
November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

1 1 2 2

Ourfittingfunctioningeneralcaseis:

() () () ... ()

Notethat thefunctionitself doesnothavetobelinear

for theproblemtobelinear.Thefitshouldbelinear

inthefittingparameters.

= + + + n nF x a f x a f x a f x

November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

1 1

1

1 2

Thus we have: vectors x, y and a:

points

... where the data , ... the data,

was taken

fitting
...

parameters

and functions (), (),..., ().

   
   = =   
      
 
 =  
  

N N

n

n

x y

x y

x y

a

a

a

f x f x f x

November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

i i

1

The problem now looks like:

y = () , where e is a residual:

mismatch between the measured value

and the one predicted by the fit.

Let’s intorduce vector e:

...

+

 
 =  
  

i i

N

F x e

e

e

e

November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

1 1 2 1 1

1 2 2 2 2

1 2

Let us express the problem in matrix notation:

() () ... ()

() () ... ()
Z=

...

() () ... ()

Overall we have now:

y = Z

Fitting problem in matrix notation

 
 
 
 
 
  

⋅ +

n

n

N N n N

f x f x f x

f x f x f x

f x f x f x

a e

N
2

i
i=1

.

Look for min e min()
  =  
∑ Te e

November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

() ()()
()

() ()

2
N N

2
i i

i=1 i=1 1

Look for min e min y

min

0 1

0

=

     = − =        

− ⋅ ⋅ − ⋅

∂
= ≤ ≤

∂

∂ − ⋅ 
⋅ − ⋅ = ∂ 

∑ ∑ ∑
n

ij j
j

T

T

k

T

k

z a

y z a y z a

e e
for k n

a

y z a
y z a

a

November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

() ()

() ()
() ()

() () ()

1 2

:,k :,

0

(0 0...1...0) 0

... 0 1

Using Matlab colon notation:

z

Or after putting all n equations together:

∂ 
− ⋅ ⋅ − ⋅ = ∂ 
⋅ ⋅ − ⋅ =

⋅ − ⋅ = ≤ ≤

⋅ ⋅ = ⋅

⋅ ⋅ = ⋅

T

k

T

T

k k Nk

T T

k

T T

a
z y z a

a

z y z a

z z z y z a for k n

z a z y

z z a z y

November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

In general case linear lest squares problem can be
formulated as a set of linear equations.

Ways to solve:
1. Gaussian elimination.
2. To calculate the matrix inverse:

() 1−
= ⋅ ⋅ ⋅T Ta z z z y

Suitable for Matlab, see homework 9.

November 2001 10.001 Introduction to Computer
Methods

Nonlinear Regression (Least Squares)

2-a x
1

i i 1 1 m i i i i

What if the fitting function is not linear in

fitting parameters?

We get a nonlinear equation (system of equations).

Example:

f(x) = a (1 - e) + e

y f (x ;a ,a ,..., a) e or just y = f(x) + e

Again

= +
N

2
i

i=1

 look for the minimum of e with respect

to the fitting parameters.

∑

November 2001 10.001 Introduction to Computer
Methods

Matlab Function FMINSEARCH.

Accepts as input parameters:
1. Name of the function (FUN) to be minimized
2. Vector with initial guess X0 for the fitting parameters
Returns: Vector X of fitting parameters providing the
local minimum of FUN.

Function FUN accepts vector X and returns the scalar
value dependent on X.

In our case (hw10) FUN should calculate
dependent on the fitting parameters
b, m, A1, A2, …

N
2

i
i=1

e∑

November 2001 10.001 Introduction to Computer
Methods

Matlab Function FMINSEARCH.

Syntax: x = FMINSEARCH(FUN,X0) or
 x = FMINSEARCH(FUN,X0,OPTIONS)

See OPTIMSET for the detail on OPTIONS.

 x = FMINSEARCH(FUN,X0,OPTIONS,P1,P2,..)
in case you want to pass extra parameters to
FMINSEARCH

If no options are set use OPTIONS = [] as a place
holder.

Use “@” to specify the FUN:
x = fminsearch(@myfun,X0)

November 2001 10.001 Introduction to Computer
Methods

Gauss-Newton method for nonlinear regression

i i 1 1 m i i i i

N
2

i i
i=1

y f (x ;a , a ,..., a) e or just y = f(x) + e

Look for the minimum of e with respect to a .

1. Make an initial guess for a: a0.

2. Linearize the equations (use Taylor expansion

about a0).

3. Solv

= +

∑

k,j+1 k,j

e for a - correction to a0 a1=a0+ a -

improved a-s and our new initial guess.

4. Back to (1).

5. Repeat until a -a for any k. ε

∆ → ∆

<

November 2001 10.001 Introduction to Computer
Methods

Gauss-Newton method for nonlinear regression

n
i

i i i i i
j 1 n

n
i

i i i
j 1 n

1 1

N N

Linearization by Taylor expansion:

f (x , a0)
y f (x) e f (x , a0) e

a

f (x , a0)
y f (x , a0) e for i = 1,2,...,N

a

or in matrix form:

D = Z a+e, where

y f (x , a0)

D=

y f (x , a0)

=

=

∂= + ≈ + +
∂

∂− = +
∂

⋅ ∆

− 
 
 
 − 

∑

∑

1 1

1 n

N N

1 n

f (x , a0) f (x , a0)
...

a a

, and Z

f (x , a0) f (x , a0)
...

a a

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
 ∂ ∂ 

November 2001 10.001 Introduction to Computer
Methods

Gauss-Newton method for nonlinear regression

Linear regression: y = Z a e

Now , nonlinear regression : D = Z a+e.

Old good linear equations with a in plce of a,

D in place of y and Z with partial derivatives

in place of Z with values of functions.

Sol

⋅ +
⋅ ∆

∆

ve it for a, use a1=a0+ a as the new initial

guess and repeat the procedure untill the

convergence criteria are met.....

∆ ∆

