Matlab, Introduction

Resources: intro

- 1. Matlab Primer: short and clear introduction.
- 2. Matlab on Athena (MIT computer services web page).
- 3. www.mathworks.com, Matlab: detailed online documentation. *medium level*

4. Matlab Guide D.J.Higan, N.J.Higan, SIAM, 2000. Intro to Matlab 6.0.

more advanced

5. Numerical Methods with Matlab, G. Recktenwald, Prentice Hall.6. Mastering Matlab 6, D.Hanselman, B.Littlefield,

Prentice Hall 2001, comprehensive tutorial & reference.

also

7. Lecture notes: 10.001 web page.

Main Features of Matlab

- Matlab = matrix laboratory, matrix oriented programming language + desktop environment.
- Any variable is an array by default, thus almost no declarations. All variables are by default double.
- Translator interpreter: line after line, no exe files.
- High level language:

(i) quick and easy coding

(ii) tools assembled into toolboxes (Spectral Analysis, Image Processing, Signal Processing, Symbolic Math etc.)(iii) relatively slow.

- All Matlab functions are precompiled.
- One may add extra functions by creating M-files and modify the existing ones.

Comparison with C.

- Syntax is similar
- Language structure is similar to C:
 - MATLAB supports variables, arrays, structures, subroutines, files
 - MATLAB does NOT support pointers and does not require variable declarations
 - MATLAB has extra built-in tools to work with matrices/arrays

Matlab, Getting Started

 Accessing Matlab on Athena: add matlab matlab &
 Log out: quit or exit

MATLAB desktop (version 6):
1) Command window
2) Launch Pad / Workspace window
3) Command history / Current Directory window

Useful Hints & Commands

- input: variable_name \rightarrow output: variable_value
- semicolon at the end will suppress the output
- command history: upper & lower arrows, also command name guess:

(i) type abc

(ii) hit "upper arrow" key \rightarrow get the last command starting from abc

- format compact no blank lines in the output format loose back to default
- help commandname info on commmandname

Workspace Maintenance

- all the assigned variables "reside" in the workspace
- clear all clears all the memory (workspace) clear xyz - removes xyz from the memory
- who lists all the variables from the workspace
- whos also gives the details

```
>> who
Your variables are:
           c1
                        с2
ans
>> whos
      Size
Name
                Bytes
                        Class
                 8
                        double array
       1x1
ans
       1x1
                16
                        double array(complex)
c1
с2
       2x2
                64
                        double array(complex)
```

Workspace Maintenance

- save saves all workspace variables on disk in file matlab.mat
- save filename x y z x, y, z are saved in file filename.mat
- load filename loads contents of the filename.mat to the workspace
- load filename x y z loads only x, y, z from filename.mat to the workspace
- Each array requires a continuous chunk of memory; use pack for memory defragmentation.

Built in Constants & Functions

- $pi \pi$ number
- i & j stand for "imaginary one" (i = -1^{1/2}), however may be redefined
- Trigonometric: sin, cos, tan, sec, cot
- Inverse trig.: asin, acos, atan, asec, acot
- Exponential: log, log2, log10, exp
- Complex: abs abs. value, angle phase angle, conj – conjugate transpose, imag – imaginary and real- real part

Linear Algebra

Vector: an ordered set of real or complex numbers arranged in a row or column.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

m-element column vector (n x 1)

$$y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$$

n-element row-vector $(1 \times n)$

Vector Operations

Addition/subtraction (element-wise, array operation:

$$c = a + b \rightarrow c_i = a_i + b_i, \quad i = 1,...,n$$

 $d = a - b \rightarrow c_i = a_i - b_i, \quad i = 1,...,n$

Multiplication/division by a scalar:

$$b = \alpha a \quad \Rightarrow \quad b_i = \alpha a_i$$
$$b = a/\alpha \quad \Rightarrow \quad b_i = a_i/\alpha$$

Vector transpose, turns row into column and vise versa:

$$\mathbf{x} = [1, 2, 3] \qquad \rightarrow \qquad \mathbf{x}^{\mathrm{T}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad (\mathbf{x}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{x}$$

Vector Operations

Vector inner (dot, scalar) product

(vector/matrix operation):

$$a = x \cdot y \quad \rightarrow \quad a = \sum_{i=1}^{n} x_i y_i \quad a = y^T \cdot x^T$$

x is a row vector

y is a column vector

The dimensions of x and y must agree.

NB General rule for vector/matrix multiplication: "row times column" – take i-th row of the left multiplier and multiply by the j-th column of the right multiplier

Vector Operations

Outer (tensor) product:

$$M = yx = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} = \begin{bmatrix} y_1x_1 & y_1x_2 & y_1x_3 & y_1x_4 \\ y_2x_1 & y_2x_2 & y_2x_3 & y_2x_4 \\ y_3x_1 & y_3x_2 & y_3x_3 & y_3x_4 \\ y_4x_1 & y_4x_2 & y_4x_3 & y_4x_4 \end{bmatrix}$$

 $M_{ij} = x_i y_j$

Vector Norms

To compare two vectors a vector norm (analogous to length, size) is introduced:

 $||x|| > ||y|| \rightarrow$ "norm of x is greater than norm of y" Euclidian norm, length in nD (also called L₂ norm):

$$\|\mathbf{x}\|_2 = (\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2 + \dots + \mathbf{x}_n^2)^{1/2}$$

$$\begin{aligned} \|\mathbf{x}\|_{1} &= |\mathbf{x}_{1}| + |\mathbf{x}_{2}| + |\mathbf{x}_{3}| + \dots + |\mathbf{x}_{n}| \qquad (L_{1}) \\ \|\mathbf{x}\|_{\text{inf.}} &= \max(|\mathbf{x}_{1}|, |\mathbf{x}_{2}|, |\mathbf{x}_{3}|, \dots |\mathbf{x}_{n}|) \\ \|\mathbf{x}\|_{p} &= (\mathbf{x}_{1}^{p} + \mathbf{x}_{2}^{p} + \mathbf{x}_{3}^{p} + \dots + \mathbf{x}_{n}^{p})^{1/p} \qquad (L_{p}) \end{aligned}$$

Dealing with Vectors/Matrices

Entering matrices by explicit list of elements:

A = [1; 2; 3] $A = [1 \ 2 \ 3]$ A =A =1 1 2 3 2 3 $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$ or A=[1 2 3 Spaces separate the elements, 4 5 6 semicolons and "new line" 7 8 9] symbols separate the rows.

Dealing with Matrices

Complex matrices: either A=[1 2; 3 4]+i*[5 6; 7 8] or A=[1+5i 2+6i; 3+7i 4+8i] No blank spaces, i or j stands for "imaginary one".

Matrix and array operations, classification.

Matrix Multiplication

Product of the two matrices A(nxm) and B(mxl) is matrix C(nxl):

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{im}B_{2jm}$$

The dimensions of A and B must agree. C_{ij} – is a dot product of i-th row of A and j-th column of B. Again "row (on the left) times column (on the right)".

If A or B is a vector, we will have either "row vector times matrix = column vector" or "matrix times column vector = row vector"

Dealing with Matrices

In Matlab *left* and *right division* are inverse to multiplication by column and row vectors correspondingly: $A * x=b \rightarrow x=A \setminus b$ (left) A-matrix m x n, b -row vector 1 x n $x * A=b \rightarrow x = b / A$ (right) b - column vector m x 1

Conjugate transpose: swaps the indices and changes the sign of imaginary part of each element.

$$C = A'$$

$$C(i,j) = real(A(j,i)) - i * imag(A(j,i))$$

Dealing with Matrices, Examples

>> C = A + B; C(k,l) = A(k,l) + B(k,l)Matrix multiplication, >> C = A*B;summation over the repeating C(k,l) = A(k,m) * B(m,l)index is implied. >> C = A.*B Element-wise (array) C(k,l) = A(k,l) * B(k,l)operation, imposed by "." Matrix A to the power alpha >> C = A^alpha; Each element of A to the power alpha >> C = A.^alpha; $C(k,l) = A(k,l)^{alpha}$

Dealing with Matrices

Standard math. functions of matrices operate in array sense: exp(A), sin(A), $sqrt(A) = A.^0.5$

 $>> B = \exp(A)$ \rightarrow $B(i,j) = \exp(A(i,j))$

Colon notation is used:

(i) to construct vectors of equally spaced elements:

>> a = 1:6 \rightarrow a = 1 2 3 4 5 6>> b = 1:2:7 \rightarrow b = 1 3 5 7

(ii) to access submatrices:

A(1:4, 3) - column vector, first 4 elements of the 3-d column of A.
A(:, 3) - the 3-d column of A
A(:, [2 4]) - 2 columns of A: 2-d & 4-th.
(iii) in "for" loops

Relational & Logical Operators & Functions

• R&L operations are needed for computer to make decisions and take actions once some conditions are satisfied.

Example – while loops

• Argument of R&L operations is true if it is non-zero and false if it is zero; output is 1 for true and zero for false.

Operate on matrices in elementwise fashion.

```
>> A = 1:9, B = 9 - A
A = 1 2 3 4 5 6 7 8 9
B = 8 7 6 5 4 3 2 1 0
>> tf = A > 4
tf = 0 0 0 0 1 1 1 1 1
>> tf = (A==B)
0 0 0 0 0 0 0 0
```

Relational & Logical Operators & Functions

- Logical: & AND; | OR; ~ NOT.
- >> tf = \sim (A>4)
- tf = 1 1 1 1 0 0 0 0
- >> tf = (A>2) & (A<6)
- $tf = 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$
- Functions: xor(x,y) exclusive OR, true if either x or y is non-zero, false of both are true or false.
- isempty true for empty matrix
- isreal, isequal, isfinite,...

```
For loops. Syntax:
for x = array
    (commands)
end
Example:
>> for n = 1:10
        x(n) = sin(n*pi/10);
   end
```

```
Nested loops, decrement loop.
>> for n = 1:5
    for m = 5:-1:1
        A(n,m) = n^2 + m^2;
```

end

end

Alternative: *vectorized* solution, much faster: assigns memory for x only once.

```
>> n = 1:10;
```

```
>> x = sin(n*pi/10)
```

While loops. Syntax: while expression (commands) end (commands) will be executed as long as all the elements of expression are true. Example: search for the smallest number EPS which if added to 1 will give the result greater than 1.

- >> num = 0; EPS = 1;
- >> while (1+EPS)>1

EPS = EPS/2;

num = num+1;

end

>> num

num = 53

>> EPS = 2*EPS

EPS = 2.2204e - 16

```
If-Else-End constructions. Syntax:
if expression1
     (commands1: if expr-n1 is true)
elseif expression2
     (commands2: if expr-n2 is true)
elseif expression3
     (commands3: if expr-n3 is true)
else
     (commands: if 1,2,..,n are false)
end
```

Breaking out of the loop:

```
>> EPS = 1;
```

```
>> for num = 1:1000
```

```
EPS = EPS/2;
if (1+EPS)<=1
EPS = EPS*2
break
end
end
```

```
EPS = 2.2204e - 16
```

M-files

Script files & Function files

Script files: contain a set of Matlab commands - programs. To execute the file: enter the file name.

M-files

Interpreter actions while processing example statement:

- 1. Is example a current Matlab variable?
- 2. Is example a built-in Matlab command?
- 3. Is example an M-file?
- 4. Opens the file and evaluates commands as if they were entered from the command line.

(i) all workspace variables are accessible to the commands form the M-file.

(ii) all variables created by M-file will become a part of the workspace *if declared global*.

October-November 2002

M-files

Function files

- Analogous to functions in C.
- Communicate with the workspace only through variables passed to it and the output variables it creates. All internal variables are invisible to the main workspace.
- M-file's name = function's name.
- The first line *function-declaration line*

Function M-files

function s=area(a,b,alpha)

% AREA calculates triangle's area given 2 sides & angle between them
% AREA reads in two sides of the triangle and the angle between them
% (in radians) and returns the area of the triangle.

Function M-files

- Function M-files may call script files or other (sub)functions, the script file/subfunction being evaluated in the function's workspace.
- Function M-files may have zero input and output arguments.
- Functions may share variables. The variable must be declared as global in each desired workspace.

Some Helpful Commands

[n,m]=size(A) - dimensions of matrix A n=length(B) - the length of vector B zeros(m,n) - creates m x n matrix of zeros ones(m,n) - creates m x n matrix of ones eye(n) - n x n matrix, ones on the diagonal, zeroes elsewhere

x = linspace(s,f,n) - x-vector of n equally spaced elements form s up (down) to f, similar to x = s:((f-s)/(n-1)):f

- Each graph is created in a figure window
- By default only one figure window can be opened, thus the second graph will replace the first one

To create a graph you run:

- Management functions (arranging the figure window(s))
- Graph generation functions
- Annotation functions (formatting the graphs, optional)

Plotting functions: 3 categories

<u>Generation</u>	Annotation &
<u>2-D</u>	characteristics
plot	xlabel, ylabel, zlabel
polar	text
fill	title
plotyy	legend
<u>8-D</u>	box
plot3	set
surf, surf3	grid
mesh, meshz	
contour, contour3	
	<u>Seneration</u> <u>2-D</u> plot polar fill plotyy <u>3-D</u> plot3 surf, surf3 mesh, meshz contour, contour3

Graphics management

- figure(n) opens figure window number n, also makes window n default window; the new plot() command will replace the plot in the default window
- hold on holds the current window active, you may add curves using plot() command
- hold off "releases" the current window
- subplot(i,j,k) divides figure window into i x j array of sectors for plots; k – number of the sector to put the plot in

Two-Dimensional Graphics:

• "join-the-dots" x-y plot
>> x = [1.2 2.3 3.7 4.1 5.0 7.3];
>> y = [2.6 2.8 3.7 4.0 4.3 5.6];
>> plot(x,y)

Syntax: plot(x,y,string).

String (optional) stands for color, marker and plot style. Example: `r*--' -red, asterisk at each data point, dashed line. Colors: r, g, b, c, m, y, k, w. Line styles: - solid, -- dashed, : dotted, -. dash-dot.

Plotting many curves: plot(x,y,'r-',a,b,'g--',....) Some other control strings: 'LineWidth',2, 'MarkerSize',7, 'MarkeFaceColor','r',... plot() -> loglog() changes lin-lin plot to log-log one.

Labels and title:

xlabel(`concentration')

```
ylabel(`viscosity`)
```

```
title('C(\eta) plot, PEO - {\rm H_2O} solution.') Axes:
```

axis([xmin xmax ymin ymax]),

xlim([xmin xmax]),axis tight, grid on,

```
axis square, .....
```

Also go to "edit" option of the plot window.

Adding text box at the position (x,y): text(x,y,'here is the text'); Multiple plots in a Figure: subplot(k,m,1), plot(.....) subplot(k,m,2), plot(.....)

subplot(k,m,k*m), plot(.....)
k, m - number of lines and columns in the array
of plots, 1,2,...k*m - number of the plots in the
array.

plot($[x_1 \ x_2]$, $[y_1 \ y_2]$) – plots a straight line form (x_1 , y_1) to (y_1 , y_2)

Let's plot a set of straight lines: connecting (x_{1j}, y_{1j}) and (x_{2j}, y_{2j}) for j=1,...,n. The plot instruction will be: plot([x1;x2],[y1;y2]).

Say, x1=[1 3 5]; x2=x1; y1=[0 0 0]; y2=[3 6 2]; -3 vertical lines will be plotted.

Three-dimensional Graphics

The 3D version of plot is:

plot3(x1,y1,z1,S1,x2,y2,z2,S2,...)

3 coordinates, control string, 3 coordinates...

Example: sin(x), cos(x), x. Plots function of a function.

plot3([x1;x2],[y1;y2],[z1;z2])

Arguments – vectors of n elements each. x1, x2 store xcoordinates of the points, where lines 1,...,n begin and end correspondingly,

y1, y2 and z1, z2 do the same for y and z coordinates.

Three-dimensional Graphics

3D, scalar functions of 2 variables, mesh plots:

$$z = f(x,y)$$

Plot of f(x,y) - surface in 3-d.

1. Create a mesh in x-y plane:

$$>> x = x0:x1, y = y0:y1$$

$$>>[X, Y] = meshgrid(x,y)$$

x has m and y has n elements, X & Y - matrices nxm,

X consists of n row vectors x, Y of m column vectors y.

Each pair X(i,j) & Y(i,j) gives coordinates in x-y space.

Three-dimensional Graphics

X & Y may be treated as matrices or arrays.

If $z = f(x,y) = 3(x^2+y)^3$:

>>Z=3*(X.^2+Y).^3 % Matrix Z is created

>mesh(X,Y,Z)% Draws mesh plot of f(x,y)

meshc - draws the underlying contour plot

```
meshz - meshplot with zero plane
```

surf(X,Y,Z) - surface plot: surface between

the mesh points is filled in; surf(x, y, Z) and surf(Z) also work, same is true for "mesh" command.

 $>>Z=X.^{4+3*X.^{2-2*X+6-2*Y.*X.^{2+X.^{2-2*Y}}}$

Contour Plots etc.

Contour plots:

>>contour(X,Y,Z,20) %Draws

contour plot of f(x,y) with 20 contour lines.

>>contourf(X,Y,Z,10) %Filled contour

plot with 10 contour lines.

>>[X,Y,Z]=cylinder(y,N) % y(x) sets the shape of the cylinder along the x-axis, N – number of points around the sylinder surface.

>>mesh(X,Y,Z) will plot the cylinder surface in 3D
>>[X,Y,Z]=cylinder(1.2+sin(linspace(0,
2*pi,100)),20)