

5. Upper and Lower Triangular Matrices: A square matrix is upper triangular if each
of the entries below its diagonal is zero. Simlarly, a lower triangular matrix has each of its
entries above its diagonal as zero.
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6 Representation of System of Linear Equations using Matri-

ces

We now go back to Eq. 2 and see how the concepts presented in the previous sections can be
applied to yield a compact representation of the system of equations using matrices. We de�ne
A to be m� n vector of coe�cients, or simply the coe�cient matrix as

A =

0
BBB@

a11 a12 � � � a1n
a21 a22 � � � a2n
� � � � � � � � � � � �
am1 am2 � � � amn

1
CCCA : (21)

Now, we de�ne x to be the n-dimensional column vector of unknowns or equivalently as a n� 1
matrix as

x =

0
BBBB@

x1
x2
...
xn

1
CCCCA : (22)

Evidently, the product A:x will result in an m� 1 matrix (i.e., simply a m-dimensional column
vector), given by 0

BBBB@
a11x1 + a12x2 + � � � a1nxn
a21x1 + a22x2 + � � � a2nxn

...
am1x1 + am2x2 + � � � amnxn

1
CCCCA ; (23)

which, according to Eq. 2, is simply the right hand side vector, b. So, we can now express the
system of linear equations simply as:

A:x = b: (24)

Our task is to �nd the solution vector x, given the coe�cient matrix A and the load vector b.
We will restrict our further discussions to systems of n equations in as many unknowns, i.e., the
coe�cient matrix a will be a n� n square matrix.

The basic idea behind the algorithms is to reduce Eq. 24 to a simpler form amenable for
solution. The simplest of such forms involves the reduction of A to a diagonal matrix, i.e., after
the reduction process, we will end up with (in the n� n case):

0
BBB@

�11 0 � � � 0
0 �22 � � � 0
� � � � � � � � � � � �
0 0 � � � �nn

1
CCCA :

0
BBBB@

x1
x2
...
xn

1
CCCCA =

0
BBBB@

�1
�2
...
�n

1
CCCCA (25)
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where the solution is directly given by xi = �i=�i (we will assume for the present that �i 6= 0).

Prior to discussing algorithms to achieve reduction to a diagonal or a triangular form,
let's review in some detail the existence and uniqueness of solutions to Eq. 24 (m = n case) and
invariant operations.

6.1 Existence/Uniqueness of solution

The general existence/uniqueness theorem for a system of linear equations (called the Fredholm's
alternative) is one of the fundamental theorems of linear algebra. However, we refrain from a
discussion of that theorem, and simply limit our discussion to the special case of the n � n
system. Our aim is to identify a solvability condition for the system of equations A:x = b where
A is an n�n matrix and x and b are n� 1 matrices or simply, n-dimensional vectors. In other
words, we would like to identify a criterion the satisfaction of which will guarantee us that there
exists exactly one solution to the system of equations A:x = b.

We will do this by considering an example where n = 2. Consider the system of equations
given by  

a11 a12
a21 a22

!
:

 
x1
x2

!
=

 
b1
b2

!
: (26)

The solution to this equation can be written as:

x1 =
a22b1 � a12b2
a11a22 � a12a21

;

x2 =
a11b2 � a21b1
a11a22 � a12a21

: (27)

We notice from Eq. 27 that the denominators of the expressions for both x1 and x2 are the same,
namely, a11a22�a12a21. Evidently, if a11a22�a12a21 6= 0, we have exactly one solution, as given
by Eq. 27. The number a11a22�a12a21 is referred to as the determinant of the coe�cient matrix
in Eq. 26 and the condition for a unique solution to exist is then given by the requirement that
the coe�cient matrix should have a non-zero determinant. We will not enter into the de�nition
of the determinant for a general n� n matrix, we rather will try to identify certain structure in
the matrix which causes the determinant to vanish or equivalently, the conditions under which
a matrix becomes singular.

Let's examine the condition a11a22� a12a21 = 0. This implies that a21=a11 = a22=a12, say
= r. i.e., the elements of row 2 of the coe�cient matrix are simply multiples of the corresponding
elements of row 1. (or equivalently, column 2 is a multiple of column 1). Based on the de�nition
of linear independence of vectors developed in section 4:1, we say that the vectors formed by
the 2 rows of the coe�cient matrix are not linearly independent. In general, if any one of the
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rows (columns) of an n�n matrix can be expressed as a linear combination of the a set of rows
(columns) from remaining of the remaining rows (columns), then the we do not have a linearly
independent set of n row vectors in the coe�cient matrix, as a result, the system of equations
will not have a unique solution.

Examples:
Example E1: The system of equations, given by0

B@ 1 2 1
3 4 2
5 6 1

1
CA :

0
B@ x

y
z

1
CA =

0
B@ 8

17
20

1
CA (28)

has the unique solution x = 1; y = 2; z = 3 (How will we prove this?).
Example E2: The system of equations, given by0

B@ 1 1 1
2 3 2
1 2 1

1
CA :

0
B@ x

y
z

1
CA =

0
B@ 2

4
3

1
CA (29)

does not have a solution at all (notice that in the coe�cient matrix, row 1 = row 2 - row 3).
Example E3: The system of equations, given by0

B@ 1 1 1
2 3 2
1 2 1

1
CA :

0
B@ x

y
z

1
CA =

0
B@ 1

4
3

1
CA (30)

(notice that the only change compared to example E2 is in the right hand side vector) has no
unique solution, but it has in�nitely many solutions, given by x = a; y = 2; z = �(1 + a) as
the real constant a can take in�nitely many values and still satisfy the system of equations of
example E3.

The generalization of the above observation to n � n systems is called the Fredholm's

alternative, a discussion of which may be found in any standard textbook on linear algebra. For
the purpose of our course, we notice that: EITHER (1). the coe�cient matrix has n linearly
independent rows (columns) which implies that the n � n system has exactly one solution
(Example E1) OR (2). if one or more of the rows (columns) of the coe�cient matrix is linearly
dependent on a set of rows (columns) of the remaining ones which implies either (a). the system
of equations has no solution at all (Example E2) or (b). the system of equations has in�nitely
many solutions (Example E3). To determine whether situation (a) or (b) occurs when case (2)
condition is satis�ed requires a more detailed analysis of the homogeneous system of equations
AT :y = 0, and will not be discussed here. We focus our attention on the Case (1) scenario, i.e.,
the case for which the coe�cient matrix is non-singular. For any non-singular n� n matrix A,
we can always de�ne the inverse matrix denoted by A�1, such that

A:A�1 = A�1:A = In; (31)
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where In is the n-dimensional identity matrix. So, if we premultiply the matrix equationA:x = b

with A�1, we get In:x = A�1b, which essentially solves the problem. However, �nding A�1 is
as di�cult as solving the system of equations. Most algorithms which are designed for solving
A:x = b can also be used to �nd the inverse of the coe�cient matrix.
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