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Linear Least Squares, General case
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Ourfittingfunctioningeneralcaseis:

( ) ( ) ( ) ... ( )

Notethat thefunctionitself doesnothavetobelinear

for theproblemtobelinear.Thefitshouldbelinear

inthefittingparameters.
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Thus we have: vectors x, y and a:

points

... where the data , ... the data,

was taken

fitting
...

parameters

and functions ( ), ( ),..., ( ).
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The problem now looks like:

y = ( ) , where e is a residual:

mismatch between the measured value 

and the one predicted by the fit. 

Let’s intorduce vector e:
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Let us express the problem in matrix notation:

( ) ( ) ... ( )

( ) ( ) ... ( )
Z=

... ... ... ...

( ) ( ) ... ( )

Overall we have now:

y = Z

Fitting problem in matrix notation
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Using Matlab colon notation:

z

Or after putting all n equations together:
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Linear Least Squares, General case

In general case linear lest squares problem can be
formulated as a set of linear equations.

Ways to solve:
1. Gaussian elimination.
2. To calculate the matrix inverse:

( ) 1−
= ⋅ ⋅ ⋅T Ta z z z y

Suitable for Matlab, see homework 9.



November 2001 10.001 Introduction to Computer
Methods

Nonlinear Regression (Least Squares)
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What if the fitting function is not linear in 

fitting parameters?

We get a nonlinear equation (system of equations).

Example:

f(x) = a (1 - e ) + e

y f (x ;a ,a ,..., a ) e  or just y  = f(x ) + e

Again

= +
N

2
i

i=1

 look for the minimum of e with respect

to the fitting parameters.

∑



November 2001 10.001 Introduction to Computer
Methods

Matlab Function FMINSEARCH.

Accepts as input parameters:
1. Name of the function (FUN) to be minimized
2. Vector with initial guess X0 for the fitting parameters
Returns: Vector X of fitting parameters providing the
local minimum of FUN.

Function FUN accepts vector X and returns the scalar
value dependent on X.

In our case (hw10) FUN should calculate
dependent on the fitting parameters
b, m, A1, A2, …
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Matlab Function FMINSEARCH.

Syntax:   x = FMINSEARCH(FUN,X0) or
 x = FMINSEARCH(FUN,X0,OPTIONS)

See OPTIMSET for the detail on OPTIONS.

 x = FMINSEARCH(FUN,X0,OPTIONS,P1,P2,..)
in case you want to pass extra parameters to
FMINSEARCH

If no options are set use OPTIONS = [] as a place
holder.

Use “@” to specify the FUN:
x = fminsearch(@myfun,X0)
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Gauss-Newton method for nonlinear regression
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y f (x ;a , a ,..., a ) e  or just y  = f(x ) + e

Look for the minimum of e with respect to a .

1. Make an initial guess for a: a0.

2. Linearize the equations (use Taylor expansion 

about a0).

3. Solv

= +

∑

k,j+1 k,j

e for a - correction to a0  a1=a0+ a -

improved a-s and our new initial guess.

4. Back to (1).

5. Repeat until a -a  for any k. ε

∆ → ∆

<
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Gauss-Newton method for nonlinear regression
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Linearization  by Taylor expansion:

f (x , a0)
y f (x ) e f (x , a0) e

a

f (x , a0)
y f (x , a0) e   for i = 1,2,...,N

a

or in matrix form:

D = Z a+e,  where

y f (x , a0)

D= ....

y f (x , a0)
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Gauss-Newton method for nonlinear regression

Linear regression:  y = Z a e

Now , nonlinear regression : D = Z a+e.

Old good linear equations with a in plce of a, 

D in place of y and Z with partial derivatives 

in place of Z with values of functions.

Sol

⋅ +
⋅ ∆

∆

ve it for a, use a1=a0+ a as the new initial

guess and repeat the procedure untill the 

convergence criteria are met.....

∆ ∆


