
November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

Linear equation:
a1 x1 + a2 x2 + +an xn = b
a1, a2, . . . an, b - constants
x1, x2, . . . xn - variables
no x2, x3, sqrt(x),. . . ,
no cross-terms like xi xj

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

Applications:

1. Reaction stoichiometry (balancing equations)

2. Electronic circuit analysis (current flow in networks)

3. Structural analysis (linear deformations of various
constructions)

4. Statistics (least squares analysis)

5. Economics: optimization problems (Nobel prize in
economics in 70s for “Linear Programming”).

6. System of non-linear equations – approximate
solutions.

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

Examples of linear equations:

7 x = 2 a x = b point in 1D

3 x + 4 y = 1 a1 x + a2 y = b line in 2D

2 x + 5 y - 2= -3 a1 x + a2 y + a3z=b plane in 3D

What if we have several equations (system)?

How many solutions we will have?

Solution:

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

Example: What is the stoichiometry of the

complete combustion of propane?

C3H8 + x O2 � y CO2 + z H2O

atom balances:

oxygen 2 x = 2 y + z

carbon 3 = y => y = 3

hydrogen 8 = 2 z => z = 4

substitute: 2 x = 10 => x = 5

C3H8 + 5 O2 � 3 CO2 + 4 H2O

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations
In 2D (2 variables) to solve an SLE is to find an intersection of
several lines.
1 equation: " solutions.

2 equations: a) no solutions (parallel lines)
 b) one solution
 c) " solutions

to have one solution we need the determinant a11a22 - a21 a12 " 0,
in cases (a) and (c) a11/a21=a12/a22.

>= 3 equations: a) no solutions (most likely)
b) one solution: all equations except 2 are

“linear combinations” of the others and may be scrapped if we
look at solution only.

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations
In general:

If the number of variables m is less than the number of
equations n the system is said to be “overdefined”: too
many constraints. If the solution still exists, n-m equations
may be thrown away.

If m is greater than n the system is “underdefined” and
often has many solutions.

We consider only m = n cases.

November 2002 10.001 Introduction to Computer
Methods

 Matrix Formulation of SLE
Any system of linear equations can be fromulated in the matrix
form:

a11x1 + a12x2 + …+ a1nxn = b1

a21x1 + a22x2 + ….+ a2nxn = b2

…..
an1x1 + an1x2 +….+ annxn = bn

aij -elements of the coefficient matrix A, b - load vector

bxA

b

b

b

x

x

x

n

=⋅



















=



















⋅



















…
…

…
…

......

 a a a

..

 a a a

 a a a

2

1

2

1

nnn2n1

2n2221

1n12 11

November 2002 10.001 Introduction to Computer
Methods

 Matrix Formulation of SLE

SLE in a compact matrix form: A ·x = b
Inverse matrix A-1 : A ·A-1 = I = A-1 ·A

A-1 · A · x = A-1 · b � x = A-1 · b
Thus, to solve SLE we need to invert the
matrix.

In Matlab:
>> x = A\b Just one line!!!
“ \ “ is a black box. What is inside?
Do we always need A-1 to solve the SLE?

November 2002 10.001 Introduction to Computer
Methods

 Matrix Formulation of SLE

For n=2:







=





⋅






2

1

2

1

2221

12 11

a a

 a a

b

b

x

x

21122211

221211
2

21122211

212122
1 aaaa

baba
x

aaaa

baba
x

−
−=

−
−=

The solution is:

a11a22-a12a21 = det(A) is the determinant of matrix A.

It should be non-zero for the unique solution to exist.

 a11a22 - a12a21 = 0 �� a11 /a21 = a12 /a22

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

, where a1 = (a11 a12), a2 = (a21 a22) , so
det(A) ? 0 is equivalent to α1 a1 + α2 a2 ? 0
for any α1,2 ? 0.







=

2

1

a

a
A

In this case a1 and a2 are called linearly independent.
This is true for any number of equations.

NB: The SLE has a single solution if the coefficient
matrix has a non-zero determinant

or
if the vectors a1, a2,… an are linearly independent.

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

To solve the SLE without using A-1:

1. eliminate x from equation 2: eq.2 - 2 x eq.1.

2. solve equation 2 for y.

3. substitute y into equation 1.

4. solve equation 1.

Example: x + 2 y = -1

2 x + 2 y = 0

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

Or more generally:

Form the equations.

Eliminate variable until eq-s n, n-1, . . . , 1

 have 1, 2, 3, . . . , n variables left.

A is now an upper triangular matrix.

Backsubstitute solution of eq. n to eq. n-1,

n-1 to n-2, . . . , 2 to 1 to solve the system

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations
To solve SLE we perform invariant operations, which

do not change the solutions:

1. add/subtract the same value to/from both sides of

the equation

2. multiply/divide both sides of the equation by the

same value

3. add/subtract some equation from another one

4. rearrange equations

5. rearrange columns in the coefficients matrix

November 2002 10.001 Introduction to Computer
Methods

 Systems of Linear Equations

Example:

 x + 2 y + z = 0

2 x + 2 y + 3 z = 3

-x + 3 y = -4

1. Eliminate z from eq. 2.

2. Eliminate y from equation 2.

3. Solve eq. 3 for x and backsubstitute to eqs 1&2

4. Solve eq. 2 for y and backsubstitute to eq. 1.

5. Solve eq. 1 for z.

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination using Matrix Algebra

b

b

b

b

x

x

x

=














=






























3

2

1

3

2

1

333231

232221

1312 11

 a a a

 a a a

 a a a1.

2. m21 = -a21/a11, add row 1 x m21 to row1
m31 = -a31/a11, add row 1 x m31 to row3

b

b

b

b

x

x

x

=















=































)2(
3

)2(
2

1

3

2

1

)2(
33

)2(
32

)2(
23

)2(
22

1312 11

 a a 0

a a 0

 a a a

pivot
element,
row

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination using Matrix Algebra

3. m32 = -a(2)
32/a(2)

22, add row 2 x m32 to row1

b

b

b

b

x

x

x

=















=































)3(
3

)2(
2

1

3

2

1

)3(
33

)2(
23

)2(
22

1312 11

 a 0 0

a a 0

 a a a

Upper triangular matrix

pivot
element,
row

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination using Matrix Algebra

4. Solve for x1, x2, x3 by backsubstitution:

 ;
a

xaxab
x

;
a

xab
x

;
a

b
x

11

3132
)2(

221
2

)2(
22

3
)2(

23
)2(

2
2

)3(
33

)3(
3

3

−−=

−=

=

November 2002 10.001 Introduction to Computer
Methods

Summary

1. Recognizing systems of linear equations.

2. Matrix representation of systems of linear

equations.

3. Gaussian elimination to get an upper

triangular matrix.

4. Backsubstitution.

November 2002 10.001 Introduction to Computer
Methods

Key Concepts from Previous Lecture

• Solution of linear equations

– Matrix formulation of equation system

– Decomposition to upper triangular from

– Back substitution to solve in reverse order

• Gaussian Elimination algorithm

November 2002 10.001 Introduction to Computer
Methods

Essence of the Gaussian Elimination Algorithm

• Form the equations

• Successively eliminate variables until the
upper triangular form is reached
(ELIMINATION STEP)

• Once the elimination has been completed
perform a back substitution in the reverse
order to obtain solution for each of the
variables (BACK SUBSTITUTION STEP)

Extremely valuable algorithm -- Gaussian Elimination

November 2002 10.001 Introduction to Computer
Methods

Numerical Problems

1. Scalability - how big a problem can be solved?
- Physical memory
- Disk storage
- Processor time

2. What is the “fastest” algorithm?

3. What is the most “robust” algorithm?
Numerical stability: what happens if aij=0 etc.?

4. What are the effects of finite precision
arithmetic?

November 2002 10.001 Introduction to Computer
Methods

Typical Times (Microseconds)

• Multiplication = 1

• Division = 3

• Addition = 0.5

• Subtraction = 0.5

How long to solve A x = b, when

n = 100, 1,000, 1,000,000?

November 2002 10.001 Introduction to Computer
Methods

Scalability

Code for Gaussian elimination contains 3 loops:

1. it makes n-1 runs to eliminate variables

2. k-th run goes through n-k rows (k = 1,. . ., n-1)

3. in i-th row we calculate aij
(k) = aij - m akj n-k+1 times

1 � 2 � (n-k) 3 � (n-k+1)

Overall about operations.

∑
−

=

1n

1k

∑
−

=

+−−
1

1

)1)((
n

k

knkn

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination (How many operations)
/* Gaussian Decomposition */

for (k=0; k < n-1; k++){

 for (i=k+1; i < n; i++){

 m = A[i][k]/A[k][k];

for (j=k; j < n; j++) {

 A[i][j] += -m*A[k][j];
}
 b[i] += -m*b[k];

 }

}

n-1 runs, eliminating n-1 variables

n-k runs, k-th variable is eliminated from n-k rows

n-k+1 runs, eliminating k-th variable form i-th row

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination (How many operations)

1 2 3
1

2

2 3
1 2 1

6
2 2 2 2

+ + + + = +

+ + + + = + +

�

�

n
n n

n
n n n

()

()()

Useful Identities

Time scales as n3 ! A rather poor scalability.

Gauss reduction

)(
623

Addition

)(
623

tionMultiplica

3
23

3
23

nO
nnn

nO
nnn

≈+−

≈+−

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability

What if one of the diagonal elements is a small
number r, close to zero?

r x1 + x2 = 1

 x1 + x2 = 2

Possible problems caused by dividing by r:

1. Overflow: 1/r is too big.

2. Numerical instability.

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability

After elimination r x1 + x2 = 1

0 + (1-1/r) x2 = 2-1/r

After substitution x2 = (2 - 1/r)/(1-1/r)

x1 = (1 - x2)/r

if 1/r >> 2, then x2 = 1 and x1 =0.

x2 = (large number)/(large number)

x1 = (small number)/(large number) is a problem.

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability

Solution - remove small numbers from the

diagonal by exchanging rows or columns.

May be done by pivoting:

Exchanging rows just “renumbers”

equations.

Exchanging columns “reindexes” variables.

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability

Let’s exchange rows in the previous example.

a) x1 + x2 = 2 b) x1 + x2 = 2 c) x1 = 2 - x2

r x1 + x2 = 1 (1-r) x2 = 1-2r x2 = (1-2r)/(1-r)

The correct answer:

if r << 1, x2 = 1 and x1 = 1

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability

Pivoting algorithm:

Searches for the largest aik in each row below

the current one to use for the next elimination

step, and rearranges the rows so that mik is

always less than one.

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability

Example:

[]bAA ,
1.0|3.04.0

5.0|5.00001.0~

=







−

=

Augmented matrix: n x (n+1)

Use 4 digit arithmetic:
9.9999… �9.9998









−−

=
2000|20000

5.0|5.00001.0~

A

-0.3-(4000)(0.5) = -2000.3 = -2000

0.1-(4000)(0.5) =
-1999.9 = -2000

0))1)(5.0(5.0(
0001.0

1
1

2000

2000
12 =−==

−
−= xx

November 2002 10.001 Introduction to Computer
Methods

Numerical Stability








 −
=

5.0|5.00001.0

1.0|3.04.0~

A








 −
=

5.0|5.00

1.0|3.04.0~

A

0.5+(0.3)0.000025=0.5
0.5-(0.1)0.000025=0.5

1))1)(3.0(1.0(
4.0

1
1

5.0

5.0
12 =+=== xx “1” instead of “0”

Quite a difference!

November 2002 10.001 Introduction to Computer
Methods

LU factorization.

Linear system Ax = b is solved by Gaussian

elimination.

Matrix A is fixed, but we have a set of b-s: b1, b2, b3…

How to avoid repeating the solution for A and do it
only for b-s??

Answer: Express Gaussian elimination as a matrix.

Each step of elimination is represented by some
elementary matrix acting on A and on b. Overall GE
will be represented by the product of these matrices.

November 2002 10.001 Introduction to Computer
Methods

LU factorization.

If A – nonsingular, A = LU,
U - upper diagonal, L – lower diagonal

1. Ax = b � LUx = b � L(Ux) = b � Ly = b
y is found by forward substitution.
2. Ux = y
x is found by backsubstitution

Gaussian elimination == L-1.

LU factorization is a standard way to solve
SLE in case A is a non-singular matrix.

November 2002 10.001 Introduction to Computer
Methods

LU factorization.

Elementary matrix: A matrix obtained from identity
matrix by the following “elementary row operations”
is called elementary matrix.

Elementary row operations:

1. multiply a non-zero constant throughout a row

2. interchange two rows

3. add a constant multiple of another row

(remember invariant operations ?)

November 2002 10.001 Introduction to Computer
Methods

LU factorization.

Examples of elementary matrices:









−50

01 multiply the second
row of I2 by -5



















0010

0100

1000

0001

interchange the 2nd
& the 4th rows of I4

















100

010

301
add 3 times the 3rd
row to the 1st row of I3

November 2002 10.001 Introduction to Computer
Methods

How do elementary matrices work?
















−=

100

012

001

E “adding -2 x first row to
the second row”
















−=
































−=⋅

3

2

1

3

2

1

b

bb

b

b

b

b

12

100

012

001

bE

November 2002 10.001 Introduction to Computer
Methods

How do elementary matrices work?

“Interchanging the first

and the third rows”:

permutation matrix














=

001

010

100

P
















=
































=⋅

1

2

3

3

2

1

001

010

100

b

b

b

b

b

b

bP

November 2002 10.001 Introduction to Computer
Methods

Elementary Operations.

Elementary matrices for Gaussian elimination:
2 row - 2x1st row 3 row + 1st row 3 row + 3x2 row

b

b

b

b

x

x

x

Ax =















=

































−
=

3

2

1

3

2

1

122

014

112
















=
















=
















−=

130

010

001

101

010

001

100

012

001

321 E,E,E

November 2002 10.001 Introduction to Computer
Methods

Elementary Operations.

Inverting elementary matrices:

Ek
-1-? (Ek

-1)ii= (Ek)ii, (Ek
-1)ij= -(Ek)ij for i? j
















=
















−= −

100

012

001

,

100

012

001
1

11 EE

1

001

010

100
−=
















= PP

November 2002 10.001 Introduction to Computer
Methods

LU factorization.

Ek Ek-1 … E1 (A x) = Ek Ek-1 … E1 b

L-1 A x = L-1 b, Ek Ek-1 … E1 = L-1

On the other hand: L= E1
-1 E2

-1 … Ek
-1

Also:

















−
=

















−
=
















−=

10

010

001

,

10

010

001

,

100

01

001

32

3

31

2211

m

E

m

EmE

m-s – coefficients form Gaussian elimination.

















−−
−==

1

01

001

L

3231

21123
1-

mm

mEEE U is obtained after
The elimination:
U=L-1A.

November 2002 10.001 Introduction to Computer
Methods

Gains due to LU factorization?

We care only for L-1: it allows for calculation of load
vectors without repeating Gaussian elimination.

For every bj we need to calculate L-1bj instead of
performing a complete Gaussian elimination.

n times (row · column) ~ n2 operations instead of n3!
Quite a difference.

November 2002 10.001 Introduction to Computer
Methods

Lecture Summary

• Solution of linear equations

– Matrix formulation of equation system

– Decomposition to upper triangular from

– Back substitution to solve in reverse order

• Gaussian Elimination algorithm

• LU decomposition if many b-s for the same A.

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination Algorithm

Forward Reduction:
for k=1,…,n-1
 for i=k+1,…n

lik = aik/akk
for j=k+1,…,n
 aij = aij - likakj
end loop j

 bi = bi -likbk
 end loop i
end loop k

Back substitution:
for k = n,…,1
 xk = bk
 for i=k+1,…n
 xk = xk-akixi
 end loop i
 xk = xk/akk
end of loop k

November 2002 10.001 Introduction to Computer
Methods

Gaussian Elimination II

Forward Reduction:
for k=1,…,n-1
 for i=k+1,…n

lik = aik/akk
Rowi = Rowi - lik*Rowk
bi = bi -likbk

 end loop i
end loop k

Back substitution:
for k = n,…,1
 xk = bk-A(k,:)*x
 xk = xk/akk
end of loop k

