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Statistics deals with the collection and the analysis of data in the presence of vari-
ability. Variability can be caused by the limitations on the resolution of measuring devices
or the 
uctuations in the conditions under which the measurement is made or the inherent
non-constancy of the statistical variable itself or a combination of many of these factors.

1 An Example

Let's consider an example.1 A manufacturer of metal alloy parts wants to address cus-
tomer complaints concerning the non-uniformity in the melting points of an alloy his/her
company produces and markets. Suppose we are given this problem as consultants. How
can we get quantitative measures of the variability (dispersion) as well as the central
tendency (location) in the melting point?

Collect a sample representative of the population.

First of all, we need to collect data for the melting point of the alloy parts produced
in di�erent batches. The statistical information we seek here is for the entire population
of alloy parts which is distributed and sold to the customers. However, it is obviously
an impractical task to measure the melting point of each one of the alloy parts produced

1See /mit/10.001/Examples/MapleTutorial/�gures.ms for �gures which are referred to in this

document. Note that �gures.ms is a maple �le. Copy this into your working directory, load it into a

maple session and print it.
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in the company. Hence, we need to collect a sample which is representative of the entire
population. In order for the sample to faithfully represent the statistical properties of the
population, the process of sample selection should be done very carefully, by eliminating
bias as much as possible. Let's denote such a sample by X, the size of the sample by n
and each one of the sample elements by x1, x2,...,xn.

The following data are for a sample of size 50, i.e., it contains the melting points of
50 alloy parts sampled randomly from the production line. The melting point measure-
ments are rounded o� to the nearest integer value in order to comply with the accuracy
of the measuring procedure.

320 326 325 318 322 320 329 317 316 331 320 320 317 329 316
308 321 319 322 335 318 313 327 314 329 323 327 323 324 314
308 305 328 330 322 310 324 314 312 318 313 320 324 311 317
325 328 319 310 324

We will use this example to illustrate the key ideas and concepts of elementary
statistical analysis.

2 Data Visualization/Graphical Analysis

A qualitative idea of the central tendency and the dispersion of the sample data can
be obtained by representing it graphically. Typically, graphical visualization precedes
quantitative statistical analysis. Figure 1 shows a scatter plot of the data, i.e., the data
points x1, x2, ..., xn plotted on a 2d graph against their indices. Some of the key statistical
features of the data revealed by the scatter plot are: (a). a qualitative idea of the nature
of variability, in this case it looks like a random scatter around an average melting point
of approximately 320 and (b). the maximum and minimum values of the melting point
which are 335 and 305 respectively.

A qualitative idea of how the data are distributed between the maximum and min-
imum values can be obtained by constructing a frequency plot, typically presented as a
histogram. Here, we plot the number of observations of xi, say fi, vs. xi. A frequency
histogram for the melting point data above is given in Figure 2. From the frequency plot,
we can see that the melting point of 320 occurs most frequently, i.e., f(320) = 5. The
observation with the largest frequency is called the mode of the sample.

We can also tabulate the number of observation within a given interval and plot
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the frequency data thus obtained against the mid-points of the corresponding intervals.
For instance, we can create 7 equal intervals: [302.5,307.5), [307.5,312.5), [312.5,317.5),
[317.5,322.5), [322.5,327.5), [327.5,332.5), [332.5,337.5). The interval [a; b) contains the
data greater than or equal to a and less than b. In Figure 3, you can see a plot of
the number of observations of the melting point measurements within each one of these
7 intervals vs. the midpoint of the corresponding interval. As Figure 3 reveals, the
distribution is approximately symmetric about a melting point value of 320.

3 Quantitative Description of the Data

There are primarily 2 types of measures we are interested in. The �rst type is known
as the measures of location or measures of central tendency. The most commonly used
description of this type is the sample mean denoted by � and computed as

� =
1

n

nX
i=1

xi: (1)

For the data given above, � � 320.

The mean value of the data set is a single number which we extract from the entire
data set using Eq. 1. In that sense, it is a function which maps the sample data to a single
number representing a measure of location, i.e., it tells us what the average value of the
data set is. This is true of almost all quantitative statistical measures: On one hand, they
allow us to represent large sets of data compactly. On the other hand, we have discarded
much of the detail in the process of arriving at a compact quantitative representation.
This is why it helps to do a qualitative analysis using statistical plots. Moreover, we should
try to combine the various quantitative measures to get a comprehensive description of
the data.

Now, what are the other measures of location? The median value of the data set
is de�ned as the observation so that half of the observations in the sample has values
less than the median value. In other words, if we sort the data in the ascending order
such that x1 � x2 � x3 � � � � � xn�1 � xn, the median value is the middle value of
the sorted data if n is an odd number, or it is the arithmetic mean of the two middle
values if n is an even number. We will denote the median of the data set X by xmed. For
instance, if we sort the melting point data above in the ascending order, we can �nd that
xmed = (x25 + x26)=2 = 320.

Well, when do we use the median as a representative measure in preference to the
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mean? The answer is when a sample of relatively small size contains extreme points, the
mean may not be a representative measure, in such cases we tend to use the median of
the sample. As an example, consider the data (2:16; 2:37; 2:84; 3:01; 17:3), the mean value
is larger than 4 of the 5 observations in the sample due to the relatively large weight of
the last datum. Here, the median is a better representation of the central tendency.

In the melting point data given above, the mean, the median as well as the mode
of the sample are practically the same (320). This is indicative of the symmetry of the
distribution, as seen from Figure 3.

The idea of the median can be generalized to the concept of the percentile measure.
Once the data has been sorted in ascending order, we can seek the observation xP such
that P percent of the (sorted) observations are below xP . In this case, we call xP the P th
percentile of the sample. The 25th, the 50th and the 75th percentiles are often referred
to as the �rst, the second and the third quartiles respectively. The di�erence between
the third and the �rst quartiles is called the interquartile range. For the melting point
data of our example, the �rst and third quartiles are 316 and 325 respectively so that the
interquartile range is 9. The interquartile range is often used to describe the variation
of the data. The advantage of using such a measure over the range of the sample is
that it avoids extreme data points often resulting from observations with relatively low
con�dence levels.

The box and whisker plot, or the box plot for short, graphically represents the
median, the �rst and the third quartiles and the extrema of the sample data. A box plot
of the melting point data is given in Figure 4. In the case of multiple samples, we can use
a box plot to represent each sample. In that case, the widths of the boxes can be used to
represent the relative sizes of the samples.

4 Variance, Standard Deviation and Coe�cient of

Variation

The most commonly used measure of variation (dispersion) is the sample standard de-
viation, �. The square of the sample standard deviation is called the sample variance,
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de�ned as2

�2 =
1

n� 1

nX
i=1

(xi � �)2: (2)

However,

nX
i=1

(xi � �)2 =
nX
i=1

(x2i � 2�xi + �2)

=
nX
i=1

x2i � 2�(
nX
i=1

xi) + n�2

= (
nX
i=1

x2i )� 2n�2 + n�2

= (
nX
i=1

x2i )� n�2: (3)

So an alternate equation for computing the variance is given by

�2 =
1

n� 1

"
(

nX
i=1

x2i )� n(
nX
i=1

xi)
2

#
: (4)

The advantage of Eq. 4 over Eq. 2 is that it allows for the computation of
P
x2i

required for the evaluation of � and
P
xi required for the evaluation of � in one loop,

whereas Eq. 2 requires the precomputed value of � before we can compute �. For this
reason, Eq. 4 is used often in the computations of the mean and variance.

However, if you closely examine Eq. 2 and Eq. 4, one important di�erence can be
pointed out: Eq. 2 guarantees a non-negative variance because variance is given there as
the sum of squares. This is not necessarily true of Eq. 4 where we subtract n(

Pn
i=1 xi)

2

from
Pn

i=1 x
2
i . From a computational perspective, we know that this can cause di�culties

for large samples prone to potential roundo� errors. So we are interested in developing
an algorithm which computes (a). both the mean and the variance in the same loop and
(b). variance as a sum of squares. How can this be accomplished? Well, we can resort

2Note that the sample variance is de�ned with n� 1 in the denominator, if we use n instead of n� 1

in Eq. 2, the quantity computed is referred to as the population variance. For large values of n, the

sample variance is practically equal to the population variance. Here, the same symbols, � and �, are

used to denote the mean and standard deviation respectively of the sample and the population. This is

not to imply that they are the same, the sample mean and variance provide at the best an estimate of

the population mean and variance. We will make the distinction between the sample and the population

statistics from the context.
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to developing recursive relations. Applying Eq. 1 for the the �rst p � 1 and p data and
subtracting one from the other, we get

p�p = (p� 1)�p�1 + xp; (5)

where �p denotes the mean value of the �rst p data of the sample. We can now compute
the sample mean recursively by letting �1 = x1 and subsequently applying Eq. 5 for
p = 2; 3; � � � ; n. We can also construct a simple recursion relation for computing �2 by
applying Eq. 4 for the �rst p� 1 and p data in the sample. This gives the two equations

(p� 2)�2p�1 = x21 + x22 + � � �+ x2p�1 � (p� 1)�2p�1

(p� 1)�2p = x21 + x22 + � � �+ x2p � p�2p: (6)

subtracting the �rst of Eq. 6 from the second one gives

(p� 1)�2p = (p� 2)�2p�1 + (p� 1)�2p�1 + x2p � p�2p; (7)

which can be rewritten (to get rid of subtractions) by substituting for �2p�1 from Eq. 5 as
follows:

(p� 1)�2p = (p� 2)�2p�1 + p(xp � �p)
2=(p� 1); p = 2; 3; � � � ; n: (8)

Now, once we initialize �1 = x1 and �1 = 0, we can compute the sample mean and variance
using Eq. 5 and 8 for p = 2; 3; � � � ; n within the same loop. Note that the variance thus
computed is guaranteed to be non-negative.

The coe�cient of variation of the sample data, denoted by CV is de�ned as

CV =
�

�
: (9)

Note that CV is independent of the units of measurement.

5 Frequency Distribution Revisited

In section 2, we computed the number of observations of the melting point within a given
interval for 7 intervals and plotted the interval frequency vs. the interval midpoint (refer
to Figure 3). Such information obtained by grouping data into various intervals can be
used to infer and model how the data is distributed in the entire population. In the context
of our example, this means that by studying the statistical properties of the melting point
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data of the sample grouped into di�erent intervals, we can gain inferences on how the
melting point is distributed among the entire population of alloy parts produced.

The �rst step in this kind of analysis is to de�ne the intervals and �nd the frequency
of observation within each interval. Let's say that we chose m intervals of equal length
of �x. Let's denote the mid-points of these intervals by Pj, for j = 1; 2; � � � ; m. An
observation xk belongs to the interval j if

Pj ��x=2 � xk < Pj +�x=2: (10)

Using the above criterion, we can �nd the interval frequency fj for j = 1; 2; � � � ; m. The
frequency distribution plot in Figure 3 shows fj vs. Pj with m = 7. Note that the sample
size n has to be equal to sum of the interval frequencies, i.e., n =

Pm
i=1 fj.

Once we have collected the interval frequencies, we can compute the mean and the
variance from the grouped data. We will use the subscript g to denote the statistical
measures obtained from grouped data. In particular,

�g =

Pm
j=1 fjPjPm
j=1 fj

=

Pm
j=1 fjPj

n

(n� 1)�g =
mX
j=1

fj(Pj � �g)
2: (11)

For instance, �g for the melting point data grouped as in Figure 3 is 320.3.

The cumulative frequency, Fj is de�ned as the sum of all the frequencies of the
intervals � j. You can compute Fj recursively as Fj = Fj�1 + fj, j = 2; 3; � � � ; m with
F1 = f1. Note that Fm = n.

5.1 Modeling the Melting Point Data: Gaussian/Normal Dis-
tribution

Even a cursory examination of Figure 3 reveals that the sample frequency distribution is
approximately symmetric about a mean value of 320. Moreover, the maximum frequency
occurs very close to the mean value. Furthermore, the frequency diminishes rapidly as
we move either to the left or to the right of the mean value. These observations suggest
the use of a bell shaped distribution to model the data. Or in mathematical terms, we
seek to model the population frequency distribution using a Gaussian (normal) distribu-
tion. The Gaussian distribution is one of the most widely used probability distributions
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with applications not only in statistical analysis of data but in theory of probability and
stochastic processes. The mathematical expression for the normal distribution is given by

N(x : �; �) =
1p
2��

exp

"
�(x� �)2

2�2

#
; (12)

where N(x : �; �) denotes a normal or Gaussian distribution of variable x with mean �
and standard deviation �. It can be shown thatZ

1

�1

N(x : �; �)dx = 1; (13)Z
1

�1

xN(x : �; �)dx = �; and (14)Z
1

�1

(x� �)2N(x : �; �)dx = �2: (15)

Eq. 13 is equivalent to saying that that the distribution function is normalized such that
the area above the x axis and under the N(x : �; �) curve is unity. Eq. 14 says that the
expectation of the statistical variable is equal to the mean. Eq. 15 says that the second
moment of the distribution about the mean value is equal to its variance. The points of
in
ection of N(x : �; �) are given by x = �� �.

Now how can we relate the discrete frequency distribution of the melting point
data to the continuous normal distribution? We can rephrase this question as: what is
the appropriate frequency function which will approach N(x : �; �) in the limit of the
interval length �x! 0 and the number of observations n!1? Such a function can be
constructed by suitably scaling fj so that after scaling, the area under fj vs. Pj curve is
unity. We can then use the scaled fj for comparisons against N(x : �; �).

Now, if we plot a histogram of fj vs. Pj, the contribution to the area from interval
j is fj�x. So the total area from m intervals is �x

Pm
j=1 fj = n�x. Hence, in order to

be consistent with the normalization given by Eq. 13, we should compare fj=(n�x) with
N(x : �; �). Such a comparison for the melting point data is shown in Figure 5. Note that
in Figure 5, the continuous curve corresponds to n�xN(x : �; �) = 250N(x : 320:1; 6:7)
is plotted for 305 � x � 335 and the points correspond to fj for j = 1; 2; � � � ; 7. As we
can see from Figure 5, the agreement is quite satisfactory, implying that the distribution
of the melting points in the entire population of alloy parts can be modeled as a Gaussian
distribution.
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5.2 Predicting Probability from the Model Distribution

Once we have modeled the data using a distribution, we have at our disposal a predictive
tool to evaluate the probability that a certain observation can be made between any 2
melting points xa and xb such that xa < xb. This probability, denoted by �(xa; xb), is the
area under the distribution curve between x = xa and x = xb; i.e.,

�(xa; xb) =
Z xb

xa

N(x : �; �)dx: (16)

Note that Eq. 13 is equivalent to the statement that the probability of making an obser-
vation between �1 and 1 is unity.

How do we compute the integral in Eq. 16? First of all, we would like to de�ne a
new variable

z � (x� �)=� (17)

which is independent of the units of measurement. Moreover, z = 0 for x = � and note
that z measures the how far we are away from the mean in units of the standard deviation.
We now de�ne the standard normal distribution, Ns(y : 0; 1) as

Ns(y : 0; �) =
1p
2�

exp(�y2=2): (18)

Note that the standard normal distribution is a normal distribution with 0 mean and unit
variance. We now de�ne the standard cumulative distribution function �(z) based on
Ns(y : 0; 1) as

�(z) =
1p
2�

Z z

�1

exp(�y2=2)dy: (19)

However, from Eq. 16, we have

�(xa; xb) =
1p
2��

Z xb

xa

exp

"
�(x� �)2

2�2

#
dx

=
1p
2�

Z zb

za

exp(�z2

2
)dz (Note: z =

x� �

�
)

=
1p
2�

Z zb

�1

exp(�z2

2
)dz � 1p

2�

Z za

�1

exp(�z2

2
)dz

= �(zb)� �(za): (20)

The values of �(z) can be found in standard mathematical tables. In maple, in-
voke the stats package using with(stats); and do ?statevalf; to get the syntax of the
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statevalf function which can be used to evaluate distribution values. In particular,
statevalf [cdf; normald](value) will give the numerical value of �(z) at z = value. It
is important to note that �(�1) = 0, �(0) = 1=2 and �(1) = 1. Moreover,

�(�z) = 1� �(z): (21)

See Figure 6 in the maple worksheet �gures.ms for a plot of �(z).

The following series formula is also used to compute z, convergence is slower as the
value of z becomes large.

�(z) =
1

2
+

1p
�

1X
k=0

akz
2k+1; (22)

where

ak =
1� 2k

2k(1 + 2k)
ak�1; n � 1:

a0 =
1p
2
: (23)

The following is a table which provides, z, �(z) accurate to 6 decimal digits and the value
of k at which the series expansion of Eq. 22 was truncated to obtain that accuracy. Only
z � 0 need be computed (see Eq. 21).
0.0 0.500000 0
0.2 0.579260 4
0.4 0.655422 5
0.6 0.725747 6
0.8 0.788145 7
1.0 0.841345 8
1.2 0.884930 9
1.4 0.919243 10
1.6 0.945201 12
1.8 0.964070 13
2.0 0.977250 14
2.2 0.986097 16
2.4 0.991802 17
2.6 0.995339 19
2.8 0.997445 20
3.0 0.998650 22
3.2 0.999313 24
3.4 0.999663 26
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3.6 0.999841 28
3.8 0.999928 30
4.0 0.999968 32
4.2 0.999987 35
4.4 0.999995 37
4.6 0.999998 40
4.8 0.999999 42
5.0 1.000000 45

For very large values of z (z >> 1), we may use the asymptotic relation

�(z) = 1� exp(�z2=2)=(z
p
2�); (24)

instead of the series expansion given in Eq. 22. For z = 4, the asymptotic result gives
�(z) = 0:999966, this is correct to 5 decimal places.

How do we make use of the information in the table above? For instance, let's ask:
what is the probability �(xa; xb) that an observation is one standard deviation within the
mean? Here, xa = �� � and xb = �+ �, so that za = �1 and zb = 1. So the probability
(see Eq. 20) �(�� �; �+ �) = �(1)��(�1) = 2�(1)� 1 � 0:6827. This implies that we
expect 68:27% of the entire population of the alloy parts to have melting points between
313 and 327 if we use � = 320 and � = 7.

Con�dence levels are simply probabilities converted into percentages. For instance,
the con�dence level of the interval [���; �+�] is 68:27% from the probability calculated
above. It can be shown that the probability that an observation x falls within the range
[�� 1:96�; �+ 1:96�] is 0:95 for the normal distribution. So the con�dence level for this
interval is 95%.

The discrete analogue of �(z) is the cumulative frequency data scaled with n plotted
against zj = (Pj � �)=�. We expect Fj=n to approach �(z) in the limit n ! 1 and
�x! 0.

6 On Sorting Data

How do we sort the sample data in ascending order? A straightforward scheme is to �nd
the smallest of the n sample points and assign that as x1, then to �nd the smallest of the
remaining n � 1 and assign that as x2 and repeat the procedure until we have x2. This
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process requires a total of (n� 1)+ (n� 2)+ � � �+2+1 = (n2�n)=2 comparisons. So for
large values of n, the algorithm scales as n2. A common n2 algorithm for sorting, which
can be found in almost any elementary book on computer science or statistical analysis
is the bubble sort algorithm. The algorithm is given as follows.
1. Initialize n, x1, x2,...,xn.
2. De�ne K = n� 1, L = 0.
3. while (L = 0)
L = 1
for j = 1; 2; :::; K � 1
if (xj > xj+1) then swap xj and xj+1, L=0
end for loop
K=K-1
end while loop
4. Print the sorted values of x1, x2,...,xn.

Either of the algorithms given above should not be used for large values of n since
more e�cient methods which scale like n ln2(n) exist in literature. These algorithms are
based on clever partioning of the data into suitable subsets. A number of such methods
may be found in chapter 8 of the NRC book. One of the most popular methods used
in practice is the quicksort method. Note that the CPU time of the quicksort method
depends on the initial ordering of data. While the best case scenario is order n ln2(n), the
worst case could be as bad as order n2. The heapsort method is order n ln2(n), irrespective
of the ordering of the input data. The decision to use a quicksort over heapsort is typically
made when sorting has to be done for a large number of data sets (i.e., many di�erent
samples), in which case, on the average CPU time for quicksort is typically smaller as
compared to that for heapsort. In NRC, the quicksort function is called void sort(unsigned
long n, 
oat arr[]) (page 333 of the NRC book) and the heapsort function is called void
hpsort(unsigned long n, 
oat arr[]) (page 337 of the NRC book).

7 Using Maple for Statistical Analysis

The stats package in maple provides a number of subpackages and functions for data visu-
alization, sorting, tabulating interval frequencies, computations of the measures of location
and dispersion, computations of distributions and linear regression. Many of these func-
tions are illustrated in the tutorial /mit/10.001/Examples/MapleTutorial/stats.ms.
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