
October-November 2002

Matlab, Introduction

Resources: intro
1. Matlab Primer: short and clear introduction.
2. Matlab on Athena (MIT computer services web page).
3. www.mathworks.com, Matlab: detailed online documentation.

medium level
4. Matlab Guide D.J.Higan,N.J.Higan, SIAM, 2000.
Intro to Matlab 6.0.

more advanced
5. Numerical Methods with Matlab, G. Recktenwald, Prentice Hall.
6. Mastering Matlab 6, D.Hanselman, B.Littlefield,
Prentice Hall 2001, comprehensive tutorial & reference.

also
7. Lecture notes: 10.001 web page.

October-November 2002

Main Features of Matlab

• Matlab = matrix laboratory, matrix oriented programming
language + desktop environment.

• Any variable is an array by default, thus almost no
declarations. All variables are by default double.

• Translator - interpreter: line after line, no exe files.
• High level language:

(i) quick and easy coding
 (ii) tools assembled into toolboxes (Spectral Analysis, Image

Processing, Signal Processing, Symbolic Math etc.)
 (iii) relatively slow.
• All Matlab functions are precompiled.
• One may add extra functions by creating M-files and modify

the existing ones.

October-November 2002

Comparison with C.

• Syntax is similar

• Language structure is similar to C:
– MATLAB supports variables, arrays,

structures, subroutines, files

– MATLAB does NOT support pointers and does
not require variable declarations

– MATLAB has extra built-in tools to work with
matrices/arrays

October-November 2002

Matlab, Getting Started

1. Accessing Matlab on Athena:
add matlab
matlab &
2. Log out: quit or exit

MATLAB desktop (version 6):
1) Command window
2) Launch Pad / Workspace window
3) Command history / Current Directory window

October-November 2002

Useful Hints & Commands
• input: variable_name � output: variable_value
• semicolon at the end will suppress the output
• command history: upper & lower arrows,

also command name guess:
(i) type abc

 (ii) hit “upper arrow” key � get the last command
starting from abc

• format compact - no blank lines in the output
format loose - back to default

• help commandname - info on commmandname

October-November 2002

Workspace Maintenance
• all the assigned variables “reside” in the workspace
• clear all - clears all the memory (workspace)

 clear xyz - removes xyz from the memory
• who - lists all the variables from the workspace
• whos - also gives the details

>> who
Your variables are:
ans c1 c2
>> whos
Name Size Bytes Class
ans 1x1 8 double array
c1 1x1 16 double array(complex)
c2 2x2 64 double array(complex)

October-November 2002

Workspace Maintenance
• save saves all workspace variables on disk in file
matlab.mat

• save filename x y z - x, y, z are saved in
file filename.mat

• load filename - loads contents of the
filename.mat to the workspace

• load filename x y z - loads only x, y, z
from filename.mat to the workspace

• Each array requires a continuous chunk of
memory; use pack for memory defragmentation.

October-November 2002

Built in Constants & Functions

• pi – π number

• i & j stand for “imaginary one” (i = -11/2),

however may be redefined
• Trigonometric: sin, cos, tan, sec, cot

• Inverse trig.: asin, acos, atan, asec, acot

• Exponential: log, log2, log10, exp

• Complex: abs – abs. value, angle – phase angle,

conj – conjugate transpose, imag – imaginary and
real- real part

October-November 2002

Linear Algebra

Vector: an ordered set of
real or complex numbers
arranged in a row or
column.



















=

mx

x

x

x
�
2

1

[]nyyyy �21=

m-element
column vector
 (n x 1)

n-element row-vector (1 x n)

October-November 2002

Vector Operations
Addition/subtraction (element-wise, array operation:

c = a + b � ci = ai + bi, i = 1,…,n

d = a - b � ci = ai - bi, i = 1,…,n

Multiplication/division by a scalar:
b = α a � bi = α ai

b = a/α � bi = ai/α
Vector transpose, turns row into column and vise versa:

x = [1, 2, 3] � xT =

















3

2

1

x

x

x
(xT)T = x

October-November 2002

Vector Operations

Vector inner (dot, scalar) product

(vector/matrix operation):

a = x . y �

x is a row vector

y is a column vector

The dimensions of x and y must agree.

∑
=

=
n

i
ii yxa

1

a = yT .�xT

NB General rule for vector/matrix multiplication:
“row times column” – take i-th row of the left multiplier and
multiply by the j-th column of the right multiplier

October-November 2002

Vector Operations

Outer (tensor) product:

[]


















=



















==

44342414

43332313

42322212

41312111

4321

4

3

2

1

xyxyxyxy

xyxyxyxy

xyxyxyxy

xyxyxyxy

xxxx

y

y

y

y

yxM

Mij = xiyj

October-November 2002

Vector Norms
To compare two vectors a vector norm (analogous to
length, size) is introduced:

||x||>||y|| � “norm of x is greater than norm of y”

Euclidian norm, length in nD (also called L2 norm):

||x||2 = (x1
2 + x2

2 + x3
2 + … + xn

2)1/2

||x||1 = |x1| + |x2| + |x3| + … + |xn| (L1)

||x||inf. = max(|x1|, |x2|, |x3|, … |xn|)

||x||p = (x1
p + x2

p + x3
p + … + xn

p)1/p (Lp)

October-November 2002

Dealing with Vectors/Matrices
 Entering matrices by explicit list of elements:

A =[1 2 3]
A=
 1 2 3

A = [1; 2; 3]
A=
 1
 2
 3

A = [1 2 3; 4 5 6; 7 8 9]
or
A=[1 2 3
 4 5 6
 7 8 9]

Spaces separate the elements,
semicolons and “new line”
symbols separate the rows.

October-November 2002

Dealing with Matrices
Complex matrices:
either A=[1 2; 3 4]+i*[5 6; 7 8]
or A=[1+5i 2+6i; 3+7i 4+8i]
No blank spaces, i or j stands for “imaginary one”.

Matrix and array operations, classification.

+
-
*
^
‘ conjugate transpose
\ left division
/ right division

}element-wise (array operations)

}array or matrix operations

only matrix operations

October-November 2002

Matrix Multiplication
Product of the two matrices A(nxm) and B(mxl)
is matrix C(nxl):

jmimjijiij BABABAC 22211 ...+++=
The dimensions of A and B must agree.
Cij – is a dot product of i-th row of A and j-th column of B.
Again “row (on the left) times column (on the right)”.

If A or B is a vector, we will have either
“row vector times matrix = column vector” or
“matrix times column vector = row vector”

October-November 2002

Dealing with Matrices
In Matlab left and right division are inverse to multiplication by
column and row vectors correspondingly:
A * x=b � x=A \ b (left) A-matrix m x n, b -row vector 1 x n
x * A=b � x = b / A (right) b - column vector m x 1

Conjugate transpose: swaps the indices and changes the sign of
imaginary part of each element.
C = A’
C(i,j) = real(A(j,i)) - i * imag(A(j,i))

October-November 2002

Dealing with Matrices, Examples

>> C = A + B;
C(k,l) = A(k,l) + B(k,l)

>> C = A*B;
C(k,l) = A(k,m) * B(m,l)

>> C = A.*B
C(k,l) = A(k,l)*B(k,l)

>> C = A^alpha;
>> C = A.^alpha;
C(k,l) = A(k,l)^alpha

Matrix multiplication,
summation over the repeating
index is implied.

Element-wise (array)
operation, imposed by “.”

Matrix A to the power alpha
Each element of A to the power alpha

October-November 2002

Dealing with Matrices
Standard math. functions of matrices operate in array sense:
exp(A), sin(A), sqrt(A) = A.^0.5

>> B = exp(A) � B(i,j) = exp(A(i,j))

Colon notation is used:
 (i) to construct vectors of equally spaced elements:
>> a = 1:6 � a = 1 2 3 4 5 6
>> b = 1:2:7 � b = 1 3 5 7

(ii) to access submatrices:
A(1:4, 3) - column vector, first 4 elements of the 3-d column of A.
A(:, 3) - the 3-d column of A
A(:, [2 4]) - 2 columns of A: 2-d & 4-th.

(iii) in “for” loops

October-November 2002

Relational & Logical Operators & Functions

• R&L operations are needed for computer to make decisions
and take actions once some conditions are satisfied.
Example – while loops
• Argument of R&L operations is true if it is non-zero and
false if it is zero; output is 1 for true and zero for false.

• Relational: <, <=, >, >=, ==, ~=.
Operate on matrices in elementwise fashion.
>> A = 1:9, B = 9 - A
A = 1 2 3 4 5 6 7 8 9
B = 8 7 6 5 4 3 2 1 0
>> tf = A > 4
tf = 0 0 0 0 1 1 1 1 1
>> tf = (A==B)
0 0 0 0 0 0 0 0 0

October-November 2002

Relational & Logical Operators & Functions

• Logical: & AND; | OR; ~ NOT.

>> tf = ~(A>4)

tf = 1 1 1 1 0 0 0 0 0

>> tf = (A>2) & (A<6)

tf = 0 0 1 1 1 0 0 0 0

• Functions: xor(x,y) - exclusive OR, true if either x or y
is non-zero, false of both are true or false.
isempty - true for empty matrix

isreal, isequal, isfinite,...

October-November 2002

Flow of Control

For loops. Syntax:
for x = array

(commands)

end

Example:
>> for n = 1:10

x(n) = sin(n*pi/10);

 end

October-November 2002

Flow of Control

Nested loops, decrement loop.
>> for n = 1:5

 for m = 5:-1:1
 A(n,m) = n^2 + m^2;

 end
 end
Alternative: vectorized solution, much faster: assigns

 memory for x only once.
>> n = 1:10;

>> x = sin(n*pi/10)

October-November 2002

Flow of Control

While loops. Syntax:
while expression

(commands)

end

(commands) will be executed as long as all the

elements of expression are true.

Example: search for the smallest number EPS

which if added to 1 will give the result greater

than 1.

October-November 2002

Flow of Control

>> num = 0; EPS = 1;

>> while (1+EPS)>1

 EPS = EPS/2;

 num = num+1;

 end

>> num

num = 53

>> EPS = 2*EPS

EPS = 2.2204e-16

October-November 2002

Flow of Control

If-Else-End constructions. Syntax:
if expression1

(commands1: if expr-n1 is true)

elseif expression2

(commands2: if expr-n2 is true)

elseif expression3

(commands3: if expr-n3 is true)

else

(commands: if 1,2,..,n are false)
end

October-November 2002

Flow of Control

 Breaking out of the loop:

>> EPS = 1;

>> for num = 1:1000

 EPS = EPS/2;

 if (1+EPS)<=1

 EPS = EPS*2

 break
 end

 end
EPS = 2.2204e-16

October-November 2002

M-files
Script files & Function files

Script files: contain a set of Matlab commands - programs.
To execute the file: enter the file name.

% script M-file example.m �comment line
erasers = 4; pads = 6; tapes = 2;
items = erasers + pads + tapes
cost = erasers*25 + pads*52 + tapes*99
average_cost = cost/items

>>example
items = 12
cost = 610
average_cost = 50.833

October-November 2002

M-files
Interpreter actions while processing example statement:
1. Is example a current Matlab variable?
2. Is example a built-in Matlab command?
3. Is example an M-file?
4. Opens the file and evaluates commands as if they were
entered from the command line.

(i) all workspace variables are accessible to the
commands form the M-file.
(ii) all variables created by M-file will become a part of
the workspace if declared global.

October-November 2002

M-files
Function files

• Analogous to functions in C.
• Communicate with the workspace only through variables
passed to it and the output variables it creates. All internal
variables are invisible to the main workspace.
• M-file’s name = function’s name.
• The first line - function-declaration line

function s=area(a,b,alpha)

‘function’
keyword

output
variable

function name

expected input arguments

October-November 2002

Function M-files

function s=area(a,b,alpha)

% AREA calculates triangle’s area given 2 sides & angle between them

% AREA reads in two sides of the triangle and the angle between them

% (in radians) and returns the area of the triangle.

if a < 0 | b<0

error(‘a and b can not be negative.’)

end

s = a*b*sin(alpha)/2;

searched and displayed
by the lookfor command

searched and displayed
by the help command

Terminates execution of the M-file

October-November 2002

Function M-files

• Function M-files may call script files or other
(sub)functions, the script file/subfunction being
evaluated in the function’s workspace.

• Function M-files may have zero input and output
arguments.

• Functions may share variables. The variable must
be declared as global in each desired workspace.

October-November 2002

Some Helpful Commands
[n,m]=size(A) – dimensions of matrix A

n=length(B) - the length of vector B

zeros(m,n) – creates m x n matrix of zeros

ones(m,n) – creates m x n matrix of ones

eye(n) – n x n matrix, ones on the diagonal,

zeroes elsewhere
x = linspace(s,f,n) - x-vector of n equally
spaced elements form s up (down) to f, similar to
x = s:((f-s)/(n-1)):f

October-November 2002

Graphics

• Each graph is created in a figure window

• By default only one figure window can be opened,
thus the second graph will replace the first one

To create a graph you run:

• Management functions (arranging the figure
window(s))

• Graph generation functions

• Annotation functions (formatting the graphs,
optional)

October-November 2002

Graphics
Plotting functions: 3 categories

Management
figure
subplot
zoom
hold
view
rotated

Generation
2-D
 plot
 polar
 fill
 plotyy
3-D
 plot3
 surf, surf3
 mesh, meshz
 contour, contour3

Annotation &
characteristics

xlabel, ylabel, zlabel
text
title
legend
box
set
grid

October-November 2002

Graphics management
• figure(n) – opens figure window number n,

also makes window n default window; the new
plot() command will replace the plot in the
default window

• hold on – holds the current window active, you
may add curves using plot() command

• hold off – “releases” the current window
• subplot(i,j,k) – divides figure window into

i x j array of sectors for plots; k – number of the
sector to put the plot in

October-November 2002

Graphics
Two-Dimensional Graphics:
• “join-the-dots” x-y plot
>> x = [1.2 2.3 3.7 4.1 5.0 7.3];
>> y = [2.6 2.8 3.7 4.0 4.3 5.6];
>> plot(x,y)

Syntax: plot(x,y,string).
String (optional) stands for color, marker and plot style.
Example: ‘r*--’ -red, asterisk at each data point,
dashed line. Colors: r, g, b, c, m, y, k, w.
Line styles: - solid, -- dashed, : dotted, -. dash-dot.

October-November 2002

Graphics

Plotting many curves:
plot(x,y,’r-’,a,b,’g--’,….)

Some other control strings:
‘LineWidth’,2,‘MarkerSize’,7,

’MarkeFaceColor’,’r’,...

plot() -> loglog()

changes lin-lin plot to log-log one.

October-November 2002

Graphics
Labels and title:
xlabel(‘concentration’)

ylabel(‘viscosity‘)

title(‘C(η) plot, PEO - H2O solution.’)
Axes:
axis([xmin xmax ymin ymax]),

xlim([xmin xmax]),axis tight, grid on,

axis square, ……

Also go to “edit” option of the plot window.

October-November 2002

Graphics
Adding text box at the position (x,y):
text(x,y,’here is the text’);

Multiple plots in a Figure:
subplot(k,m,1), plot(……)

subplot(k,m,2), plot(……)

…………………………………………

subplot(k,m,k*m), plot(……)

k, m - number of lines and columns in the array
of plots, 1,2,…k*m - number of the plots in the
array.

October-November 2002

Graphics

plot([x1 x2],[y1 y2]) – plots a straight
line form (x1,y1) to (y1,y2)

Let’s plot a set of straight lines: connecting
(x1j,y1j) and (x2j,y2j) for j=1,…,n. The
plot instruction will be:
plot([x1;x2],[y1;y2]).

Say, x1=[1 3 5]; x2=x1; y1=[0 0 0]; y2=[3 6 2]; -
3 vertical lines will be plotted.

October-November 2002

Three-dimensional Graphics
The 3D version of plot is:

plot3(x1,y1,z1,S1,x2,y2,z2,S2,…)

3 coordinates, control string, 3 coordinates...

Example: sin(x), cos(x), x. Plots function of a function.

plot3([x1;x2],[y1;y2],[z1;z2])

Arguments – vectors of n elements each. x1, x2 store x-
coordinates of the points, where lines 1,…,n begin and end
correspondingly,

y1, y2 and z1, z2 do the same for y and z coordinates.

October-November 2002

Three-dimensional Graphics
3D, scalar functions of 2 variables, mesh plots:

z = f(x,y)

Plot of f(x,y) - surface in 3-d.

1. Create a mesh in x-y plane:

>> x = x0:x1, y = y0:y1

>>[X, Y] = meshgrid(x,y)

x has m and y has n elements, X & Y - matrices nxm,

X consists of n row vectors x, Y of m column vectors y.

Each pair X(i,j) & Y(i,j) gives coordinates in x-y space.

October-November 2002

Three-dimensional Graphics
X & Y may be treated as matrices or arrays.

If z = f(x,y) = 3(x2+y)3:

>>Z=3*(X.^2+Y).^3 % Matrix Z is created

>>mesh(X,Y,Z)% Draws mesh plot of f(x,y)

meshc - draws the underlying contour plot

meshz - meshplot with zero plane

surf(X,Y,Z) - surface plot: surface between

the mesh points is filled in; surf(x,y,Z) and surf(Z) also

work, same is true for “mesh” command.

>>Z=X.^4+3*X.^2-2*X+6-2*Y.*X.^2+X.^2-2*Y;

October-November 2002

Contour Plots etc.

Contour plots:
>>contour(X,Y,Z,20) %Draws
contour plot of f(x,y) with 20 contour lines.
>>contourf(X,Y,Z,10) %Filled contour
plot with 10 contour lines.
>>[X,Y,Z]=cylinder(y,N) % y(x) sets the shape
of the cylinder along the x-axis, N – number of points
around the sylinder surface.
>>mesh(X,Y,Z) will plot the cylinder surface in 3D
>>[X,Y,Z]=cylinder(1.2+sin(linspace(0,
2*pi,100)),20)

