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 Systems of Linear Equations

Linear equation:
a1 x1 + a2 x2 + . . . . +an xn = b
a1, a2, . . . an, b - constants
x1, x2, . . . xn - variables
no x2, x3, sqrt(x),. . . ,
no cross-terms like xi xj
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 Systems of Linear Equations

Applications:

1. Reaction stoichiometry (balancing equations)

2. Electronic circuit analysis (current flow in networks)

3. Structural analysis (linear deformations of various
constructions)

4. Statistics (least squares analysis)

5. Economics: optimization problems (Nobel prize in
economics in 70s for “Linear Programming”).

6. System of non-linear equations – approximate
solutions.
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 Systems of Linear Equations

Examples of linear equations:

7 x = 2    a x = b   point in 1D

3 x + 4 y = 1   a1 x + a2 y = b   line in 2D

2 x + 5 y - 2= -3    a1 x + a2 y + a3z=b    plane in 3D

What if we have several equations (system)?

How many solutions we will have?

Solution:
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 Systems of Linear Equations

Example: What is the stoichiometry of the

complete combustion of propane?

C3H8 + x O2 � y CO2 + z H2O

atom balances:

oxygen    2 x = 2 y + z

carbon         3  =  y => y = 3

hydrogen     8 = 2 z => z = 4

substitute: 2 x = 10  =>  x = 5

C3H8 + 5 O2  �  3 CO2 + 4 H2O
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 Systems of Linear Equations
In 2D (2 variables ) to solve an SLE is to find an intersection of
several lines.
1 equation:   "   solutions.

2 equations: a) no solutions (parallel lines)
         b) one solution
         c) "   solutions

to have one solution we need  the determinant a11a22 - a21 a12 "   0,
in cases (a) and (c) a11/a21=a12/a22.

>= 3 equations: a) no solutions (most likely)
b) one solution: all equations except 2 are

“linear combinations” of the others and may be scrapped if we
look at solution only.

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
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 Systems of Linear Equations
In general:

If the number of variables m is less than the number of
equations n the system is said to be “overdefined”: too
many constraints. If the solution still exists, n-m equations
may be thrown away.

If m is greater than n the system is “underdefined” and
often has many solutions.

We consider only m = n cases.
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 Matrix Formulation of SLE
Any system of linear equations can be fromulated in the matrix
form:

a11x1 + a12x2 + …+ a1nxn = b1

a21x1 + a22x2 + ….+ a2nxn = b2

…..
an1x1 + an1x2 +….+ annxn = bn

aij -elements of the coefficient matrix A, b - load vector
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 Matrix Formulation of SLE

SLE in a compact matrix form: A ·x = b
Inverse matrix A-1 : A ·A-1 = I = A-1 ·A

A-1 ·  A ·  x = A-1 ·  b � x = A-1 ·  b
Thus, to solve SLE we need to invert the
matrix. 

In Matlab: 
>> x = A\b Just one line!!!
“ \ “ is a black box. What is inside?
Do we always need A-1 to solve the SLE?
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 Matrix Formulation of SLE

For n=2:
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The solution is:

a11a22-a12a21 = det(A) is the determinant of matrix A.

It should be non-zero for the unique solution to exist.

 a11a22 - a12a21 = 0  ��  a11 /a21 = a12 /a22
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 Systems of Linear Equations

, where a1 = (a11 a12), a2 = (a21 a22) , so
det(A) ?  0 is equivalent to α1 a1 + α2 a2 ?  0
for any α1,2 ?  0.
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In this case a1 and a2 are called linearly independent.
This is true for any number of equations.

NB: The SLE has a single solution if the coefficient
matrix has a non-zero determinant

or
if  the vectors a1, a2,… an are linearly independent.
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 Systems of Linear Equations

To solve the SLE without using A-1:

1. eliminate x from equation 2: eq.2 - 2 x eq.1.

2. solve equation 2 for y.

3. substitute y into equation  1.

4. solve equation 1.

Example:    x + 2 y = -1

2 x + 2 y =  0
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 Systems of Linear Equations

Or more generally:

Form the equations.

Eliminate variable until eq-s n, n-1, . . . , 1

            have 1, 2, 3, . . . , n variables left.

A is now an upper triangular matrix.

Backsubstitute solution of eq. n to eq. n-1, 

n-1 to n-2, . . . , 2 to 1 to solve the system
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 Systems of Linear Equations
To solve SLE we perform invariant operations, which

do not change the solutions:

1. add/subtract the same value to/from both sides of

the equation

2. multiply/divide both sides of the equation by the

same value

3. add/subtract some equation from another one

4. rearrange equations

5. rearrange columns in the coefficients matrix
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 Systems of Linear Equations

Example:

 x + 2 y + z = 0

2 x + 2 y + 3 z = 3

-x + 3 y   = -4

1. Eliminate z from eq. 2.

2. Eliminate y from equation 2.

3. Solve eq. 3 for x and backsubstitute to eqs 1&2

4. Solve eq. 2 for y and backsubstitute to eq. 1.

5. Solve eq. 1 for z.
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Gaussian Elimination using Matrix Algebra
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Gaussian Elimination using Matrix Algebra

3. m32 = -a(2)
32/a(2)

22, add row 2 x m32 to row1
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Gaussian Elimination using Matrix Algebra

4. Solve for x1, x2, x3 by backsubstitution:

 ;
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Summary

1. Recognizing systems of linear equations.

2. Matrix representation of systems of linear

equations.

3. Gaussian elimination to get an upper

triangular matrix.

4. Backsubstitution.
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Key Concepts from Previous Lecture

• Solution of linear equations

– Matrix formulation of equation system

– Decomposition to upper triangular from

– Back substitution to solve in reverse order

• Gaussian Elimination algorithm



November 2002 10.001 Introduction to Computer
Methods

Essence of the Gaussian Elimination Algorithm

• Form the equations

• Successively eliminate variables until the
upper triangular form is reached
(ELIMINATION STEP)

• Once the elimination has been completed
perform a back substitution in the reverse
order to obtain solution for each of the
variables (BACK SUBSTITUTION STEP)

Extremely valuable algorithm -- Gaussian Elimination
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Numerical Problems

1. Scalability - how big a problem can be solved?
- Physical memory
- Disk storage
- Processor time

2. What is the “fastest” algorithm?

3. What is the most “robust” algorithm?
Numerical stability: what happens if aij=0 etc.?

4. What are the effects of finite precision
arithmetic?
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Typical Times (Microseconds)

• Multiplication = 1

• Division  = 3

• Addition = 0.5

• Subtraction  =  0.5

How long to solve  A x = b,  when

n = 100, 1,000, 1,000,000?



November 2002 10.001 Introduction to Computer
Methods

Scalability

Code for Gaussian elimination contains 3 loops:

1. it makes n-1 runs to eliminate variables

2. k-th run goes through n-k rows (k = 1,. . ., n-1)

3. in i-th row we calculate  aij
(k) = aij - m akj  n-k+1 times

1   � 2  �   (n-k) 3  �   (n-k+1)

Overall about operations.
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Gaussian Elimination (How many operations)
/*  Gaussian Decomposition  */

for ( k=0; k < n-1; k++){

  for ( i=k+1; i < n; i++){

  m = A[i][k]/A[k][k];

for ( j=k; j < n; j++) {

  A[i][j] += -m*A[k][j];
}
    b[i] += -m*b[k];

  }

}

n-1 runs, eliminating n-1 variables

n-k runs, k-th variable is eliminated from n-k rows      

n-k+1 runs, eliminating k-th variable form i-th row
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Gaussian Elimination (How many operations)
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Numerical Stability

What if one of the diagonal elements is a small
number r, close to zero?

r x1 + x2 = 1

    x1 + x2 = 2

Possible problems caused by dividing by r:

1. Overflow: 1/r is too big.

2. Numerical instability.
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Numerical Stability

After elimination r  x1 + x2                  =   1

0      + (1-1/r) x2 =  2-1/r

After substitution x2 = (2 - 1/r)/(1-1/r)

x1 = (1 - x2)/r

if  1/r >> 2, then x2 = 1 and x1 =0.

x2 = (large number)/(large number)

x1 = (small number)/(large number) is a problem.
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Numerical Stability

Solution - remove small numbers from the

diagonal by exchanging rows or columns.

May be done by pivoting:

Exchanging rows just “renumbers”

equations.

Exchanging columns “reindexes” variables.
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Numerical Stability

Let’s exchange rows in the previous example.

a)   x1 + x2 = 2    b) x1 + x2 = 2      c) x1 = 2 - x2

r x1 + x2 = 1      (1-r) x2 = 1-2r         x2 = (1-2r)/(1-r)

The correct answer:

if   r << 1, x2 = 1  and  x1 = 1
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Numerical Stability

Pivoting algorithm:

Searches for the largest aik in each row below

the current one to use for the next elimination

step, and rearranges the rows so that mik is

always less than one.
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Numerical Stability

Example:

[ ]bAA ,
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Numerical Stability
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LU factorization.

Linear system Ax = b is solved by Gaussian

elimination.

Matrix A is fixed, but we have a set of b-s: b1, b2, b3…

How to avoid repeating the solution for A and do it
only for b-s??

Answer: Express Gaussian elimination as a matrix.

Each step of elimination is represented by some
elementary matrix acting on A and on b. Overall GE
will be represented by the product of these matrices.
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LU factorization.

If  A – nonsingular,       A = LU,
U - upper diagonal, L – lower diagonal

1. Ax = b  �  LUx = b  �  L(Ux) = b  �  Ly = b
y is found by forward substitution.
2. Ux = y
x is found by backsubstitution

Gaussian elimination == L-1.

LU factorization is a standard way to solve
SLE in case A is a non-singular matrix.
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LU factorization.

Elementary matrix: A matrix obtained from identity
matrix by the following “elementary row operations”
is called elementary matrix.

Elementary row operations:

1.  multiply a non-zero constant throughout a row

2.  interchange two rows

3. add a constant multiple of another row

(remember invariant operations ?)
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LU factorization.

Examples of elementary matrices:
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
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How do elementary matrices work?
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How do elementary matrices work?

“Interchanging the first

and the third rows”:

permutation matrix

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Elementary Operations.

Elementary matrices for Gaussian elimination:
2 row - 2x1st row    3 row + 1st row    3 row + 3x2 row
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Elementary Operations.

Inverting elementary matrices:

Ek
-1-?   (Ek

-1)ii= (Ek)ii,   (Ek
-1)ij= -(Ek)ij    for i? j
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LU factorization.

Ek Ek-1 … E1 (A x) = Ek Ek-1 … E1 b

L-1 A x = L-1 b,  Ek Ek-1 … E1 = L-1

On the other hand: L= E1
-1 E2

-1 … Ek 
-1
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Gains due to LU factorization?

We care only for L-1: it allows for calculation of load
vectors without repeating Gaussian elimination.

For every bj we need to calculate L-1bj instead of
performing a complete Gaussian elimination.

n times (row ·  column) ~ n2 operations instead of n3!
Quite a difference.
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Lecture Summary

• Solution of linear equations

– Matrix formulation of equation system

– Decomposition to upper triangular from

– Back substitution to solve in reverse order

• Gaussian Elimination algorithm

• LU decomposition if many b-s for the same A.
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Gaussian Elimination Algorithm

Forward Reduction:
for k=1,…,n-1
    for i=k+1,…n

lik = aik/akk
for j=k+1,…,n
    aij = aij - likakj
end loop j

    bi = bi -likbk
    end loop i
end loop k

Back substitution:
for k = n,…,1
     xk = bk
     for i=k+1,…n
 xk = xk-akixi
     end loop i
      xk = xk/akk
end of loop k
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Gaussian Elimination II

Forward Reduction:
for k=1,…,n-1
    for i=k+1,…n

lik = aik/akk
Rowi = Rowi - lik*Rowk
bi = bi -likbk

    end loop i
end loop k

Back substitution:
for k = n,…,1
      xk = bk-A(k,:)*x
      xk = xk/akk
end of loop k


